Imaging and Photometric Studies of NGC 1316 (Fornax A) Using Astrosat/UVIT

Total Page:16

File Type:pdf, Size:1020Kb

Imaging and Photometric Studies of NGC 1316 (Fornax A) Using Astrosat/UVIT J. Astrophys. Astr. (2021) 42:34 Ó Indian Academy of Sciences https://doi.org/10.1007/s12036-021-09708-4Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) SCIENCE RESULTS Imaging and photometric studies of NGC 1316 (Fornax A) using Astrosat/UVIT NILKANTH D. VAGSHETTE1,*, SACHINDRA NAIK2, NEERAJ KUMARI2 and MADHAV K. PATIL3 1Department of Physics and Electronics, Maharashtra Udayagiri Mahavidyalaya, Udgir 413 517, India. 2Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India. 3School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431 606, India. *Corresponding Author. E-mail: [email protected] MS received 28 October 2020; accepted 13 January 2021 Abstract. We present imaging and photometric studies of the radio galaxy NGC 1316 (Fornax A) using high spatial resolution near-ultraviolet (NUV) and far-ultraviolet (FUV) imaging telescopes of the first Indian multi-wavelength space observatory AstroSat. The residual maps of UV emission obtained from the subtraction of smooth models witness peculiar features within the central few kpc (1–2 kpc) region. The spatial correspondence between the radio emission maps and FUV imaging study reveal that the UV emitting sources are displaced away from the centre by the AGN outburst (radio jet). The presence of rims and clumpy structures in the outskirt of this galaxy delineate that the galaxy has acquired a large fraction of gas through merger-like events and is still in the process of settling. The estimates of the star formation rates À1 À1 (SFR) using FUV and NUV luminosities are found to be 0.15 M yr and 0.36 M yr , respectively, and provide the lower limit due to the screen effect. The estimated lower rates of SFR in this galaxy probably represent its quenching due to the AGN driven outflows emanating from the central engine of NGC 1316. Keywords. Galaxies: formation—ultraviolet: galaxies—galaxies: evolution—galaxies: star formation. 1. Introduction into the intergalactic space through complex gravita- tional effects. Schweizer (1980) reported the presence NGC 1316 (Fornax A) is a nearby (z ¼ 0:00587) of a compact disk of gas near its center that has dif- giant peculiar S0 galaxy hosting numerous tidal tails, ferent orientation and much faster rotation relative to shells, unusual dust patches all embedded within a the stars. All of these signs of complex dust features, much larger outer envelop of stars and a prominent shells, loops and other sub-structures evident in dust lane oriented along its optical minor axis (Malin NGC 1316 collectively point to its violent past built- & Carter 1983; Deshmukh et al. 2013). In addition to up through the merger of several smaller dust rich the intricate dust patches and shells, NGC 1316 also galaxies in distant past (Terlevich & Forbes 2002). hosts filamentary, nebular emission features, ripples, Schweizer (1980) based on the expansion time of the arcs and several complex filamentary loops of other outer stellar loops and Goudfrooij et al. (2001) on the phases of inter stellar medium (ISM) (Schweizer & spread in the ages of globular clusters demonstrate Seitzer 1988). The faint tidal tails – wisps and shells that the mergers might have happened between 1 to of stars evident around the galaxy suggest that they 3 Gyr ago and then NGC 1316 has continued accretion have been torn from their original locations and flung of smaller satellite galaxies (Iodice et al. 2017). NGC 1316 is one of the nearest Central Dominant This article is part of the Special Issue on ‘‘AstroSat: Five (CD) giant radio galaxy, at a luminosity distance of Years in Orbit’’ 25 Mpc (Wright 2006) that exhibit filamentary low- 34 Page 2 of 8 J. Astrophys. Astr. (2021) 42:34 ionization nuclear emission, an unresolved bright However, the Earth’s atmosphere acts as a main hin- nucleus in UV bands, and interestingly hosts a strong drance in acquiring UV data on such galaxies, as a radio core with steep spectrum and dual jets. The result, we need to rely on space-based observatories double-lobe radio continuum source from this galaxy like GALEX and/or AstroSat for observing such extend well beyond its telescopic field-of-view, galaxies in UV bands. Therefore, the UV observations spanning over several degrees on the sky (Ekers et al. of NGC 1316 acquired