Optimization Study of Biomass and Astaxanthin Production by Haematococcus Pluvialis Under Minkery Wastewater Cultures

Total Page:16

File Type:pdf, Size:1020Kb

Optimization Study of Biomass and Astaxanthin Production by Haematococcus Pluvialis Under Minkery Wastewater Cultures OPTIMIZATION STUDY OF BIOMASS AND ASTAXANTHIN PRODUCTION BY HAEMATOCOCCUS PLUVIALIS UNDER MINKERY WASTEWATER CULTURES by Yu Liu Submitted in partial fulfilment of the requirements for the degree of Mater of Science at Dalhousie University Halifax, Nova Scotia March 2018 ©Copyright by Yu Liu, 2018 TABLE OF CONTENTS LIST OF TABLES .............................................................................................................. v LIST OF FIGURES ......................................................................................................... vii ABSTRACT ........................................................................................................................ x LIST OF ABBREVIATIONS USED ................................................................................ xi ACKNOWLEDGEMENTS .............................................................................................. xv CHAPTER I INTRODUCTION ...................................................................................... 1 1.1 Microalgae ................................................................................................................. 1 1.1.1 Haematococcus pluvialis .................................................................................... 3 1.2 Potential bioproducts from Haematococcus pluvialis ............................................... 4 1.3 Minkery wastewater as a nutrient resource ............................................................... 5 1.4 Objectives .................................................................................................................. 6 CHAPTER II LITERATURE REVIEW .......................................................................... 8 2.1 Biology of H. pluvialis .............................................................................................. 8 2.1.1 Classification, history, and distribution ............................................................... 8 2.1.2 Cellular morphology and life cycle ..................................................................... 8 2.1.3 Major biochemical compositions of H. pluvialis .............................................. 10 2.2 Introduction of astaxanthin ...................................................................................... 16 2.2.1 Structure, classification, and functions of astaxanthin ...................................... 17 2.2.2 Applications of astaxanthin ............................................................................... 18 2.2.3 Commercial market, safety, and challenges of astaxanthin .............................. 21 2.2.4 Biosynthesis pathway of astaxanthin in H. pluvialis ........................................ 23 2.3 Cultivation and processing of H. pluvialis for biomass and astaxanthin production ...................................................................................................................... 26 2.3.1 Culture conditions for vegetative stage ............................................................. 26 2.3.2 Culture conditions for cysts stage ..................................................................... 33 2.3.3 Production mechanisms .................................................................................... 37 ii 2.3.4 Cultivation systems ........................................................................................... 41 2.4. Microalgae production integrated in wastewater treatment system ....................... 43 2.4.1 Microalgae growth in different wastewaters ..................................................... 45 2.4.2 Minkery wastewater .......................................................................................... 48 2.4.3 H. pluvialis growth in wastewater .................................................................... 49 2.4.4 Mechanisms of nutrient removal ...................................................................... 50 2.5. Production process.................................................................................................. 54 2.5.1 Two-stage cultivation strategy for astaxanthin production ............................... 54 2.5.2 Harvesting techniques ....................................................................................... 56 2.5.3 Extraction and purification of astaxanthin ........................................................ 56 CHAPTER III BIOMASS AND ASTAXANTHIN PRODUCTION BY H. PLUVIALIS IN MINKERY WASTEWATER ................................................................... 58 3.1 Introduction ............................................................................................................. 58 3. 2. Methodology.......................................................................................................... 