Dissecting the Origin of the Submillimetre Emission in Nearby Galaxies with Herschel and LABOCA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fourier Dissection of Early-Type Galaxy Bars R
The Astronomical Journal, 132:1859Y1876, 2006 November # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. FOURIER DISSECTION OF EARLY-TYPE GALAXY BARS R. Buta,1 E. Laurikainen,2 H. Salo,2 D. L. Block,3 and J. H. Knapen4 Received 2006 May 4; accepted 2006 July 14 ABSTRACT This paper reports on a near-infrared survey of early-type galaxies designed to provide information on bar strengths, bulges, disks, and bar parameters in a statistically well-defined sample of S0YSa galaxies. Early-type galaxies have the advantage that their bars are relatively free of the effects of dust, star formation, and spiral structure that com- plicate bar studies in later type galaxies. We describe the survey and present results on a detailed analysis of the rela- tive Fourier intensity amplitudes of bars in 26 early-type galaxies. We also evaluate the ‘‘symmetry assumption’’ of these amplitudes with radius, used recently for bar-spiral separation in later type galaxies. The results show a wide variety of radial Fourier profiles of bars, ranging from simple symmetric profiles that can be represented in terms of a single Gaussian component to both symmetric and asymmetric profiles that can be represented by two overlapping Gaussian components. More complicated profiles than these are also found, often due to multiple barlike features including extended ovals or lenses. Based on the gravitational bar torque indicator Qb, double-Gaussian bars are stronger on average than single-Gaussian bars, at least for our small sample. We show that published numerical simulations in which the bar transfers a large amount of angular momentum to the halo can account for many of the observed profiles. -
The Centre of the Active Galaxy NGC 1097
Figure 4: Relative map- References ping speed of SCOWL 1000000 versus the ALMA Com- The OWL Instrument Concept Studies have been pact Configuration. published as ESO internal reports. They can be ob- tained from the PI’s or ESO. 10000 (1) D’Odorico S., Moorwood A. F .M., Beckers, J. 1991, Journal of Optics 22, 85 (2) CODEX, Cosmic Dynamics Experiment, OWL–CSR-ESO-00000-0160, October 2005 100 (3) T-OWL, Thermal Infrared Imager and Spectrograph for OWL, OWL–CSR-ESO-00000-0161, October 2005 (4) QuantEYE, OWL–CSR-ESO-00000-0162, October 0 2005 (5) SCOWL, Submillimeter Camera for OWL; OWL–CSR-ESO-00000-0163, September 2005 (6) MOMFIS, Multi Object Multi Field IR Spectrograph, OWL–CSR-ESO-00000-0164, September 2005 0.01 (7) ONIRICA, OWL NIR Imaging Camera, OWL–CSR-ESO-00000-0165, October 2005 (8) EPICS, Earth-like Planet Imaging Camera and Spectrograph, OWL–CSR-ESO-00000-0166, 0.0001 October 2005 850 450 350 850 450 350 λ(µm) (9) HyTNIC, Hyper-Telescope Near Infrared Camera, ALMA Compact SCOWL OWL–CSR-ESO-00000-0167, October 2005 The Centre of the Active Galaxy NGC 1097 Near-infrared images of the active galaxy A colour-composite image of the cen- NGC 1097 have been obtained by a team of tral 5 500 light-years wide region of astronomers1 using NACO on the VLT. Located the spiral galaxy NGC 1097, obtained with NACO on the VLT. More than at a distance of about 45 million light years in 300 star-forming regions – white spots the southern constellation Fornax, NGC 1097 is in the image – are distributed along a relatively bright, barred spiral galaxy seen a ring of dust and gas in the image. -
115 Abell Galaxy Cluster # 373
WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( 1), Chi-2 ( 2), and complex envelope of faint material, several loops of Chi-3 ( 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out. -
Monster Image of the Fornax Galaxy Cluster 25 October 2017
