Highway-Rail Crossing HANDBOOK Third Edition FOREWORD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vehicular Safety and Operations Assessment of Reserved Lanes Using Microscopic Simulation
Vehicular Safety and Operations Assessment of Reserved Lanes using Microscopic Simulation Chao Li A Thesis in The Department of Building, Civil, and Environmental Engineering Presented in Partial Fulfilment of the Requirements For the Degree of Master of Applied Science in Civil Engineering at Concordia University Montreal, Quebec, Canada Fall 2016 © Chao Li, 2016 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Chao Li Vehicular Safety and Operations Assessment of Reserved Lanes using Entitled: Microscopic Simulation and submitted in partial fulfillment of the requirements for the degree of Master of Applied Science (Civil Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Dr. A. M. Hanna Chair Dr. J. Y. Yu Examiner Dr. Z. Zhu Examiner Dr. C. Alecsandru Supervisor Approved by Dr. Fariborz Haghighat Chair of Department or Graduate Program Director Dr. Amir Asif Dean of Faculty Date Fall, 2016 ABSTRACT Vehicular Safety and Operations Assessment of Reserved Lanes using Microscopic Simulation Chao Li Evaluation of roadway safety via the analysis of vehicular conflicts using microscopic simulation shows increasing preference among transportation professionals, mostly due to significant advances in computational technology that allows for better efficiency when compared with other traffic safety modeling approaches. In addition, since modeling vehicular interactions via simulation is intrinsic to the methodology, one may assess various impacts of safety treatments without disrupting vehicle movements and before proceeding with real-world implementations. VISSIM, a microscopic traffic simulation model, is used in this thesis to reproduce vehicular interactions of an urban High Occupancy Vehicle (HOV) arterial in Québec. -
Module 6. Hov Treatments
Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations .......................................... -
Design Guidelines for the Use of Curbs and Curb/Guardrail
DESIGN GUIDELINES FOR THE USE OF CURBS AND CURB/GUARDRAIL COMBINATIONS ALONG HIGH-SPEED ROADWAYS by Chuck Aldon Plaxico A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering by September 2002 APPROVED: Dr. Malcolm Ray, Major Advisor Civil and Environmental Engineering Dr. Leonard D. Albano, Committee Member Civil and Environmental Engineering Dr. Tahar El-Korchi, Committee Member Civil and Environmental Engineering Dr. John F. Carney, Committee Member Provost and Vice President, Academic Affairs Dr. Joseph R. Rencis, Committee Member Mechanical Engineering ABSTRACT The potential hazard of using curbs on high-speed roadways has been a concern for highway designers for almost half a century. Curbs extend 75-200 mm above the road surface for appreciable distances and are located very near the edge of the traveled way, thus, they constitute a continuous hazard for motorist. Curbs are sometimes used in combination with guardrails or other roadside safety barriers. Full-scale crash testing has demonstrated that inadequate design and placement of these systems can result in vehicles vaulting, underriding or rupturing a strong-post guardrail system though the mechanisms for these failures are not well understood. For these reasons, the use of curbs has generally been discouraged on high-speed roadways. Curbs are often essential, however, because of restricted right-of-way, drainage considerations, access control, delineation and other curb functions. Thus, there is a need for nationally recognized guidelines for the design and use of curbs. The primary purpose of this study was to develop design guidelines for the use of curbs and curb-barrier combinations on roadways with operating speeds greater than 60 km/hr. -
ROAD SAFETY: BASIC FACTS © Panos / Jacob Silberberg
FACT SHEET #1 ROAD SAFETY: BASIC FACTS © Panos / Jacob Silberberg ROAD SAFETY AND MEDIA REPORTING Road traffic crashes are often covered in the media simply as events—not as a leading killer of people and an enormous drain on a country’s human, health and financial resources. By framing road safety as a health and development story, with data and in-depth information, journalists have the opportunity to affect the way these stories are told and potentially to help shift public behaviour and attitudes, influence policy and therefore contribute towards saving lives. WHY ARE ROAD TRAFFIC INJURIES A PUBLIC HEALTH ISSUE? Road traffic injuries and deaths have a terrible 1.25 million impact on individuals, communities and road traffic deaths occur every year. countries. They involve massive costs to often overburdened health care systems, occupy scarce hospital beds, consume