Identifying the Pre-Tharsis Structures Associated with the Terra Sirenum Region, Mars

Total Page:16

File Type:pdf, Size:1020Kb

Identifying the Pre-Tharsis Structures Associated with the Terra Sirenum Region, Mars Eighth International Conference on Mars (2014) 1406.pdf Identifying the Pre-Tharsis Structures Associated with the Terra Sirenum Region, Mars. Robert. C. Andersona, James M. Dohmb, S. Robbinsc, and Jeff Schroedera, aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, bUniversity of Arizona ([email protected]), Department of Hydrology and Water Resources, Tucson, Arizona, USA, cLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado USA, dColorado School of Mines, Department of Geophysics, Goden, Colorado USA Introduction: The Terra Sirenum region of Mars, detailed spatial and temporal paleotectonic which is located on the southwestern flanks of information. Tharsis, records not only the development of the Tharsis magmatic complex, at least since the Middle Crater statistics have been completed for our Noachian [1-3] up to present-day, but just as stratigraphic map of the Terra Sirenum region using a importantly, contains some of the oldest stratigraphic new global impact crater database [6-7]. In addition, units found in the western hemisphere region. all impact craters with diameters ≥ 3 km were Identification and detailed examination of these manually examined to identify only those superposed ancient structures and units within this region on the most recent resurfaced terrains: those impact provides an excellent window into clarifying the craters that display pristine rims and ejecta blankets tectonic processes that influenced the early geologic and well-defined, bowl-shaped basins with little to no evolution of Mars. Here, we provide a summary from infill that have no visible evidence of volcanic, our mapping effort detailing the earliest geologic fluvial, and tectonic resurfacing. The superposed history of this region. impact craters were additionally verified through ConTeXt camera images where there was coverage [8]. The impact crater retention ages are shown in Figure 2 based on the modeling schemes of [9] and [10]. Fig. 1 Stratigraphic map of the Terra Sirenum region of Mars. Methodology: We have recently completed a detailed Fig. 2 Crater counts for the units mapped in the 1:5,000,000-scale geologic map for the Terra Terra Sirenum Region. Sirenum region, which included mapping all stratigraphic units and identifying all tectonic (i.e. faults and ridges), erosional (valley forms, Results - Ancient Pre-Tharsis Terrains: Early depressions, and scarps), depositional (ridges and tectonism in the Terra Sirenum region is expressed flows), and impact structures (Figure 1). We by 1) large, north-trending prominent faults (defined followed the procedure for mapping surface units as macrostructures [4] due to their enormous defined by Tanaka et al., [2005]. Stratigraphic units geometric proportions including lengths reaching were differentiated on both stratigraphic thousands of kilometers), 2) structurally-controlled basins (widths vary from kilometers to hundreds of (crosscutting, overlap, and embayment) and contact kilometers) displaying water enrichment in the relations and morphologic characteristics. High substrate, and 3) stratigraphic units displaying resolution MOC, NA, CTX, HiRise, and HRSC data magnetic signatures. was utilized to produce the base map and provided Eighth International Conference on Mars (2014) 1406.pdf crater counts and are the result of the formation of the Tharsis Rise; (4) Late Noachian-Early Amazonian resurfacing of cratered highlands material, tectonic structures, and basins based on the superposed crater counts, correlative with the significant stages of Tharsis development (Stages 1-4), and (5) the source region of Mangala Valles has no superposed impact craters, indicating an Amazonian resurfacing event. Fig. 3 MOLA topography map showing ancient structures trending north-south and bounded by large normal faults representing the margins of large basins. M.V. equals Mangala Valles. Figure 3 displays the ancient, large macrostructures mapped in this region. The white arrows illustrate the bounding normal faults surrounding the large basins. Mangala Valles (M.V.), which is located at the top of the figure, represents one of the large fluvial basins identified in this region. Fig. 4 The Mars Global Surveyor spacecraft obtained a