Nuclear Security: a Fortnightly Newsletter from Caps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security &Defence European
a sniper rifle 4/ 7.90 18 D 14974 E D European NO TIME? NO LAB? NO PROBLEM. & CZ TSR Security .308 WIN. EASILY IDENTIFY CHEMICAL HAZARDS WITH ES THE FLIR GRIFFIN™ G510 PORTABLE GC-MS. 2018 June/July · Defence & Security European WE KNOW THE SECRET OF ACCURATE & Defence 4/2018 LONG DISTANCE SHOOTING. The FLIR Griffin G510 is a completely self-contained GC-MS, including batteries, carrier gas, vacuum system, injector, touchscreen, and heated International Security and Defence Journal sample probe. It analyzes all phases of matter and confirms vapor-based threats in seconds, so that responders can take immediate action. ISSN 1617-7983 See FLIR in action at Eurosatory: Hall 5a Stand #A267 • OPTION TO FIT THE FOLDING HEIGHT MECHANISM ON ADJUSTABLE EITHER THE RIGHT CHEEKPIECE OR LEFT SIDE HEIGHT AND LENGTH www.euro-sd.com ADJUSTABLE • BUTTPLATE June/July 2018 HIGHLy RESISTANT TO CONTAMINATION DUE TO THE FLUTED BOLT 10-ROUND REMOVABLE METAL MAGAZINE FOR CARTRIDGES UP TO 73 MM TWO STAGE TRIGGER MECHANISM WITH THE OPTION TO SET THE TRIGGER PULL BOLT HANDLE ADAPTED FOR RELIABLE AND RAPID PISTOL GRIP WITH RELOADING WITH STORAGE SPACE AND A RIFLESCOPE ATTACHED INTERCHANGEABLE BACKSTRAPS MaxiMuM MiniMuM Barrel length Width of Weapon (MM) height of Weapon Weight Without With stoCk With stoCk With CheekpieCe With eMpty operating CaliBre Magazine CapaCity fraMe overall length (MM)* overal length (MM)** CoMpensator (MM) folded unfolded retraCted Magazine (g) teMperature range rate of tWist aCCuraCy .308 Win. 10 ALUMINIUM 1237 ± 5mm 920 ± 5mm 660 ± 1 95 ± 2 70± 2 192 ± 2 mm max. 6 300 from -50°C to + 50° 1:11“ Sub MOA FLIR Griffin™ G510 Portable GC-MS #CZGUNS www.FLIR.eu/G510 Chemical Identifier eurosatory2018 WWW.CZUB.CZ [email protected] FACEBOOK.COM/CESKAZBROJOVKA.CZ WWW.INSTAGRAM.COM/CZGUNS/ eurosatory2018 a sniper rifle 4/ 7.90 18 D 14974 E D European NO TIME? NO LAB? NO PROBLEM. -
The Chinese Navy: Expanding Capabilities, Evolving Roles
The Chinese Navy: Expanding Capabilities, Evolving Roles The Chinese Navy Expanding Capabilities, Evolving Roles Saunders, EDITED BY Yung, Swaine, PhILLIP C. SAUNderS, ChrISToPher YUNG, and Yang MIChAeL Swaine, ANd ANdreW NIeN-dzU YANG CeNTer For The STUdY oF ChINeSe MilitarY AffairS INSTITUTe For NATIoNAL STrATeGIC STUdIeS NatioNAL deFeNSe UNIverSITY COVER 4 SPINE 990-219 NDU CHINESE NAVY COVER.indd 3 COVER 1 11/29/11 12:35 PM The Chinese Navy: Expanding Capabilities, Evolving Roles 990-219 NDU CHINESE NAVY.indb 1 11/29/11 12:37 PM 990-219 NDU CHINESE NAVY.indb 2 11/29/11 12:37 PM The Chinese Navy: Expanding Capabilities, Evolving Roles Edited by Phillip C. Saunders, Christopher D. Yung, Michael Swaine, and Andrew Nien-Dzu Yang Published by National Defense University Press for the Center for the Study of Chinese Military Affairs Institute for National Strategic Studies Washington, D.C. 2011 990-219 NDU CHINESE NAVY.indb 3 11/29/11 12:37 PM Opinions, conclusions, and recommendations expressed or implied within are solely those of the contributors and do not necessarily represent the views of the U.S. Department of Defense or any other agency of the Federal Government. Cleared for public release; distribution unlimited. Chapter 5 was originally published as an article of the same title in Asian Security 5, no. 2 (2009), 144–169. Copyright © Taylor & Francis Group, LLC. Used by permission. Library of Congress Cataloging-in-Publication Data The Chinese Navy : expanding capabilities, evolving roles / edited by Phillip C. Saunders ... [et al.]. p. cm. Includes bibliographical references and index. -
Copyrighted Material