59 3.2.1 Microalgae strain and culture conditions .......................................................... 59 3.2.2 Preparation of minkery wastewater................................................................... 61 3.2.3 Cultivation system designed for the two-stage strategy ................................... 62 3.2.4 Experiment design ............................................................................................ 64 3.2.5 Analytical methods ............................................................................................ 67 3.3. Results and discussion ............................................................................................ 75 3.3.1 Effect of minkery wastewater concentration on microalgae growth ................ 75 3.3.2 Nutrient removal capacities from different cultivation mediums and biomass accumulation by H. pluvialis during cultivation stage ............................................... 81 3.3.3 Astaxanthin production during photoautotrophic induction ............................. 93 3.4 Conclusion ............................................................................................................... 97 CHAPTER IV EFFECTS OF ACETATE AND NACL CONCENTRATIONS ON ASTAXANTHIN PRODUCTION BY H. PLUVIALIS .................................................... 99 4.1 Introduction ............................................................................................................. 99 4.2 Methodology............................................................................................................ 99 iii 4.3 Results and discussion ........................................................................................... 100 4.3.1 Effects of acetate ............................................................................................. 100 4.3.2 Effects of salinity ............................................................................................ 102 4.4 Conclusion ............................................................................................................. 105 CHAPTER V OPTIMIZATION STUDY OF ASTAXANTHIN PRODUCTION BY H. PLUVIALIS IN MINKERY WASTEWATER CULTURES USING RESPONSE SURFACE METHODOLOGY ....................................................................................... 106 5.1 Introduction ........................................................................................................... 106 5.2 Methodology.......................................................................................................... 107 5.2.1 Cultivation and induction conditions .............................................................. 107 5.2.2 Experimental design and statistical analysis ................................................... 107 5.3 Results and discussion ........................................................................................... 109 5.3.1 Regression model and ANOVA analysis ......................................................... 109 5.3.2 Process optimization ....................................................................................... 115 5.3.3. RSM used for astaxanthin production by Haematococcus in other cultures . 116 5.4 Conclusion ............................................................................................................. 117 CHAPTER VI CONCLUSION ................................................................................... 118 6.1 Experimental conclusion ....................................................................................... 118 6.2 Future research ...................................................................................................... 119 BIBLIOGRAPHY ........................................................................................................... 121 iv LIST OF TABLES Table 2.1. Typical composition of H. pluvialis in vegetative and cyst stages. 11 Table 2.2. High value carotenoid products from microalgae and their current 14 use. Table 2.3. Comparison of the characteristics of different microalgae cultivation systems. 43 Table 2.4. Total nitrogen (TN) and total phosphorus (TP) contents of different wastewater sources. 45 Table 2.5. Nitrogen and phosphorus removal efficiency (%) by various microalgae species in different wastewater resources. 47 Table 3.1. Nutrient concentrations in Bold’s Basal Medium. 60 Table 3.2. The nutrient contents of the raw MW, 1%, 1.5% and 2% pre-treated 76 minkery wastewater. Table 3.3. The increased amount (mg L-1) and percent increase (%) of biomass production in BBM, 1% MW, and 1.5% MW mediums after 6-day cultivation 85 period. Table 3.4. The statistics analysis of specific growth rates (mg L-1 d-1), biomass productivities (mg L-1 d-1), increased
Recommended publications
  • Efficient Microscale Screening of Various Haematococcus Pluvialis Strains for Growth and Astaxanthin Production
