Neukum.3015.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars 2 3 4 Joseph
EMBARGOED BY NATURE 1 1 Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars 2 3 4 Joseph. R. Michalski 1,2 5 1Planetary Science Institute, Tucson, Arizona 85719, [email protected] 6 2Dept. of Earth Sciences, Natural History Museum, London, United Kingdom 7 8 Jacob E. Bleacher3 9 3NASA Goddard Space Flight Center, Greenbelt, MD, USA. 10 11 12 Summary: 13 14 Several irregularly shaped craters located within Arabia Terra, Mars represent a 15 new type of highland volcanic construct and together constitute a previously 16 unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these 17 low-relief paterae display a range of geomorphic features related to structural 18 collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to 19 the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur 20 and erupted fine-grained pyroclastics from these calderas likely fed the formation of 21 altered, layered sedimentary rocks and fretted terrain found throughout the 22 equatorial region. Discovery of a new type of volcanic construct in the Arabia 23 volcanic province fundamentally changes the picture of ancient volcanism and 24 climate evolution on Mars. Other eroded topographic basins in the ancient Martian 25 highlands that have been dismissed as degraded impact craters should be 26 reconsidered as possible volcanic constructs formed in an early phase of 27 widespread, disseminated magmatism on Mars. 28 29 30 EMBARGOED BY NATURE 2 31 The source of fine-grained, layered deposits1,2 detected throughout the equatorial 32 region of Mars3 remains unresolved, though the deposits are clearly linked to global 33 sedimentary processes, climate change, and habitability of the surface4. -
Formation of Mangala Valles Outflow Channel, Mars: Morphological Development and Water Discharge and Duration Estimates Harald J
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E08003, doi:10.1029/2006JE002851, 2007 Click Here for Full Article Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates Harald J. Leask,1 Lionel Wilson,1 and Karl L. Mitchell1,2 Received 24 October 2006; revised 3 April 2007; accepted 24 April 2007; published 4 August 2007. [1] The morphology of features on the floor of the Mangala Valles suggests that the channel system was not bank-full for most of the duration of its formation by water being released from its source, the Mangala Fossa graben. For an estimated typical 50 m water depth, local slopes of sin a = 0.002 imply a discharge of 1 Â 107 m3 sÀ1, a water flow speed of 9msÀ1, and a subcritical Froude number of 0.7–0.8. For a range of published estimates of the volume of material eroded from the channel system this implies a duration of 17 days if the sediment carrying capacity of the 15,000 km3 of water involved had been 40% by volume. If the sediment load had been 20% by volume, the duration would have been 46 days and the water volume required would have been 40,000 km3. Implied bed erosion rates lie in the range 1to12 m/day. If the system had been bank-full during the early stages of channel development the discharge could have been up to 108 m3 sÀ1, with flow speeds of 15 m sÀ1 and a subcritical Froude number of 0.4–0.5. -
Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al. -
Watershed Modeling in the Tyrrhena Terra Region of Mars Scott C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09001, doi:10.1029/2009JE003429, 2010 Watershed modeling in the Tyrrhena Terra region of Mars Scott C. Mest,1,2 David A. Crown,1 and William Harbert3 Received 9 May 2009; revised 13 December 2009; accepted 29 January 2010; published 1 September 2010. [1] Watershed analyses from high‐resolution image (Viking, Mars Orbiter Camera, and Thermal Emission Imaging System) and topographic (Mars Orbiter Laser Altimeter [MOLA]) data are used to qualitatively and quantitatively characterize highland fluvial systems and analyze the role of water in the evolution of Tyrrhena Terra (13°S–30°S, 265°W–280°W), Mars. In this study, Geographical Information System software is used in conjunction with MOLA Digital Elevation Models to delineate drainage basin divides, extract valley networks, and derive basin and network morphometric parameters (e.g., drainage density, stream order, bifurcation ratio, and relief morphometry) useful in characterizing the geologic and climatic conditions of watershed formation, as well as for evaluating basin “maturity” and processes of watershed development. Model‐predicted valley networks and watershed boundaries, which are dependent on the degree to which pixel sinks are filled in the topographic data set and a channelization threshold, are evaluated against image and topographic data, slope maps, and detailed maps of valley segments from photogeologic analyses. Valley morphologies, crater/valley relationships, and impact crater distributions show that valleys in Tyrrhena Terra are ancient. Based on geologic properties of the incised materials, valley and network morphologies, morphometric parameters, and the presence of many gullies heading at or near‐crater rim crests, surface runoff, derived from rainfall or snowmelt, was the dominant erosional process; sapping may have only played a secondary role in valley formation in Tyrrhena Terra. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes. -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
Understanding the History of Arabia Terra, Mars Through Crater-Based Tests Karalee Brugman University of Colorado Boulder