resources and result in significant losses of productivity and prosperity, with deep social and economic repercussions. The numbers speak for themselves: this is a cause of death among public health and development crisis that is expected to worsen unless action is taken. #1those aged 15-29 years For more on: road traffic injuries Global death figures drive home the extent of this public health crisis, especially among young people. FACT SHEET #1 Road safety: Basic facts – page 1 The chance 9.3 of dying Europe 19.9 in a road Eastern Mediterranean 17.0 traffic crash 15.9 South East Asia Americas 26.6 depends on where Africa 17.3 you live INTERPRETING THE NUMBERS MAGNITUDE • Tallying the total number of deaths can, • About 1.25 million people globally die each year however, be useful for conveying the magnitude as a result of road traffic crashes—that’s over 3400 of the problem, the prevention effort required deaths a day. -
Rural Expressway Intersection Synthesis of Practice and Crash Analysis
RURAL EXPRESSWAY INTERSECTION SYNTHESIS OF PRACTICE AND CRASH ANALYSIS Sponsored by the Iowa Department of Transportation (CTRE Project 03-157) Final Report October 2004 Disclaimer Notice The opinions, fi ndings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation. The sponsor(s) assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specifi cation, or regulation. The sponsor(s) do not endorse products or manufacturers. About CTRE/ISU The mission of the Center for Transportation Research and Education (CTRE) at Iowa State Uni- versity is to develop and implement innovative methods, materials, and technologies for improv- ing transportation effi ciency, safety, and reliability while improving the learning environment of students, faculty, and staff in transportation-related fi elds. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CTRE Project 03-157 4. Title and Subtitle 5. Report Date Rural Expressway Intersection Synthesis of Practice and Crash Analysis October 2004 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. T. H. Maze, Neal R. Hawkins, and Garrett Burchett 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research and Education Iowa State University 11. Contract or Grant No. 2901 South Loop Drive, Suite 3100 Ames, IA 50010-8634 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Iowa Department of Transportation Final Report 800 Lincoln Way 14. Sponsoring Agency Code Ames, IA 50010 15. -
A New Signalling System for Automatic Block Signal Between Stations Controlling Through an IP Network
A New Signalling System for Automatic Block Signal between Stations Controlling through an IP Network 1R. Ishima, 1Y. Fukuta, 1M. Matsumoto, 2N. Shimizu, 3H. Soutome, 4M. Mori East Japan Railway Company, Saitama, Japan1; Daido Signal Co.,Ltd., Tokyo, Japan2; Hitachi, Ltd., Hitachinaka, Japan3; Toshiba Corp., Tokyo, Japan4 Abstract This paper describes a new signalling system which controls signalling field devices of automatic block signal between stations through an IP network. The system improves the method of the system already installed to Ichikawaono station on the Musasino line in February 2007. The Logic Controller (LC), placed in a signal house, exchanges the command and feedback data with the Field Controller (FC), placed near each automatic block signal, through the Ethernet Passive Optical Network (E- PON). Following the command data, the FC electrically controls signalling field devices such as signals, track circuits, transponders of the Automatic Train Stop (i.e. Automatic Train Protection) system with Pattern (ATS-P), transponders of the S-type of ATS (ATS-S), and output relays. Only optical fiber cable requires between the LC and the FC. The system has high reliability because the LC, the FC, and the data paths of E-PON are all duplex. The system provides sufficient maintenance information through the IP network. The system can realize higher reliability, less wire-connection- work, less amount of cable, cost cutting, and faster troubleshooting. A prototype system was under evaluation on the Joban Rapid Service line between Mabashi and Kitakashiwa from August 2006 to January 2008. Evaluating the results of the field test, we conclude that the prototype system is technically suitable for signal control. -
European Road Safety Observatory