globally-distributed vector magnetic field From Figure 1, the structures identified in Figure 3 measurements that were acquired approximately 400 represent the oldest unit identified and mapped in this km above the surface of Mars. region and belongs to the Highland 1 unit (dark grey). As previously mentioned, this unit is found The identifiecation and mapping of these ancient predominately in the central region of the map region terrains records an early dynamic phase in the and consists of north-south trending massifs. Figure evolution of Mars, and may represents a time when 4 is an overlaid of the MGS magnatic field map onto the Martian crust was mobile. Futther understanding the mapped stratigraphic units shown in Figure 1. of the Terra Sirenum region could help us address From Figure 3, the magnetic data shows predominate, whether Mars records any ancient phase of plate north-south trending underlying ancient basement tectonism, perhaps very different then that of the sturtures. The distribution of these sources is Earth. consistent within this region and because of they contained reversed signatures (e.g. red and blue REFERENCES. [1] Dohm, J.M., et al., 2001. J. region in Figure 3), therefore, they were formed Geophys. Res. 106, 32 943-32 958. [2] Anderson, R.C., et when reversing dynamo was still active before it al., 2001. J. Geophys. Res. 106, 20,563-20,585. [3] Dohm, halted early in Mars evolution (e.g. Noachian). J.M., et al., 2007. In Superplumes: beyond plate tectonics. Although Mangala Valles occupies one of the ancient D.A Yuen, S. Maruyama, S-I Karato, and B.F. Windley basins, it is much younger and originates from one of (eds.). Springer, London, 523-537. [4] Dohm, J.M.et al. the younger fault system associated with the (2002) Lunar Planet. Sci. XXXIII, 1639 (abstract). [5] Scott, formation of the Tharsis Rise. D.H., and Tanaka, K.L. (1986) USGS Misc. Inv. Ser. Map I-1802-A (1:15,000,000), [6] Robbins, S.J., 2011. Ph.D. Summary: The following is observed through crater Thesis, CU, Boulder. Robbins, S., and Hynek, B., [7] counting in conjunction with the geologic mapping Robbins, S.J.; and Hynek, B.M., 2011. Submitted to JGR- for the Terra Sirenum region: (1) ancient cratered Planets. doi: 10.1029/2011JE003966. [8] Malin, M.C., et highlands basements (Figure 4), including al., 2007. J. Geophys. Res. 112, doi: macrostructures identified in Figure 3, are Early 10.1029/2006JE002808. [9] Hartmann, W.K., 2005. Icarus Noachian-Middle Noachian; (2) basin formation was 174, 294-320. [10] Neukum, G., et al., 2001. In established by the Middle Noachian with possible Chronology and Evolution of Mars (R. Kallenbach, J. Geiss, subsequent growth; (3) lavas on the western flank of and W. K. Hartmann, eds.), Kluwer Academic Publishers, Tharsis were emplaced during the Late Noachian to 55-8. Late Hesperian (Stages 2-4; see [1-3]) and even as late as Middle Amazonian based on the superposed .
Recommended publications
  • Formation of Mangala Valles Outflow Channel, Mars: Morphological Development and Water Discharge and Duration Estimates Harald J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E08003, doi:10.1029/2006JE002851, 2007 Click Here for Full Article Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates Harald J. Leask,1 Lionel Wilson,1 and Karl L. Mitchell1,2 Received 24 October 2006; revised 3 April 2007; accepted 24 April 2007; published 4 August 2007. [1] The morphology of features on the floor of the Mangala Valles suggests that the channel system was not bank-full for most of the duration of its formation by water being released from its source, the Mangala Fossa graben. For an estimated typical 50 m water depth, local slopes of sin a = 0.002 imply a discharge of 1 Â 107 m3 sÀ1, a water flow speed of 9msÀ1, and a subcritical Froude number of 0.7–0.8. For a range of published estimates of the volume of material eroded from the channel system this implies a duration of 17 days if the sediment carrying capacity of the 15,000 km3 of water involved had been 40% by volume. If the sediment load had been 20% by volume, the duration would have been 46 days and the water volume required would have been 40,000 km3. Implied bed erosion rates lie in the range 1to12 m/day. If the system had been bank-full during the early stages of channel development the discharge could have been up to 108 m3 sÀ1, with flow speeds of 15 m sÀ1 and a subcritical Froude number of 0.4–0.5.