University of Colorado, Boulder CU Scholar Undergraduate Honors Theses Honors Program Spring 2014 Understanding the History of Arabia Terra, Mars Through Crater-Based Tests Karalee Brugman University of Colorado Boulder Follow this and additional works at: http://scholar.colorado.edu/honr_theses Recommended Citation Brugman, Karalee, "Understanding the History of Arabia Terra, Mars Through Crater-Based Tests" (2014). Undergraduate Honors Theses. Paper 55. This Thesis is brought to you for free and open access by Honors Program at CU Scholar. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of CU Scholar. For more information, please contact [email protected]. ! UNDERSTANDING+THE+HISTORY+OF+ARABIA+TERRA,+MARS++ THROUGH+CRATER4BASED+TESTS+ Karalee K. Brugman Geological Sciences Departmental Honors Thesis University of Colorado Boulder April 4, 2014 Thesis Advisor Brian M. Hynek | Geological Sciences Committee Members Charles R. Stern | Geological Sciences Fran Bagenal | Astrophysical and Planetary Sciences Stephen J. Mojzsis | Geological Sciences ABSTRACT' Arabia Terra, a region in the northern hemisphere of Mars, has puzzled planetary scientists because of its odd assemblage of characteristics. This makes the region difficult to categorize, much less explain. Over the past few decades, several hypotheses for the geological history of Arabia Terra have been posited, but so far none are conclusive. For this study, a subset of the Mars crater database [Robbins and Hynek, 2012a] was reprocessed using a new algorithm [Robbins and Hynek, 2013]. Each hypothesis’s effect on the crater population was predicted, then tested via several crater population characteristics including cumulative size-frequency distribution, depth-to-diameter ratio, and rim height. -
Diverse Morphology and Mineralogy of Aqueous Outcrops at Libya Montes, Mars D
46th Lunar and Planetary Science Conference (2015) 1738.pdf DIVERSE MORPHOLOGY AND MINERALOGY OF AQUEOUS OUTCROPS AT LIBYA MONTES, MARS D. Tirsch1, J. L. Bishop1,2, J. Voigt1,3, L. L. Tornabene4, G. Erkeling5, H. Hiesinger5 and R. Jaumann1,3 1Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany, [email protected]. 2Carl Sagan Center, SETI Institute, Mountain View, CA, USA.3Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany. 4Dept. of Earth Sciences, Centre for Planetary Science and Exploration, University of Western Ontario, London, Canada. 5Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Germany. Introduction: The Libya Montes are part of about the geological history of the study site in context the southern rim-complex of the Isidis impact basin on with regionally acting modification processes. Mars. The region is characterized by pre-Noachian and Methods: We performed a photogeological Noachian aged highland rocks alternating with multiple mapping, as well as morphological and spectral sedimentary units of Noachian to Amazonian age, analyses on a variety of datasets. HRSC topography some of them heavily dissected by dense valley (50 m/px), HiRISE and CTX imagery (25 cm/px and networks [1 - 7]. The region experienced a complex 6 m/px), and CRISM spectral data (18/33.8 m/px) have history of impact, volcanic, tectonic, fluvial and been used to reveal the geological setting of the region. aeolian modification processes resulting in the geology Specific geologic units indicated by CRISM mineral observed today. Ancient aqueous outcrops have been maps derived from spectral parameter products (R: identified by coordinated spectral and geological BD2300, G: OLV, B: LCP), have been evaluated analyses at various locations in the region [7]. -
Physical Properties of Martian Meteorites: Porosity and Density Measurements
Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. -
Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio A 2 kg carbonaceous stony meteorite, designated genic origin. -
Geologic Context of Lacustrine Mineral Deposits at Bradbury Crater, Mars
47th Lunar and Planetary Science Conference (2016) 1444.pdf GEOLOGIC CONTEXT OF LACUSTRINE MINERAL DEPOSITS AT BRADBURY CRATER, MARS. D. Tirsch1, G. Erkeling2, J. L. Bishop3, L. L. Tornabene4, H. Hiesinger2 and R. Jaumann1,5 1Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany ([email protected]). 2Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Germany. 3Carl Sagan Center, SETI Institute, Mountain View, CA, USA. 4Dept. of Earth Sciences, Centre for Planetary Science and Exploration, University of Western Ontario, London, Canada. 5Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany. Introduction: The 60-km Bradbury Crater Methods: Geological analyses have been (85.8°E; 2.7°N) is located at the Libya Montes region performed on the basis of CTX and HiRISE image data at the southern rim of the Isidis impact basin on Mars. in combination with HRSC and HiRISE digital This area is predominantly characterized by Noachian- elevation models. Mineral detection has been aged highland massifs that were heavily modified by performed by spectral analyses of targeted CRISM fluvial, lacustrine, aeolian, volcanic, and impact images. Spectral images are processed for instrumental processes occurring in multiple recurring events [e.g., effects, converted to I/F and atmospheric components 1-7]. Bradbury Crater stands out for its abundance of are minimized using a ratio with a CRISM scene of fluvial and lacustrine landforms, which reflect a varied Olympus Mons [9]. Ratios to spectrally neutral regions history of aqueous-related geological processes [5,8]. in the same column are employed to emphasize A 2.8 by 5 km-sized fan-shaped deposit has been spectral absorption features due to distinctive minerals.