    Efficient microscale screening of various Haematococcus pluvialis strains for growth and astaxanthin production Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Zehra Çebi aus Köln Köln, 2017 Berichterstatter: Prof. Dr. Michael Melkonian (Gutachter) Prof Dr. Burkhard Becker Tag der mündlichen Prüfung: 23.01.2017 3 Zusammenfassung Das Ketocarotenoid Astaxanthin wird in der Natur von einigen Algen, Pflanzen, Pilzen und Bakterien synthetisiert. Hierbei besitzt die Grünalge Haematococcus pluvialis mit bis zu 4% des Trockengewichtes die höchste Kapazität Astaxanthin zu akkumulieren. Kommerziell wird natürliches Astaxanthin aus H. pluvialis als pharmazeutisch-funktionelles Lebensmittel für den Menschen und hauptsächlich als Färbemittel in der Aquakultur verwendet. Aufgrund hoher Produktionskosten von natürlichem Astaxanthin aus H. pluvialis wird der kommerzielle Astaxanthinmarkt von dem synthetischen Analogon dominiert. Da jedoch die Nachfrage für natürliches Astaxanthin stetig steigt, laufen die Bestrebungen zur Verbesserung von Massenkultursystemen für H. pluvialis, insbesondere auf technischer Ebene, auf Hochtouren, um die Produktionskosten zu senken und damit die Konkurrenzfähigkeit von natürlichem Astaxanthin auf dem Carotenoidmarkt zu erhöhen. Der Fokus dieser Doktorarbeit liegt auf der Verbesserung der H. pluvialis Produktivität auf biologischer Ebene, nämlich durch Selektion und genetische Manipulation eines effizienten H. pluvialis Stammes.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • And Macro-Algae: Utility for Industrial Applications
    MICRO- AND MACRO-ALGAE: UTILITY FOR INDUSTRIAL APPLICATIONS Outputs from the EPOBIO project September 2007 Prepared by Anders S Carlsson, Jan B van Beilen, Ralf Möller and David Clayton Editor: Dianna Bowles cplpressScience Publishers EPOBIO: Realising the Economic Potential of Sustainable Resources - Bioproducts from Non-food Crops © September 2007, CNAP, University of York EPOBIO is supported by the European Commission under the Sixth RTD Framework Programme Specific Support Action SSPE-CT-2005-022681 together with the United States Department of Agriculture. Legal notice: Neither the University of York nor the European Commission nor any person acting on their behalf may be held responsible for the use to which information contained in this publication may be put, nor for any errors that may appear despite careful preparation and checking. The opinions expressed do not necessarily reflect the views of the University of York, nor the European Commission. Non-commercial reproduction is authorized, provided the source is acknowledged. Published by: CPL Press, Tall Gables, The Sydings, Speen, Newbury, Berks RG14 1RZ, UK Tel: +44 1635 292443 Fax: +44 1635 862131 Email: [email protected] Website: www.cplbookshop.com ISBN 13: 978-1-872691-29-9 Printed in the UK by Antony Rowe Ltd, Chippenham CONTENTS 1 INTRODUCTION 1 2 HABITATS AND PRODUCTION SYSTEMS 4 2.1 Definition of terms 4 2.2 Macro-algae 5 2.2.1 Habitats for red, green and brown macro-algae 5 2.2.2 Production systems 6 2.3 Micro-algae 9 2.3.1 Applications of micro-algae 9 2.3.2 Production
    [Show full text]
  • The Symbiotic Green Algae, Oophila (Chlamydomonadales
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance.
    [Show full text]
  • Rodríguez-Concepción, M. Et Al. a Global Perspective on Carotenoids
    This is the accepted version of the following article: Rodríguez-Concepción, M. et al. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health in Progress in lipid research (Ed. Elsevier), vol. 70 (April 2018), p. 62-93 Which has been published in final form at DOI 10.1016/j-plipres.2018.04.004 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Manuel RODRIGUEZ CONCEPCIONa,*, Javier AVALOSb, M. Luisa BONETc, Albert BORONATa,d, Lourdes GOMEZ-GOMEZe, Damaso HORNERO-MENDEZf, M. Carmen LIMONb, Antonio J. MELÉNDEZ-MARTÍNEZg, Begoña OLMEDILLA-ALONSOh, Andreu PALOUc, Joan RIBOTc, Maria J. RODRIGOi, Lorenzo ZACARIASi, Changfu ZHUj a, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain. b, Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain. c, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); and Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain. d, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain e, Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain. f, Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain. g, Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain. h, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain. i, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain.
    [Show full text]
  • Carotenoids in Algae: Distributions, Biosyntheses and Functions
    Mar. Drugs 2011, 9, 1101-1118; doi:10.3390/md9061101 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Carotenoids in Algae: Distributions, Biosyntheses and Functions Shinichi Takaichi Department of Biology, Nippon Medical School, Kosugi-cho, Nakahara, Kawasaki 211-0063, Japan; E-Mail: [email protected]; Tel.: +81-44-733-3584; Fax: +81-44-733-3584 Received: 2 May 2011; in revised form: 31 May 2011 / Accepted: 8 June 2011 / Published: 15 June 2011 Abstract: For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized. Keywords: algal phylogeny; biosynthesis of carotenoids; distribution of carotenoids; function of carotenoids; pigment-protein complex 1.