    [Show full text]
  • Mapping Medusae Fossae Materials on the Southern Highlands of Mars
    41st Lunar and Planetary Science Conference (2010) 1681.pdf MAPPING MEDUSAE FOSSAE MATERIALS ON THE SOUTHERN HIGHLANDS OF MARS. S. K. Harrison1,2, M. R. Balme1, A. Hagermann2 , J. B. Murray1 and J. –P. Muller3 1Dept of Earth and Environmental Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK, [email protected], 2Planetary and Space Science Research Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK, 3 University College London, Department of Space & Climate Physics, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT, UK. Introduction: The Medusae Fossae Formation chotomy boundary, although these areas have since (MFF) is an extensive deposit (2.2 x 106 km2, [1]) of been heavily eroded. wind-eroded material of widely debated origin which Elevation data shows that the maximum, minimum unconformably overlies a considerable area of the and mean elevations of the newly discovered outliers crustal dichotomy boundary on Mars. The MFF shows are closest to those of the upper member of the MFF. a variety of layering patterns, erosional styles and That the outliers share morphologic characteristics with channel-like forms. We aim to constrain the origins and a subset of the upper member materials, together with post-emplacement processes of this formation. these elevation trends, suggest that the outliers are Background: Morphologically, the Medusae Fos- more likely to be remnants of the upper member than sae Formation materials are typified by a discontinu- the middle or lower members. ous, highly eroded appearance (Fig. 1), and it is com- Conclusions: Our observations show that there are monly agreed that they are fine grained and friable in MFF-like deposits on the southern highlands.
    [Show full text]
  • Mangala Valles, Mars: Investigations of the Source of Flood Water and Early Stages of Flooding
    Lunar and Planetary Science XXXV (2004) 1147.pdf MANGALA VALLES, MARS: INVESTIGATIONS OF THE SOURCE OF FLOOD WATER AND EARLY STAGES OF FLOODING. Gil J. Ghatan1, James W. Head1, L. Wilson2, H.J. Leask2. 1Dept. Geol. Sci., Brown Univ., Providence, RI 02912, USA, 2Planetary Sci. Res. Group, Lancaster University, Lancaster LA1 4YQ, UK, ([email protected]) Introduction: Mangala Valles, a ~900 km long north- whereas if significant volumes of water spilled out from the south trending outflow channel located southwest of the Thar- graben elsewhere than from the canyon, the northern ejecta sis rise, extends northward from one of the Memnonia Fossae would be expected to show significantly different morphology graben across the southern highlands, terminating at the di- than the southern ejecta. THEMIS visible image V04762003 chotomy boundary. Previous Viking-based analyses suggest covers the area of the canyon, as well as portions of the north- that the water that carved the channel was expelled from the ern and southern ejecta from crater A. Examination of the graben, possibly during two distinct flood events, one in the image reveals no significant variation in morphology between Late Hesperian and one in the Latest Hesperian/Early Amazo- the two regions of the ejecta, suggesting that little spill-over nian [1]. The mechanism by which the water was transported occurred as the graben filled with water. Rather, it appears to the graben, and ultimately to the surface remained ambigu- that as the graben filled, spill-over to the north quickly coa- ous, although two general scenarios were proposed: melting of lesced into the region now occupied by the canyon.
    [Show full text]
  • Erosive Flood Events on the Surface of Mars: Application to Mangala and Athabasca Valles Alistair Simon Bargery, Lionel Wilson