European Road Safety Observatory Road Safety Thematic Report Railway level crossings This document is part of a series of 20 thematic reports on road safety. The purpose is to give road safety practitioners an overview of the most important research questions and results on the topic in question. The level of detail is intermediate, with more detailed papers or reports suggested for further reading. Each report has a 1-page summary. Contract This document has been prepared in the framework of the EC Service Contract MOVE/C2/SER/2019-100/SI2.822066 with Vias institute (BE) and SWOV Institute for Road Safety Research (NL). Version Version 1.1, January 2021 Author Kas Kamphuis (SWOV) Internal review Philip Temmerman (Vias institute) External review Tim De Ceunynck (Independent road safety expert) Editor Heike Martensen (Vias institute) Referencing Reproduction of this document is allowed with due acknowledgement. Please refer to the document as follows: European Commission (2021) Road safety thematic report – Railway level cross- ings. European Road Safety Observatory. Brussels, European Commission, Direc- torate General for Transport. Source The document is based on and partly cites SWOV fact sheet Railway level cross- ings of December 2020: https://www.swov.nl/en/facts-figures. Disclaimer Whilst every effort has been made to ensure that the material presented in this document is rele- vant, accurate and up-to-date, the (sub)contractors cannot accept any liability for any error or omission, or reliance on part or all of the content in another context. Any information and views set out in this document are those of the author(s) and do not neces- sarily reflect the official opinion of the European Commission. -
GUIDELINES for TIMING and COORDINATING DIAMOND November 2000 INTERCHANGES with ADJACENT TRAFFIC SIGNALS 6
Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TX-00/4913-2 4. Title and Subtitle 5. Report Date GUIDELINES FOR TIMING AND COORDINATING DIAMOND November 2000 INTERCHANGES WITH ADJACENT TRAFFIC SIGNALS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Nadeem A. Chaudhary and Chi-Leung Chu Report 4913-2 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Project No. 7-4913 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Research: Construction Division September 1998 – August 2000 Research and Technology Transfer Section 14. Sponsoring Agency Code P. O. Box 5080 Austin, Texas 78763-5080 15. Supplementary Notes Research performed in cooperation with the Texas Department of Transportation. Research Project Title: Operational Strategies for Arterial Congestion at Interchanges 16. Abstract This report contains guidelines for timing diamond interchanges and for coordinating diamond interchanges with closely spaced adjacent signals on the arterial. Texas Transportation Institute (TTI) researchers developed these guidelines during a two-year project funded by the Texas Department of Transportation. 17. Key Words 18. Distribution Statement Diamond Interchanges, Capacity Analysis, Traffic No restrictions. This document is available to the Signal Coordination, Traffic Congestion, Signalized public through NTIS: Arterials National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price Unclassified Unclassified 50 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized GUIDELINES FOR TIMING AND COORDINATING DIAMOND INTERCHANGES WITH ADJACENT TRAFFIC SIGNALS by Nadeem A. -
State Set to Push Toll Roads
State set to push toll roads FUNDING PLAN AIMS TO SPEED UP ROAD PROJECTS, TRAFFIC RELIEF By Gary Richards Mercury News Thursday, February 3, 2005 The future of highway driving in California could be a two-tiered system, in which commuters can either remain in stop-and-go traffic for free, or pay a toll to cruise on a private highway. Gov. Arnold Schwarzenegger is expected to soon announce his support for allowing private contractors to build toll roads across California. Following the model of Highway 125 now under construction in Southern California, contractors would build toll roads in congested areas or toll lanes parallel to existing roads -- such as Highway 152 or Interstate 205 -- that would be designed and maintained by the state. The specifics are still far away, but it is yet another step in the governor's strategy to creatively finance -- and speed up -- highway construction in California without raising taxes. The governor previously noted his support for allowing solo drivers to pay their way into carpool lanes. ``We're going to make an announcement really soon where we're going to look at our whole infrastructure and transportation and we have a very creative way of financing it,'' Schwarzenegger said last week in a meeting with the Orange County Register editorial board, adding: ``We want to approach it in a very radical way and then look at all kinds of transportation.'' The governor's office had no comment Wednesday on the expected announcement, but last year his performance review team called for more toll facilities. ``I'm not surprised,'' said Randy Rentschler of the Metropolitan Transportation Commission in Oakland. -
General Engineering Requirements Manual