Index Figures are indicated in italics. Operation Enduring Freedom 278 overthrow of Taliban government 3-D (2001) 84, 262 “3-D ink” writing methods xiv and satellite bandwidth 132 soldiers’ 3-D glasses 63 soil mechanics 1 ultrasound scans of unborn child 62–63 Soviet withdrawal from 270, 274 9/11 Commission 219, 221 Stinger missiles 169 unmanned aerial vehicles deployed AAE 33 in 195 AASM 85 US forces’ consumption of fuel 44 Aaviksoo, Jaak 174 Afghanistan, Emir of 91 Abbottabad, Pakistan 80 Agent 99 software 225 “Abuthaabit” (Waseem Mughal) 199, 200, Ahmed, Syed 201 201 air: the third domain of warfare 1, 181 accelerometer xiv Air Force Research Institute 113 Access 209 Air Force Research Laboratory 224 Achtelik, Michael 42 air-freight inspection 241–42 acoustic cloak 54, 55 Air Ministry (British) 106 “active control” 122 air policing 273 active-protection systems 28 air power Adams, Colonel John 7, 9, 80 air supremacy provides no assurance of adaptive camoufl age 32–33 victory 82, 90–95 add-on guidance systems 85 displayed over Baghlan 96 Advanced Tactical Laser (ATL) 18 disruption of an enemy’s fi ghting ADVISE pattern-detection programme 262 system xi Aegis intercept missiles 15 from aircraft carriers 106 Aerodyne Research 34 “synthetic aperture” radar systems xi Aerostar International 116 Air Tractor 113 aerostats see blimps airbags 120 Afghan air force 80 Airborne Laser (ABL) 17–18 Afghanistan Airborne Laser Programme Offi ce, Kirtland adaptive camoufl age tested 32 Air Force Base, New Mexico 18 blimps in 116 Airbus 62, 123 cluster bombs -
Aviation Week & Space Technology Student Edition
Chinese Aviation Revealed Fly by Wire How Quick a Recovery? U.S./UK Hypersonic Thresher for All $14.95 APRIL 6-19, 2020 REMAKING THE U.S. MARINES Aviation Week Workforce Initiative Supported by: The Wings Club Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
The Next Dreadnought Revolution
THE NEXT DREADNOUGHT REVOLUTION BY DAVID MURRIN 15TH MARCH 2021 WWW.DAVIDMURRIN.CO.UK PART 1: CURRENT DESIGN TRENDS AND LIMITATIONS THE NEXT DREADNOUGHT REVOLUTION THE NEXT DREADNOUGHT REVOLUTION HISTORY DECODED TO INFORM THE FUTURE PART 1: CURRENT DESIGN TRENDS AND LIMITATIONS BY ANALYSING PAST PATTERNS WE CAN PREDICT FORTHCOMING EVENTS AND TRENDS 1.0 TIME FOR A NEW DREADNOUGHT-TYPE INNOVATION IN WARSHIP DESIGN In a time when battleships usually took several years to build, the construction and launch in 1906 of HMS Dreadnought in less than 12 months was a demonstration of British military intention and industrial might. But most critically, her all big gun design and steam turbines made every ship built before that point obsolete. The geostrategic consequences were enormous as it gave Germany a window to attempt to challenge for control of the world’s oceans and accelerated the British-German naval arms’ race to astronomical levels. Today we are witnessing a new and fourth great industrial arms’ race, catalysed by China’s hegemonic ambitions as it seeks to outbuild America and its allies to create a blue-water navy that can dominate the world’s oceans. In this similar environment, perhaps it is time to consider the emergence of a new class of Dreadnought destroyers, which I have named Dominators, that can control large areas of ocean both below and above it. 1.1 DEDICATED MISSION DESTROYERS AND FRIGATES This ship design concept of dedicated mission escorts is favoured by all European navies and the Royal Navy is an excellent specific example of using this concept in its escort fleet. -
Marine Nuclear Power: 1939 – 2018 Part 2A: United States - Submarines
Marine Nuclear Power: 1939 – 2018 Part 2A: United States - Submarines Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 2A: United States - Submarines. The other parts are: Part 1: Introduction Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 4: Europe & Canada Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications. -