    [Show full text]
  • Pigment-Based Chloroplast Types in Dinoflagellates
    Vol. 465: 33–52, 2012 MARINE ECOLOGY PROGRESS SERIES Published September 28 doi: 10.3354/meps09879 Mar Ecol Prog Ser Pigment-based chloroplast types in dinoflagellates Manuel Zapata1,†, Santiago Fraga2, Francisco Rodríguez2,*, José L. Garrido1 1Instituto de Investigaciones Marinas, CSIC, c/ Eduardo Cabello 6, 36208 Vigo, Spain 2Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain ABSTRACT: Most photosynthetic dinoflagellates contain a chloroplast with peridinin as the major carotenoid. Chloroplasts from other algal lineages have been reported, suggesting multiple plas- tid losses and replacements through endosymbiotic events. The pigment composition of 64 dino- flagellate species (122 strains) was analysed by using high-performance liquid chromatography. In addition to chlorophyll (chl) a, both chl c2 and divinyl protochlorophyllide occurred in chl c-con- taining species. Chl c1 co-occurred with chl c2 in some peridinin-containing (e.g. Gambierdiscus spp.) and fucoxanthin-containing dinoflagellates (e.g. Kryptoperidinium foliaceum). Chl c3 occurred in dinoflagellates whose plastids contained 19’-acyloxyfucoxanthins (e.g. Karenia miki- motoi). Chl b was present in green dinoflagellates (Lepidodinium chlorophorum). Based on unique combinations of chlorophylls and carotenoids, 6 pigment-based chloroplast types were defined: Type 1: peridinin/dinoxanthin/chl c2 (Alexandrium minutum); Type 2: fucoxanthin/ 19’-acyloxy fucoxanthins/4-keto-19’-acyloxy-fucoxanthins/gyroxanthin diesters/chl c2, c3, mono - galac to syl-diacylglycerol-chl c2 (Karenia mikimotoi); Type 3: fucoxanthin/19’-acyloxyfucoxan- thins/gyroxanthin diesters/chl c2, c3 (Karlodinium veneficum); Type 4: fucoxanthin/chl c1, c2 (K. foliaceum); Type 5: alloxanthin/chl c2/phycobiliproteins (Dinophysis tripos); Type 6: neoxanthin/ violaxanthin/a major unknown carotenoid/chl b (Lepidodinium chlorophorum).
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Advances on Antioxidants in Research and Applications
    E3S Web of Conferences 131, 01009 (2019) https://doi.org/10.1051/e3sconf/201913101009 ChinaBiofilms 2019 Advances on antioxidants in research and applications Ruirui Song1, Qi Wu1,a, Lin Zhao1 and Zhenyu Yun1 1 China National Institute of Standardization, Institute of Food and Agriculture Standardization, No.4 Zhi Chun Road, Haidian District, Beijing, China Abstract. Antioxidants play a significant role in the prevention and treatment of numerous chronic diseases as they prevent oxidative stress and maintain reduction-oxidation (redox) equilibrium in the human body by eliminating reactive free radicals effectively. This study focused on the types and applications of antioxidants and discussed the existing problems with regard to the practical applications of antioxidants. Also, it presented a review of the latest research on antioxidants in China and abroad and performed a comprehensive, objective analysis of relevant research on antioxidants. 1 Introduction related cell functions and bring cardiovascular plaques to the heart. Fruit and vegetables are good sources of As the standard of living improves, the global average dietary fiber, minerals, and trace elements and contain a life expectancy has increased and yet, there are still a variety of active antioxidants. An adequate intake of huge number of deaths in relation to noninfectious high-antioxidants fruit and vegetables is a major diseases such as cardiovascular disease, stroke, diabetes, approach to maintain redox balance in the body [6]. The and cancer [1]. A previous study shows that these WHO recommends a minimum of 400 g of fruit and chronic diseases are associated with oxidative stress vegetables per day for the prevention of chronic diseases caused by free radicals, and antioxidants allow for the and supplement of trace elements [7].