using AstroSat observatory are 1983; Drinkwater et al. 2001), and exhibit sharp edges crucial for understanding the star formation and hence in its outer part (Ekers et al. 1983). The S-shaped evolution of the galaxy. nuclear radio jet in the central region of NGC 1316 The merger episodes in NGC 1316 fuel the central appears to bend at south of NW shell and north of SE supermassive black hole and transform it into a strong blob due to the interaction between the radio jet and radio source, an Active Galactic Nucleus (Croton the ISM (Morokuma-Matsui et al. 2019). In the pho- et al. 2006; Oogi & Habe 2013; Oogi et al. 2016; tographic plates. NGC 1316 appears to interact with a Rodriguez-Gomez et al. 2016; Vagshette et al. close companion spiral galaxy NGC 1317 on its 2016, 2017, 2019; Pandge et al. 2012; Sonkamble North, however, this companion is not dominant et al. 2015). The mergers drive the external gas inflow enough to distort NGC 1316 at the observed scales. into the central part of the galaxy and hence also Though formation of NGC 1316 through merging activate the star formation in central region (Hopkins episodes is unquestionable, the composition and et al. 2008). But the ignited AGN develop powerful characteristics of the multi-phase ISM in the galaxy is jets, which then heat and blow up the surrounding ISM not yet fully understood. Relative to its very large and hence suppress the star formation (Croton et al. 11 stellar content 6 Æ 2 Â 10 M , the dust content of 2006; Fabian 2012). As a result, the detailed study of 6 NGC 1316 is very low 2 Â 10 M (Draine et al. the star formation and interaction of radio jets with the 2007; Deshmukh et al. 2013), and is probably due to a surrounding environment in merger remnants is 10 : 1 merger between a dominant, dust-poor early- interesting. Therefore, NGC 1316 is one of the suit- type galaxy and a smaller, gas-rich spiral (Lanz et al. able candidates of recent mergers to investigate star 2010). formation and interplay between the AGN and ISM. Our earlier study (Deshmukh et al. 2013)of Using recent high resolution radio observations wavelength-dependent nature of dust extinction over with MeerKAT, Serra et al. (2019) have demonstrated the range near-infrared (NIR) to UV revealed that the that NGC 1316 hosts a significant fraction of H I dust grains in NGC 1316 posses identical physical and emission distributed in a variety of scales i.e. all the chemical characteristics as that of the canonical grains way from its center till the large-scale environment. in the Milky Way and was confirmed through the Serra et al. (2019) found that the H I emission parallel extinction curve. However, the smaller values detected in the central 5 kpc as additional compo- of Rk indicate that the dust grains in the environment nent to the complex interstellar medium in this region: of NGC 1316 are relatively smaller than the canonical including dust (Carlqvist 2010; Deshmukh et al. grains (Patil et al. 2007). This study also quantifies the 2013), dust emission (Lanz et al. 2010), molecular gas dust mass assuming screening effect of dust (Patil (Horellou et al. 2001; Morokuma-Matsui et al. 2019), et al. 2007; Vagshette et al. 2012), to be ionised gas (Schweizer 1980; Morokuma-Matsui et al. 5 2:12 Â 10 M , while that estimated from the 2019), and X-ray emitting gas (this paper). Serra et al. MIPS far-infrared flux was found to be (2019) have also revealed the extension of H I emis- 7 3:21 Â 10 M . sion up to 70–150 kpc and oriented along both the As ultraviolet (UV) and Far-Infrared (FIR) emission tails of NGC 1316 with a total mass content of 8 originate from the young stars, therefore, the UV and 7 Â 10 M , roughly 14 times larger than the past IR luminosities are often used in literature for inves- detection. Interestingly, both these H I tails of tigating star formation histories of external galaxies NGC 1316 show a spatial association with the com- (Buat et al. 2010; Kennicutt & Evans 2012). Particu- plex optical tidal features confirming their common larly, the UV continuum at k\2000 A˚ provides with origin through the merging of a gas-rich progenitor the more reliable estimates of star formation rates system. They further propose that the merger was so (Salim et al. 2007). As a result, several attempts have significant that the tidal forces pulled a large fraction been made in the past to better understand the star of gas and stars out to larger radii apparent