INTRODUCTION Cruise Missile Fundamentals
TREBALL DE FI DE GRAU TFG TITLE: DESIGN OF A HYPERSONIC AIRBREATHING CRUISE MISSILE DEGREE: Grau en Enginyeria d’Aeronavegacio´ AUTHOR: Eduard Graells Pina ADVISOR: Fernando Pablo Mellibovsky Elstein DATE: August 27, 2019 Title : DESIGN OF A HYPERSONIC AIRBREATHING CRUISE MISSILE Author: Eduard Graells Pina Advisor: Fernando Pablo Mellibovsky Elstein Date: August 27, 2019 Overview In this project, a hypersonic airbreathing cruise missile is designed through an optimization process. The main use of this futuristic weapon technology is to be employed against enemy ships while being launched from an Mk-41 VLS launcher, the most widespread VLS in the world. In this optimization process and for this type of missile, Genetic Algorithms and Monte Carlo simulations are used to find an optimal solution for the rocket booster engine, the scramjet engine, aerodynamics and warhead sizing. With this data, trajectory, stability and manoeuvrability is studied to determine the performance of the missile. Other aspects concerning the missile materials of the airframe and dome are discussed on a qualitative way and no structural analysis is studied within this project. It should be noted that hypersonic weapons are mature technologies, and the only infor- mation about them are research papers regarding their aerodynamics and propulsion sys- tems. Then, the only built hypersonic vehicles are experimental, meaning that the baseline data to start design process scarce. This brings a great challenge to this project, where creativity and the use of analytical expressions for rapid missile synthesis and conceptual design is a must. On the other side, due to the complex behaviour of hypersonic flows, this adds difficulties to our research since most of the methods employed are numerical, which can be calculated easily on a CFD in the final stages of the design, but they are not fast enough to be implemented on the initial stages of design. -
Future Anti-Ship Missile Systems: Joint Inquiry with the Assemblée Nationale’S Standing Committee on National Defence and the Armed Forces
House of Commons Defence Committee Future Anti-Ship Missile Systems: Joint inquiry with the Assemblée nationale’s Standing Committee on National Defence and the Armed Forces Thirteenth Report of Session 2017–19 HC 1071 House of Commons Defence Committee Future Anti-Ship Missile Systems: Joint inquiry with the Assemblée nationale’s Standing Committee on National Defence and the Armed Forces Thirteenth Report of Session 2017–19 Report, together with formal minutes relating to the report Ordered by the House of Commons to be printed 11 December 2018 HC 1071 Published on 12 December 2018 by authority of the House of Commons The Defence Committee The Defence Committee is appointed by the House of Commons to examine the expenditure, administration, and policy of the Ministry of Defence and its associated public bodies. Current membership Rt Hon Dr Julian Lewis MP (Conservative, New Forest East) (Chair) Leo Docherty MP (Conservative, Aldershot) Martin Docherty-Hughes MP (Scottish National Party, West Dunbartonshire) Rt Hon Mr Mark Francois MP (Conservative, Rayleigh and Wickford) Graham P Jones MP (Labour, Hyndburn) Johnny Mercer MP (Conservative, Plymouth, Moor View) Mrs Madeleine Moon MP (Labour, Bridgend) Gavin Robinson MP (Democratic Unionist Party, Belfast East) Ruth Smeeth MP (Labour, Stoke-on-Trent North) Rt Hon John Spellar MP (Labour, Warley) Phil Wilson MP (Labour, Sedgefield) Powers The committee is one of the departmental select committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No 152. These are available on the Internet via www.parliament.uk. Publications Committee reports are published on the Committee’s website at www.parliament.uk/defcom and in print by Order of the House.