    Erosive flood events on the surface of Mars: application to Mangala and Athabasca Valles Alistair Simon Bargery, Lionel Wilson To cite this version: Alistair Simon Bargery, Lionel Wilson. Erosive flood events on the surface of Mars: application to Mangala and Athabasca Valles. Icarus, Elsevier, 2011, 212 (2), pp.520. 10.1016/j.icarus.2011.01.001. hal-00734590 HAL Id: hal-00734590 https://hal.archives-ouvertes.fr/hal-00734590 Submitted on 24 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Erosive flood events on the surface of Mars: application to Mangala and Atha‐ basca Valles Alistair Simon Bargery, Lionel Wilson PII: S0019-1035(11)00002-9 DOI: 10.1016/j.icarus.2011.01.001 Reference: YICAR 9680 To appear in: Icarus Received Date: 20 June 2010 Revised Date: 28 December 2010 Accepted Date: 3 January 2011 Please cite this article as: Bargery, A.S., Wilson, L., Erosive flood events on the surface of Mars: application to Mangala and Athabasca Valles, Icarus (2011), doi: 10.1016/j.icarus.2011.01.001 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • EVIDENCE of LATE-STAGE FLUVIAL OUTFLOW in ECHUS CHASMA, MARS. M. G. Chapman1, G. Neukum2, A. Dumke2, G.Michaels2, S. Van Gasselt2, T
    40th Lunar and Planetary Science Conference (2009) 1374.pdf EVIDENCE OF LATE-STAGE FLUVIAL OUTFLOW IN ECHUS CHASMA, MARS. M. G. Chapman1, G. Neukum2, A. Dumke2, G.Michaels2, S. van Gasselt2, T. Kneissl2, W. Zuschneid2, E. Hauber3, and N. Mangold4, 1U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, Arizona, 86001 ([email protected]); 2Institute of Geo- sciences, Freie Universitaet Berlin, Germany; 3German Aerospace Center (DLR), Berlin, Germany; and 4LPGN, CNRS, Université Nantes, France. Introduction: New high-resolution datasets have We interpret this late-stage outflow to have been prompted a mapping-based study of the Echus Chasma formed by water based on several lines of evidence, and Kasei Valles system. Some of the highlights of the first being the “washed” appearance of the At5 lava our new findings from the Amazonian (<1.8 Ga) pe- lobe. Where the mouth of the lava-lobe-confined riod in this area include (1) a new widespread platy- south shallow channel debouches into Echus Chasma, flow surface material (unit Apf) that is interpreted to be the floor of the chasma is marked by a very straight, 2,100-km-runout flood lavas sourced from Echus likely fault controlled/confined, north boundary of Chasma; and (2) a fracture in Echus Chasma, identi- dark albedo material (white arrows on Fig. 2). This fied to have sourced at least one late-stage flood, that boundary correlates with the bottom edge of an up- may have been the origin for the platy-flow material lifted plate (insert Fig. 1). The albedo boundary is and young north-trending Kasei floods.
    [Show full text]
  • Neukum.3015.Pdf
    Seventh International Conference on Mars 3015.pdf EPISODICITY IN THE GEOLOGICAL EVOLUTION OF MARS: RESURFACING EVENTS AND AGES FROM CRATERING ANALYSIS OF IMAGE DATA AND CORRELATION WITH RADIOMETRIC AGES OF MARTIAN METEORITES. G. Neukum1, A. T. Basilevsky2, M. G. Chapman3, S. C. Werner1,8, S. van Gasselt1, R. Jaumann4, E. Hauber4, H. Hoffmann4, U. Wolf4, J. W. Head5, R. Greeley6, T. B. McCord7, and the HRSC Co-Investigator Team 1Free University of Berlin, Inst. of Geosciences, 12249 Berlin, Germany ([email protected]), 2Vernadsky Inst. of Geochemistry and Analytical Chemistry, RAS, 119991 Moscow, Russia, 3U.S. Geological Survey, Flagstaff, AZ 86001, USA, 4DLR, Inst. for Planet. Expl., Rutherfordstrasse 2, 12489 Berlin, Germany, 5Brown University, Dept. of Geological Sciences, Providence, R.I. 02912, USA, 6Arizona State Univ., Dept. of Geological Sciences, Box 871404, Tempe, AZ 85287-1404, USA, 7Space Science Institute, Winthrop, WA 98862, USA, 8now at: Geological Survey of Norway (NGU), 7491 Trondheim, Norway Introduction: In early attempts of understanding young meterorite ages. the time-stratigraphic relationships on the martian sur- The early cratering age data were based on post-Vi- face by crater counting techniques and principles of king image data analysis. With the new data from MGS stratigraphic superposition, most of the geological units (MOC) [11], MEX (HRSC) [12,13], and Mars Odyssey and constructs came out as being rather old, in the range (THEMIS) [14], it has become clear by now that the ap- of billions of years; a notable exeption was the Thar- parent discrepancy between the two age sets and the pre- sis province, whose volcanoes were believed to be, at dominance of old ages was a selection effect due to the least partly, relatively young (hundreds of millions of limited Viking resolution showing predominantly large, years) [1-10].