in the form formation in external galaxies using UV observations. of optical tails. J. Astrophys. Astr. (2021) 42:34 Page 3 of 8 34 Further, the low frequency observation between 154 filters. The characteristics of the filters, their mean and 1510 MHz shows that both the radio lobes exhi- wavelength and band width, exposure time, zero point bits a steep spectrum (Mancuso et al. 2017). These and unit conversion factors are tabulated in Table 1. steep spectrum lobes are basically characterised by Photometric calibrations for FUV and NUV filters optically thin synchrotron radio emission from jets were carried out by following the procedure described and they are associated with very massive black holes in Tandon et al.
Recommended publications
  • 115 Abell Galaxy Cluster # 373
    WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( ␹ 1), Chi-2 ( ␹ 2), and complex envelope of faint material, several loops of Chi-3 ( ␹ 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out.
    [Show full text]
  • Monster Image of the Fornax Galaxy Cluster 25 October 2017
    Monster image of the Fornax Galaxy Cluster 25 October 2017 telescope technology to observe the finer details of NGC 1316's unusual structure through a combination of imaging and modelling. The mergers that formed NGC 1316 led to an influx of gas, which fuels an exotic astrophysical object at its centre: a supermassive black hole with a mass roughly 150 million times that of the Sun. As it accretes mass from its surroundings, this cosmic monster produces immensely powerful jets of high- energy particles , that in turn give rise to the Credit: ESO characteristic lobes of emission seen at radio wavelengths, making NGC 1316 the fourth- brightest radio source in the sky. Countless galaxies vie for attention in this monster NGC 1316 has also been host to four recorded type image of the Fornax Galaxy Cluster, some Ia supernovae, which are vitally important appearing only as pinpricks of light while others astrophysical events for astronomers. Since type Ia dominate the foreground. One of these is the supernovae have a very clearly defined brightness, lenticular galaxy NGC 1316. The turbulent past of they can be used to measure the distance to the this much-studied galaxy has left it with a delicate host galaxy; in this case, 60 million light-years. structure of loops, arcs and rings that astronomers These "standard candles" are much sought-after by have now imaged in greater detail than ever before astronomers, as they are an excellent tool to with the VLT Survey Telescope. This astonishingly reliably measure the distance to remote objects. In deep image also reveals a myriad of dim objects fact, they played a key role in the groundbreaking along with faint intracluster light.
    [Show full text]
  • The Distance to NGC 1316 \(Fornax
    A&A 552, A106 (2013) Astronomy DOI: 10.1051/0004-6361/201220756 & c ESO 2013 Astrophysics The distance to NGC 1316 (Fornax A): yet another curious case,, M. Cantiello1,A.Grado2, J. P. Blakeslee3, G. Raimondo1,G.DiRico1,L.Limatola2, E. Brocato1,4, M. Della Valle2,6, and R. Gilmozzi5 1 INAF, Osservatorio Astronomico di Teramo, via M. Maggini snc, 64100 Teramo, Italy e-mail: [email protected] 2 INAF, Osservatorio Astronomico di Capodimonte, salita Moiariello, 80131 Napoli, Italy 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria BC V82 3H3, Canada 4 INAF, Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, 00040 Roma, Italy 5 European Southern Observatory, Karl–Schwarzschild–Str. 2, 85748 Garching bei München, Germany 6 International Centre for Relativistic Astrophysics, Piazzale della Repubblica 2, 65122 Pescara, Italy Received 16 November 2012 / Accepted 14 February 2013 ABSTRACT Aims. The distance of NGC 1316, the brightest galaxy in the Fornax cluster, provides an interesting test for the cosmological distance scale. First, because Fornax is the second largest cluster of galaxies within 25 Mpc after Virgo and, in contrast to Virgo, has a small line-of-sight depth; and second, because NGC 1316 is the single galaxy with the largest number of detected Type Ia supernovae (SNe Ia), giving the opportunity to test the consistency of SNe Ia distances both internally and against other distance indicators. Methods. We measure surface brightness fluctuations (SBF) in NGC 1316 from ground- and space-based imaging data. The sample provides a homogeneous set of measurements over a wide wavelength interval.