GENERAL ENGINEERING REQUIREMENTS MANUAL 201786 (Last revised by MarkCH on 10-1712-167) General Engineering Requirements Manual Table of Contents CHAPTER 1 INTRODUCTION ............................................................................ 1-1 1.1 Purpose and Intent ......................................................................................................... 1-1 1.2 Integration with City Codes, Ordinances, and Regulations ............................................ 1-1 1.3 Project Classifications .................................................................................................... 1-2 1.4 Comprehensive Planning ............................................................................................... 1-2 1.5 Geographic Information System (GIS) Technology ........................................................ 1-3 1.6 Land Surveying .............................................................................................................. 1-3 1.7 Technical Reports .......................................................................................................... 1-6 1.8 Registrant’s Seal and Signature .................................................................................... 1-7 1.9 General Improvement Plan Requirements .................................................................... 1-7 1.10 Deviation from City Engineering Standards ................................................................ 1-13 CHAPTER 2 GRADING AND DRAINAGE ......................................................... -
Us 17 Corridor Study, Brunswick County Phase Iii (Functional Designs)
US 17 CORRIDOR STUDY, BRUNSWICK COUNTY PHASE III (FUNCTIONAL DESIGNS) FINAL REPORT R-4732 Prepared For: North Carolina Department of Transportation Prepared By: PBS&J 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609 October 2005 TABLE OF CONTENTS 1 INTRODUCTION / BACKGROUND..............................................1-1 1.1 US 17 as a Strategic Highway Corridor...........................................................1-1 1.2 Study Objectives..............................................................................................1-2 1.3 Study Process...................................................................................................1-3 2 EXISTING CONDITIONS ................................................................2-6 2.1 Turning Movement Volumes...........................................................................2-7 2.2 Capacity Analysis............................................................................................2-7 3 NO-BUILD CONDITIONS..............................................................3-19 3.1 Turning Movement Volumes.........................................................................3-19 3.2 Capacity Analysis..........................................................................................3-19 4 DEFINITION OF ALTERNATIVES .............................................4-30 4.1 Intersection Improvements Alternative..........................................................4-31 4.2 Superstreet Alternative...................................................................................4-44 -
Chapter 5 Safety
5 Safety 5.1 Introduction 103 5.2 Conflicts 104 5.2.1 Vehicle conflicts 105 5.2.2 Pedestrian conflicts 108 5.2.3 Bicycle conflicts 110 5.3 Crash Statistics 111 5.3.1 Comparisons to previous intersection treatment 111 5.3.2 Collision types 113 5.3.3 Pedestrians 117 5.3.4 Bicyclists 120 5.4 Crash Prediction Models 122 5.5 References 125 Exhibit 5-1. Vehicle conflict points for “T” Intersections with single-lane approaches. 105 Exhibit 5-2. Vehicle conflict point comparison for intersections with single-lane approaches. 106 Exhibit 5-3. Improper lane-use conflicts in double-lane roundabouts. 107 Exhibit 5-4. Improper turn conflicts in double-lane roundabouts. 108 Exhibit 5-5. Vehicle-pedestrian conflicts at signalized intersections. 109 Exhibit 5-6. Vehicle-pedestrian conflicts at single-lane roundabouts. 109 Exhibit 5-7. Bicycle conflicts at conventional intersections (showing two left-turn options). 110 Exhibit 5-8. Bicycle conflicts at roundabouts. 111 Exhibit 5-9. Average annual crash frequencies at 11 U.S. intersections converted to roundabouts. 112 Exhibit 5-10. Mean crash reductions in various countries. 112 Exhibit 5-11. Reported proportions of major crash types at roundabouts. 113 Exhibit 5-12. Comparison of collision types at roundabouts. 114 Exhibit 5-13. Graphical depiction of collision types at roundabouts. 115 Exhibit 5-14. Crash percentage per type of user for urban roundabouts in 15 towns in western France. 116 Exhibit 5-15. British crash rates for pedestrians at roundabouts and signalized intersections. 117 Exhibit 5-16. Percentage reduction in the number of crashes by mode at 181 converted Dutch roundabouts.