    [Show full text]
  • Flash Floods in Mangala Valles Via Mars Express Orbiter 15 October 2015
    Flash floods in Mangala Valles via Mars Express orbiter 15 October 2015 This activity may have triggered the melting of subsurface ice, and consequently the formation of the water-carved channels. Several basins and impact craters were also filled with water, with overflows flushing through multiple spillways and towards Amazonis Planitia, the lowlands to the north. For example, a channel drains into the 28 km-wide impact crater in the upper right of the main image, breaching its crater wall. Mangala Valles Catastrophic flooding triggered by ice melting from the heat of volcanic activity is thought to be responsible for the chaotic scenery depicted in this region of the Mangala Valles channel network. The images were taken by the high-resolution stereo camera on ESA's Mars Express on 12 July just to the south of the mouth of Minio Vallis. The region is part of the Mangala Valles outflow channel system, and is situated in the southwestern portion of the Tharsis bulge, home to several volcanoes, including the Solar System's largest: Olympus Mons. The region's proximity to these volcanic giants likely played an important role in creating the channels seen in these images, which were carved by large volumes of flowing water. The source of the water is believed to be related to the formation of the Mangala Fossae, an Mangala Valles in context east–west fault system spanning several hundreds of kilometres to the south of the region seen here. There, hot, molten rock could have reached the The crater in the centre of the image has a surface in an episode of increased volcanic activity somewhat different appearance: it was filled with during the formation of the Tharsis bulge.
    [Show full text]
  • Mangala Valles Outflow Channel, Mars
    doi: 10.1111/j.1365-3121.2005.00642.x Evidence for remnants of ancient ice-rich deposits: Mangala Valles outflow channel, Mars Joseph S. Levy and James W. Head Department of Geological Sciences, Brown University, Providence, RI 02912, USA ABSTRACT High-resolution spacecraft data reveal the presence of a the remnant of floodwaters trapped in channel lows. This distinctive unit on the upper reaches of the floor of Mangala interpretation further supports the likelihood that climate Valles, an ancient outflow channel on Mars. In contrast to conditions at the time of emplacement were similar to the abundant evidence for scour, intense erosion, and hydro- hyper-arid cold desert conditions of today. Frozen floodwaters dynamic shaping typical of the floors and margins of Mangala from the ancient martian subsurface could still be preserved in and other outflow channels, this unit is smooth-surfaced, has these deposits, representing attractive and accessible exobio- cuspate margins, is superposed on the scoured valley floor, and logical exploration objectives. is extensively pitted. We interpret this unit to be the sublimat- ion lag deposit derived from an ice thermal boundary layer on Terra Nova, 17, 503–509, 2005 the aqueous flood that formed the outflow channel system, and Greeley, 1994; Ghatan et al., 2005), undulatory and rounded in some Introduction this unit (Fig. 3) is smooth-surfaced, locations, and scalloped in others, Outflow channels represent one of the has arcuate and cuspate margins, and forming arcuate serrations (Figs 3– most dramatic manifestations of the has a host of unusual surface features 5). Where the unit meets the adjacent presence, during the Late Hesperian- including round pits and ring struc- walls of the channel, or where there is Amazonian periods, of huge quantities tures often containing huge angular a contact between the smooth unit of liquid water on the surface of Mars.
    [Show full text]
  • Mapping Medusae Fossae Formation Materials in the Southern Highlands of Mars
    Geophysical Research Abstracts Vol. 12, EGU2010-10119, 2010 EGU General Assembly 2010 © Author(s) 2010 Mapping Medusae Fossae Formation materials in the southern highlands of Mars Samantha Harrison (1), Matt Balme (1), John Murray (1), Axel Hagermann (2), and Jan-Peter Muller (3) (1) Earth & Environmental Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, (2) Planetary & Space Science Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, (3) University College London, Department of Space & Climate Physics, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT The Medusae Fossae Formation (MFF) is an extensive deposit (2.2 x 106 km2, Bradley et al., (2002)) of wind- eroded material of widely debated origin which unconformably overlies a considerable area of the crustal di- chotomy boundary on Mars. The MFF has been mapped into five main outcrops and three geological members according to exposure and stratigraphy and away from the three main lobes are numerous outliers of MFF materials. These have mainly been reported in the northern lowlands regions but few studies have examined the possibility of MFF outliers on high ground south of the dichotomy boundary. An intensive study of MOC NA images across the Mangala Valles region of Mars has resulted in many observa- tions of materials with morphology strikingly similar to some examples of the MFF. These examples are typified by yardang fields and have a similar patchy and discontinuous nature to materials of the upper member of the MFF. Most have consistent lineation orientations across the wider area, which match the dominant orientation of yardangs in the main MFF outcrops.