    [Show full text]
  • Dissecting the Origin of the Submillimetre Emission in Nearby Galaxies with Herschel and LABOCA
    MNRAS 439, 2542–2570 (2014) doi:10.1093/mnras/stu113 Advance Access publication 2014 February 17 Dissecting the origin of the submillimetre emission in nearby galaxies with Herschel and LABOCA M. Galametz,1,2‹ M. Albrecht,3 R. Kennicutt,1 G. Aniano,4 F. Bertoldi,3 D. Calzetti,5 K. V. Croxall,6 D. Dale,7 B. Draine,8 C. Engelbracht,9,10 K. Gordon,11 J. Hinz,9 Downloaded from https://academic.oup.com/mnras/article-abstract/439/3/2542/1092583 by Princeton University user on 02 May 2019 L. K. Hunt,12 A. Kirkpatrick,5 E. Murphy,13 H. Roussel,14 R. A. Skibba,15 F. Walter,16 A. Weiss17 andC.D.Wilson18 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-Munchen,¨ Germany 3Argelander-Institut fur¨ Astronomie, Abteilung Radioastronomie, Auf dem Hugel¨ 71, D-53121 Bonn, Germany 4Institut d’Astrophysique Spatiale, Orsay 5Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 6Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 W 18th Ave., Columbus, OH 43210, USA 7Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA 8Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 9Steward Observatory, University of Arizona, Tucson, AZ 85721, USA 10Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756, USA 11Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 12INAF Osservatorio Astrofisico di Arcetri,
    [Show full text]
  • Arxiv:1703.07989V1 [Astro-Ph.GA] 23 Mar 2017 Accretion of Small Satellites
    Draft version March 24, 2017 Typeset using LATEX twocolumn style in AASTeX61 THE FORNAX DEEP SURVEY WITH VST. II. FORNAX A: A TWO-PHASE ASSEMBLY CAUGHT ON ACT E. Iodice,1 M. Spavone,2 M. Capaccioli,3 R. F. Peletier,4 T. Richtler,5 M. Hilker,6 S. Mieske,7 L. Limatola, A. Grado, N.R. Napolitano,8 M. Cantiello,9 R. D'Abrusco,10 M. Paolillo,11 A. Venhola,12 T. Lisker,13 G. Van de Ven,14 J. Falcon-Barroso,15 and P. Schipani16 1INAF-Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 2Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 3University of Naples \Federico II", C.U. Monte SantAngelo, Via Cinthia, 80126, Naples, Italy 4Kapteyn Astronomical Institute, University of Groningen, PO Box 72, 9700 AV Groningen, The Netherlands 5Universidad de Concepci´on,Concepci´on,Chile 6European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen, Germany 7European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 8INAF - Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 9INAF-Astronomical Observatory of Teramo, Via Maggini, 64100, Teramo, Italy 10Smithsonian Astrophysical Observatory/Chandra X-ray centre, 02138 Cambridge (MA), US 11Univ. of Naples \Federico II", C.U. Monte SantAngelo, Via Cinthia, 80126, Naples, Italy 12Division of Astronomy, Department of Physics, University of Oulu, Oulu, Finland 13Zentrum fuer Astronomie der Universitaet Heidelberg, Germany 14Max Planck Institute for Astronomy, Heidelberg, Germany 15Instituto de Astrof´ısica de Canarias, C/ Via L´actea s/n, 38200 La Laguna, Canary Islands, Spain 16Astron. Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy ABSTRACT As part of the Fornax Deep Survey with the ESO VLT Survey Telescope, we present new g and r bands mosaics of the SW group of the Fornax cluster.