    [Show full text]
  • Engineering Astaxanthin Biosynthesis by Intragenic Pseudogene Revival in Chlamydomonas Reinhardtii
    bioRxiv preprint doi: https://doi.org/10.1101/535989; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Federico Perozeni1, Stefano Cazzaniga1, Thomas Baier2, Francesca Zanoni1, Gianni Zoccatelli1, Kyle J. Lauersen2, Lutz Wobbe2, Matteo Ballottari1*. 1 Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy 2Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany. *Address for correspondence: Matteo Ballottari, Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134 Verona Italy; Tel: +390458027807; E-mail: [email protected] Summary The green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin, however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic re-design of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to a reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C.
    [Show full text]
  • Ep 2174658 A1
    (19) & (11) EP 2 174 658 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 14.04.2010 Bulletin 2010/15 A61K 31/34 (2006.01) A61K 31/502 (2006.01) A61K 31/353 (2006.01) A61P 9/00 (2006.01) (21) Application number: 09015249.7 (22) Date of filing: 16.11.2005 (84) Designated Contracting States: • O’Donnell, John AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Morgantown HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI WV 26505 (US) SK TR • Bottini, Peter, Bruce Designated Extension States: Morgantown AL BA HR MK YU WV26505 (US) • Mason, Preston (30) Priority: 31.05.2005 US 141235 Morgantown 10.11.2005 US 272562 WV 26504 (US) 15.11.2005 US 273992 • Shaw, Andrew Morgantown (62) Document number(s) of the earlier application(s) in Wv 26504 (US) accordance with Art. 76 EPC: 05848185.4 / 1 890 691 (74) Representative: Samson & Partner Widenmayerstrasse 5 (71) Applicant: MYLAN LABORATORIES, INC 80538 München (DE) Morgantown, NV 26504 (US) Remarks: (72) Inventors: This application was filed on 09-12-2010 as a • Davis, Eric divisional application to the application mentioned Morgantown under INID code 62. WV 26508 (US) (54) Compositions comprising nebivolol (57) Described is the use of a safe and therapeuti- tion if a medicament for improving NO release in a black cally effective amount of a combination of: (i) nebivolol patient, which results in reducing mortality associated or a pharmaceutically acceptable salt thereof; (ii) at least with cardiovascular disease and improving exercise tol- one hydralazine compound or a pharmaceutically ac- erance or the quality of life.
    [Show full text]
  • Spectral Autographic Characteristics and Pigment Composition of Marine Microalgae
    International Journal of Pharmacy and Biological Sciences TM ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online) IJPBSTM | Volume 8 | Issue 3 | JUL-SEPT | 2018 | 918-925 Research Article | Biological Sciences | Open Access | MCI Approved| |UGC Approved Journal | SPECTRAL AUTOGRAPHIC CHARACTERISTICS AND PIGMENT COMPOSITION OF MARINE MICROALGAE Thanappan V1, Suba Sankari K1, Sarangi RK2, Gunjan S. Motwani2, Mini Raman2, Anantharaman P1* 1Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai- 608 502, Tamilnadu, India 2Space Application Centre-ISRO, Ahmedabad – 380 015, India *Corresponding Author Email: [email protected] ABSTRACT Absorbance and quantification of microalgal pigments from southeast coast regions (Chennai, Cuddalore and Parangipettai) was monitored using visible spectrophotometer followed by HPLC. Eight microalgae named Chlorella marina, Nannochloropsis sp., Dunaliella Salina, Platymonas sp., Tetraselmis tetrathele, Tetraselmis chuii, Chromulina sp and Synechocystis sp. were morphologically identified and each individual species were isolated by serial dilution followed by quadrant streaking. The isolated strains were cultured under in-vitro condition using Guillard’s f/2 medium. The exponentially grown cells from 2nd to 8th day were subjected to absorption with spectra at 2-day intervals for determining pigments in microalgae. The obtained absorption spectra for each individual strain showed corresponding peaks with the accumulation of different photosynthetic and photo-protective pigments viz. Chlorophyll a, Chlorophyll b, β-carotene and Diatoxanthin etc. Pigments synthesized by all strains were extracted using acetone and were quantified by HPLC-DAD. The study concludes that the process of acclimation and adaptation of microalgae under in-vitro condition induces many neutraceutically active pigments at a higher concentration which might be due to different phenotypical molecular organization.
    [Show full text]