    [Show full text]
  • Investigating Multiple Lava Flows Near Mangala Fossa with Sharad
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1550.pdf INVESTIGATING MULTIPLE LAVA FLOWS NEAR MANGALA FOSSA WITH SHARAD. R. R. Bharti1 and I. B. Smith2, 1Physical Research Laboratory, Navrangpura, Ahmedabad 380009, [email protected], 2Planetary Science Institute , Lakewood, Colorado 80401. Introduction: Mangala Fossa region is situated South- West of Arsia Mons, one of the three large shield vol- canoes located on the Tharsis rise, the most extensive volcanic province on Mars. Mangala Fossa is source of Mangala Valles, a major outflow channel system. This area shows geomorphic evidence for catastrophic re- lease of water and lava possibly in the Late Hesperian to Early Amazonian age. Apart from the outflow chan- nel, lava-infilled craters are evident in this area. One example is an unnamed crater we informally call “Mangala Crater”. Mangala fossa was played an im- portant role in formation of Mangala outflow channel, but the formation sequence of the outflow channel is Figure 1: Map displaying locations of sub-surface still debated. Some research argued that these channel reflections near Mangala Fossa formed from catastrophic water flow. [1,2,3] urged that horizontal, and some locations exhibit two reflections, the geomorphological traces of fluvial or lacustrine implying that there are at least two subsurface processes within Mangala Valles can be better ex- interfaces and three units within the crater (Figs. 2 and plained by fluid lava flooding the channels and filling 3). We propose a simple heuristic model for the infill pre-existing impact craters. There is also no consensus events at Mangala Crater (Fig.
    [Show full text]
  • 1 Aqueous Dune-Like Bedforms in Athabasca Valles and Neighbouring Locations Utilized in Palaeoflood Recon- 1 Struction 2 3 L. D
    1 Aqueous dune-like bedforms in Athabasca Valles and neighbouring locations utilized in palaeoflood recon- 2 struction 3 4 L. Durrant1, M.R. Balme1*, P.A Carling2, P.M. Grindrod3,4,5 5 6 1School of Physical Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 7 *Corresponding author: [email protected] 8 2Geography & Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK 9 3Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK 10 4Centre for Planetary Sciences at UCL/Birkbeck, London, UK 11 5Now at Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK 12 13 1 14 Abstract 15 Putative fluvial dunes have been identified within the Athabasca Valles and associated network of channels 16 on Mars. Previous published work identified and measured bedforms in Athabasca Valles using photocli- 17 nometry methods on 2-3 m/pixel resolution Mars Orbiter Camera Narrow Angle images, and argued that 18 these were created by an aqueous megaflood that occurred between 2 and 8 million years ago. This event is 19 likely to have occurred due to geological activity associated with the Cerberus Fossae fracture system at the 20 source of Athabasca Vallis. The present study has used higher resolution, 25 cm/pixel images from the Mars 21 Reconnaissance Orbiter HiRISE camera, as well as stereo-derived digital terrain models and GIS software, to 22 re-measure and evaluate these bedforms together with data from newly discovered neighbouring fields of 23 bedforms. The analysis indicates that the bedforms are aqueous dunes, in that they occur in channel loca- 24 tions where dunes would be expected to be preserved and moreover they have geometries very similar to 25 megaflood dunes on Earth.
    [Show full text]
  • Completion and Submission of the Terra Sirenum Map Project Robert. C. Andersona, James M. Dohmb, S
    Annual Planetary Geologic Mappers Meeting (2016) 7014.pdf Completion and Submission of the Terra Sirenum Map Project Robert. C. Andersona, James M. Dohmb, S. Robbinsc, and J. Schroedera, aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, bThe Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan, cLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado USA. Introduction: The Terra Sirenum region, which is and ranges; the basin and ranges are similar to located to the southwest of Tharsis, records not those of the Basin & Range, southwest United only the development of the Tharsis magmatic States [9, 10]. In the case of the Earth, both complex, at least since the Middle Noachian [1-3] magmatic upwelling and plate tectonism are up to present-day, but just as importantly, contains hypothesized to have contributed to the Basin & some of the oldest stratigraphic units of the Range. western hemisphere region of Mars. Detailed examination of the structures and units within this The basins and ranges of the Memnonia-Sirenum region provided an excellent window into region are interpreted to have formed pre-Tharsis identifying the tectonic processes that influenced and/or early Tharsis magmatic upwelling [9, 10]; the ancient (pre-Tharsis) phase of the geologic pre-Tharsis activity would have occurred during an evolution of Mars. Here, we present an overview early phase of Martian evolution when the dynamo from our mapping effort detailing the status of our and associated magnetosphere were still in mapping project. operation, based on stratigraphy, cross-cutting relations, crater statistics, and paleomagnetic data.
    [Show full text]