    [Show full text]
  • Astronomy Astrophysics
    A&A 415, 123–143 (2004) Astronomy DOI: 10.1051/0004-6361:20031448 & c ESO 2004 Astrophysics VLT spectroscopy of globular cluster systems? I. The photometric and spectroscopic data set??;??? T. H. Puzia1, M. Kissler-Patig2, D. Thomas3, C. Maraston3,R.P.Saglia1, R. Bender1,3, T. Richtler4, P. Goudfrooij5,andM.Hempel2 1 Sternwarte der Ludwig-Maximilians-Universit¨at, Scheinerstr. 1, 81679 M¨unchen, Germany e-mail: [email protected] 2 European Southern Observatory, 85749 Garching bei M¨unchen, Germany e-mail: [email protected] 3 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching bei M¨unchen, Germany e-mail: bender, maraston, [email protected] 4 Grupo de Astronom´ıa, Departamento de F´ısica, Casilla 160-C, Universidad de Concepci´on, Concepci´on, Chile e-mail: [email protected] 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] Received 14 May 2003 / Accepted 11 September 2003 Abstract. We present Lick line-index measurements of extragalactic globular clusters in seven early-type galaxies (NGC 1380, 2434, 3115, 3379, 3585, 5846, and 7192) with different morphological types (E–S0) located in field and group/cluster environ- ments. High-quality spectra were taken with the FORS2 instrument at ESO’s Very Large Telescope. 50% of our data allows an age resolution ∆t/t 0.3 and a metallicity resolution 0.25 0.4 dex, depending on the absolute metallicity.∼ Globular cluster candidates are selected≈ from deep B, V, R, I, K FORS2/ISAAC∼ − photometry with 80 100% success rate inside one effective ra- − dius.
    [Show full text]
  • Neutral Hydrogen Gas Within and Around NGC 1316
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/124401/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Serra, P., Maccagni, F. M., Kleiner, D., de Blok, W. J. G., van Gorkom, J. H., Hugo, B., Iodice, E., Jozsa, G. I. G., Kamphuis, P., Kraan-Korteweg, R., Loni, A., Makhathini, S., Molnar, D., Oosterloo, T., Peletier, R., Ramaila, A., Ramatsoku, M., Smirnov, O. and Smith, Matthew W. L. 2019. Neutral hydrogen gas within and around NGC 1316. Astronomy and Astrophysics 628 , A122. 10.1051/0004-6361/201936114 file Publishers page: http://dx.doi.org/10.1051/0004-6361/201936114 <http://dx.doi.org/10.1051/0004- 6361/201936114> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Astronomy & Astrophysics manuscript no. n1316 c ESO 2019 July 17, 2019 Neutral hydrogen gas within and around NGC 1316 P. Serra1,⋆, F. M. Maccagni1, D. Kleiner1, W. J. G. de Blok2, 3, 4, J. H. van Gorkom5, B.
    [Show full text]
  • Observer's Guide to Galaxies
    Observer’s Guide to Galaxies By Rob Horvat (WSAAG) Mar 2020 This document has evolved from a supplement to Night-Sky Objects for Southern Observers (Night-Sky Objects for short), which became available on the web in 2009. The document has now been split into two, this one being called the Observer’s Guide to Galaxies. The maps have been designed for those interested in locating galaxies by star-hopping around the constellations. However, like Night-Sky Objects, the resource can be used to simply identify interesting galaxies to GOTO. As with Night-Sky Objects, the maps have been designed and oriented for southern observers with the limit of observation being Declination +55 degrees. Facing north, the constellations are inverted so that they are the “right way up”. Facing south, constellations have the usual map orientation. Pages are A4 in size and can be read as a pdf on a computer or tablet. Note on copyright. This document may be freely reproduced without alteration for educational or personal use. Contributed images by WSAAG members remain the property of their authors. Types of Galaxies Spiral (S) galaxies consist of a rotating disk of stars, dust and gas that surround a central bulge or concentration of stars. Bulges often house a central supermassive black hole. Most spiral galaxies have two arms that are sites of ongoing star formation. Arms are brighter than the rest of the disk because of young hot OB class stars. Approx. 2/3 of spiral galaxies have a central bar (SB galaxies). Lenticular (S0) galaxies have a rather formless disk (no obvious spiral arms) with a prominent bulge.
    [Show full text]
  • CHANDRA X-RAY OBSERVATIONS of NGC 1316 (FORNAX A) Dong-Woo Kim and G
    The Astrophysical Journal, 586:826–849, 2003 April 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHANDRA X-RAY OBSERVATIONS OF NGC 1316 (FORNAX A) Dong-Woo Kim and G. Fabbiano Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 Received 2002 June 25; accepted 2002 December 9 ABSTRACT We report the results of the Chandra ACIS subarcsecond resolution X-ray observation of the archetypal merger radio galaxy NGC 1316 (Fornax A). We confirm the presence of fine substructures in the hot inter- stellar medium (ISM). Some of these are likely to result from interaction with the radio jets, while others may be related to a complex intermingling of different phases of the ISM. We detect a low-luminosity X-ray active 39 À1 galactic nucleus (AGN) with LX ¼ 5 Â 10 ergs s (in 0.3–8 keV) and a À ¼ 1:7 power-law energy spectrum. We also detect 81 point sources within the 25th magnitude isophotal ellipse of NGC 1316 (LX in the range of 2 Â 1037 to 2 Â 1039 ergs sÀ1), with hard (kT 5 keV) X-ray spectra, typical of X-ray binaries, and a spatial radial distribution consistent with that of the optical (i.e., stellar) surface brightness. We derive the X-ray luminosity function (XLF) of these sources, correcting for the incompleteness at the faint end caused by the presence of the diffuse emission from the hot ISM in the central regions of NGC 1316 and by the widening of the Chandra point-spread functions at increasing distance from the aim point.
    [Show full text]
  • Books About the Southern Sky
    Books about the Southern Sky Atlas of the Southern Night Sky, Steve Massey and Steve Quirk, 2010, second edition (New Holland Publishers: Australia). Well-illustrated guide to the southern sky, with 100 star charts, photographs by amateur astronomers, and information about telescopes and accessories. The Southern Sky Guide, David Ellyard and Wil Tirion, 2008 (Cambridge University Press: Cambridge). A Walk through the Southern Sky: A Guide to Stars and Constellations and Their Legends, Milton D. Heifetz and Wil Tirion, 2007 (Cambridge University Press: Cambridge). Explorers of the Southern Sky: A History of Astronomy in Australia, R. and R. F. Haynes, D. F. Malin, R. X. McGee, 1996 (Cambridge University Press: Cambridge). Astronomical Objects for Southern Telescopes, E. J. Hartung, Revised and illustrated by David Malin and David Frew, 1995 (Melbourne University Press: Melbourne). An indispensable source of information for observers of southern sky, with vivid descriptions and an extensive bibliography. Astronomy of the Southern Sky, David Ellyard, 1993 (HarperCollins: Pymble, N.S.W.). An introductory-level popular book about observing and making sense of the night sky, especially the southern hemisphere. Under Capricorn: A History of Southern Astronomy, David S. Evans, 1988 (Adam Hilger: Bristol). An excellent history of the development of astronomy in the southern hemisphere, with a good bibliography that names original sources. The Southern Sky: A Practical Guide to Astronomy, David Reidy and Ken Wallace, 1987 (Allen and Unwin: Sydney). A comprehensive history of the discovery and exploration of the southern sky, from the earliest European voyages of discovery to the modern age. Exploring the Southern Sky, S.
    [Show full text]
  • The Globular Cluster System of NGC 1316 (Fornax A)
    A&A 371, 875–889 (2001) Astronomy DOI: 10.1051/0004-6361:20010457 & c ESO 2001 Astrophysics The globular cluster system of NGC 1316 (Fornax A) M. G´omez1,2,T.Richtler3,L.Infante1, and G. Drenkhahn4 1 Departamento de Astronom´ıa y Astrof´ısica, P. Universidad Cat´olica de Chile, Casilla 306, Santiago, Chile e-mail: [email protected],[email protected] 2 Sternwarte der Universit¨at Bonn, Auf dem H¨ugel 71, 53121 Bonn, Germany 3 Departamento de F´ısica, Universidad de Concepci´on, Casilla 4009, Concepci´on, Chile e-mail: [email protected] 4 Max-Planck-Institut f¨ur Astrophysik, Postfach 1317, 85741 Garching bei M¨unchen, Germany e-mail: [email protected] Received 22 November 2000 / Accepted 22 March 2001 Abstract. We have studied the Globular Cluster System of the merger galaxy NGC 1316 in Fornax, using CCD BV I photometry. A clear bimodality is not detected from the broadband colours. However, dividing the sample into red (presumably metal-rich) and blue (metal-poor) subpopulations at B −I =1.75, we find that they follow strikingly different angular distributions. The red clusters show a strong correlation with the galaxy elongation, but the blue ones are circularly distributed. No systematic difference is seen in their radial profile and both are equally concentrated. We derive an astonishingly low Specific Frequency for NGC 1316 of only SN =0.9, which confirms with a larger field a previous finding by Grillmair et al. (1999). Assuming a “normal” SN of ∼4 for early-type galaxies, we use stellar population synthesis models to estimate in 2 Gyr the age of this galaxy, if an intermediate- age population were to explain the low SN we observe.
    [Show full text]
  • The Globular Cluster System of NGC1316. III. Kinematic Complexity ?
    Astronomy & Astrophysics manuscript no. N1316˙kin˙V11˙astroph c ESO 2018 November 7, 2018 The globular cluster system of NGC1316. III. Kinematic complexity ? T. Richtler1, M. Hilker2, B. Kumar3, L.P. Bassino4, M. Gomez´ 5, and B. Dirsch6 1 Departamento de Astronom´ıa, Universidad de Concepcion,´ Casilla 160-C, Concepcion,´ Chile 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany 3 Aryabhatta Research Institute of Observational Sciences, Manora Peak, 263129 Nainital, India 4 Grupo de Investigacion´ CGGE, Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, and Instituto de Astrof´ısica de La Plata (CCT La Plata – CONICET, UNLP), Paseo del Bosque S/N, B1900FWA La Plata, Argentina 5 Departamento de Ciencias F´ısicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile 6 Friedrich-Ebert Gymnasium, Ollenhauerstr.5, 53113 Bonn, Germany Received / Accepted ABSTRACT The merger remnant NGC 1316 (Fornax A) is one of the most important objects regarding the investigation of and thus an important object to study merger-related processes. A recent photometric study used globular clusters in NGC 1316 to constrain its star for- mation history, but without the knowledge of individual radial velocities. The kinematical properties of the globular cluster system in comparison with the diffuse stellar light might reveal more insight into the formation of NGC 1316. Of particular interest is the dark matter content. Planetary nebulae in NGC 1316 indicate a massive dark halo, and globular cluster velocities provide independent evidence. We aim at measuring radial velocities of globular clusters in NGC 1316. We use these kinematical data to investigate the global structure of NGC 1316 and to constrain the dark matter content.
    [Show full text]