Monster image of the Fornax Galaxy Cluster 25 October 2017 telescope technology to observe the finer details of NGC 1316's unusual structure through a combination of imaging and modelling. The mergers that formed NGC 1316 led to an influx of gas, which fuels an exotic astrophysical object at its centre: a supermassive black hole with a mass roughly 150 million times that of the Sun. As it accretes mass from its surroundings, this cosmic monster produces immensely powerful jets of high- energy particles , that in turn give rise to the Credit: ESO characteristic lobes of emission seen at radio wavelengths, making NGC 1316 the fourth- brightest radio source in the sky. Countless galaxies vie for attention in this monster NGC 1316 has also been host to four recorded type image of the Fornax Galaxy Cluster, some Ia supernovae, which are vitally important appearing only as pinpricks of light while others astrophysical events for astronomers. Since type Ia dominate the foreground. One of these is the supernovae have a very clearly defined brightness, lenticular galaxy NGC 1316. The turbulent past of they can be used to measure the distance to the this much-studied galaxy has left it with a delicate host galaxy; in this case, 60 million light-years. structure of loops, arcs and rings that astronomers These "standard candles" are much sought-after by have now imaged in greater detail than ever before astronomers, as they are an excellent tool to with the VLT Survey Telescope. This astonishingly reliably measure the distance to remote objects. In deep image also reveals a myriad of dim objects fact, they played a key role in the groundbreaking along with faint intracluster light. -
Eric Joseph Murphy
Eric Joseph Murphy First-Author 100. Murphy, Eric J. 2013, Astrophysical Journal, 777, 58 Refereed “The Role of Merger Stage on Galaxy Radio Spectra in Local Infrared-Bright Starburst Galaxies” Publications 99. Murphy, E.J., et al. 2013, Astrophysical Journal, 768, 2 “Radio and Mid-Infrared Properties of Compact Starbursts: Distancing Themselves from the Main Sequence” 98. Murphy, E.J., et al. 2012, Astrophysical Journal, 761, 97 “The Star Formation in Radio Survey: GBT 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-Forming Regions” 97. Murphy, E.J., Porter, T.A., Moskalenko, I.V., Helou, G., and Strong, A.W., 2012, Astrophysical Journal, 750, 126 “Characterizing Cosmic-Ray Propagation in Massive Star-Forming Regions: The Case of 30Doradus and the Large Magellanic Cloud” 96. Murphy, E.J., et al. 2011, Astrophysical Journal, 737, 67 “Calibrating Extinction-Free Star Formation Rate Diagnostics with 33 GHz Free-Free Emission in NGC 6946” 95. Murphy, E.J., Chary, R-.R., Dickinson, M., Pope, A., Frayer, D.T., and Lin, L. 2011, Astrophysical Journal, 732, 126 “An Accounting of the Dust-Obscured Star Formation and Accretion Histories Over the Last ∼11 Billion Years” 94. Murphy, E.J., et al. 2010, Astrophysical Journal Letters, 709, L108 “The Detection of Anomalous Dust Emission in the Nearby Galaxy NGC 6946” 93. Murphy, Eric J. 2009, Astrophysical Journal, 706, 482 “The Far-Infrared–Radio Correlation at High Redshifts: Physical Considerations and Prospects for the Square Kilometer Array” 92. Murphy, E.J., Chary, R.-R., Alexander, D. M., Dickinson, M., Magnelli, B., Morrison, G., Pope, A., and Teplitz, H. -
The Distance to NGC 1316 \(Fornax
A&A 552, A106 (2013) Astronomy DOI: 10.1051/0004-6361/201220756 & c ESO 2013 Astrophysics The distance to NGC 1316 (Fornax A): yet another curious case,, M. Cantiello1,A.Grado2, J. P. Blakeslee3, G. Raimondo1,G.DiRico1,L.Limatola2, E. Brocato1,4, M. Della Valle2,6, and R. Gilmozzi5 1 INAF, Osservatorio Astronomico di Teramo, via M. Maggini snc, 64100 Teramo, Italy e-mail: [email protected] 2 INAF, Osservatorio Astronomico di Capodimonte, salita Moiariello, 80131 Napoli, Italy 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria BC V82 3H3, Canada 4 INAF, Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, 00040 Roma, Italy 5 European Southern Observatory, Karl–Schwarzschild–Str. 2, 85748 Garching bei München, Germany 6 International Centre for Relativistic Astrophysics, Piazzale della Repubblica 2, 65122 Pescara, Italy Received 16 November 2012 / Accepted 14 February 2013 ABSTRACT Aims. The distance of NGC 1316, the brightest galaxy in the Fornax cluster, provides an interesting test for the cosmological distance scale. First, because Fornax is the second largest cluster of galaxies within 25 Mpc after Virgo and, in contrast to Virgo, has a small line-of-sight depth; and second, because NGC 1316 is the single galaxy with the largest number of detected Type Ia supernovae (SNe Ia), giving the opportunity to test the consistency of SNe Ia distances both internally and against other distance indicators. Methods. We measure surface brightness fluctuations (SBF) in NGC 1316 from ground- and space-based imaging data. The sample provides a homogeneous set of measurements over a wide wavelength interval. -
Caldwell Catalogue - Wikipedia, the Free Encyclopedia
Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers. -
Nuclear Activity in Circumnuclear Ring Galaxies
International Journal of Astronomy and Astrophysics, 2016, 6, 219-235 Published Online September 2016 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2016.63018 Nuclear Activity in Circumnuclear Ring Galaxies María P. Agüero1, Rubén J. Díaz2,3, Horacio Dottori4 1Observatorio Astronómico de Córdoba, UNCand CONICET, Córdoba, Argentina 2ICATE, CONICET, San Juan, Argentina 3Gemini Observatory, La Serena, Chile 4Instituto de Física, UFRGS, Porto Alegre, Brazil Received 23 May 2016; accepted 26 July 2016; published 29 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs), compiled from published data. From the properties of this sample a typical circumnuclear ring can be characterized as having a median radius of 0.7 kpc (mean 0.8 kpc, rms 0.4 kpc), located at a spiral Sa/Sb galaxy (75% of the hosts), with a bar (44% weak, 37% strong bars). The sample includes 73 emission line rings, 12 dust rings and 9 stellar rings. The sample was compared with a carefully matched control sample of galaxies with very similar global properties but without detected circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: 1) bright companion galaxies seem -
The Caldwell Catalogue+Photos
The Caldwell Catalogue was compiled in 1995 by Sir Patrick Moore. He has said he started it for fun because he had some spare time after finishing writing up his latest observations of Mars. He looked at some nebulae, including the ones Charles Messier had not listed in his catalogue. Messier was only interested in listing those objects which he thought could be confused for the comets, he also only listed objects viewable from where he observed from in the Northern hemisphere. Moore's catalogue extends into the Southern hemisphere. Having completed it in a few hours, he sent it off to the Sky & Telescope magazine thinking it would amuse them. They published it in December 1995. Since then, the list has grown in popularity and use throughout the amateur astronomy community. Obviously Moore couldn't use 'M' as a prefix for the objects, so seeing as his surname is actually Caldwell-Moore he used C, and thus also known as the Caldwell catalogue. http://www.12dstring.me.uk/caldwelllistform.php Caldwell NGC Type Distance Apparent Picture Number Number Magnitude C1 NGC 188 Open Cluster 4.8 kly +8.1 C2 NGC 40 Planetary Nebula 3.5 kly +11.4 C3 NGC 4236 Galaxy 7000 kly +9.7 C4 NGC 7023 Open Cluster 1.4 kly +7.0 C5 NGC 0 Galaxy 13000 kly +9.2 C6 NGC 6543 Planetary Nebula 3 kly +8.1 C7 NGC 2403 Galaxy 14000 kly +8.4 C8 NGC 559 Open Cluster 3.7 kly +9.5 C9 NGC 0 Nebula 2.8 kly +0.0 C10 NGC 663 Open Cluster 7.2 kly +7.1 C11 NGC 7635 Nebula 7.1 kly +11.0 C12 NGC 6946 Galaxy 18000 kly +8.9 C13 NGC 457 Open Cluster 9 kly +6.4 C14 NGC 869 Open Cluster -
Arxiv:1703.07989V1 [Astro-Ph.GA] 23 Mar 2017 Accretion of Small Satellites
Draft version March 24, 2017 Typeset using LATEX twocolumn style in AASTeX61 THE FORNAX DEEP SURVEY WITH VST. II. FORNAX A: A TWO-PHASE ASSEMBLY CAUGHT ON ACT E. Iodice,1 M. Spavone,2 M. Capaccioli,3 R. F. Peletier,4 T. Richtler,5 M. Hilker,6 S. Mieske,7 L. Limatola, A. Grado, N.R. Napolitano,8 M. Cantiello,9 R. D'Abrusco,10 M. Paolillo,11 A. Venhola,12 T. Lisker,13 G. Van de Ven,14 J. Falcon-Barroso,15 and P. Schipani16 1INAF-Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 2Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 3University of Naples \Federico II", C.U. Monte SantAngelo, Via Cinthia, 80126, Naples, Italy 4Kapteyn Astronomical Institute, University of Groningen, PO Box 72, 9700 AV Groningen, The Netherlands 5Universidad de Concepci´on,Concepci´on,Chile 6European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen, Germany 7European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 8INAF - Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 9INAF-Astronomical Observatory of Teramo, Via Maggini, 64100, Teramo, Italy 10Smithsonian Astrophysical Observatory/Chandra X-ray centre, 02138 Cambridge (MA), US 11Univ. of Naples \Federico II", C.U. Monte SantAngelo, Via Cinthia, 80126, Naples, Italy 12Division of Astronomy, Department of Physics, University of Oulu, Oulu, Finland 13Zentrum fuer Astronomie der Universitaet Heidelberg, Germany 14Max Planck Institute for Astronomy, Heidelberg, Germany 15Instituto de Astrof´ısica de Canarias, C/ Via L´actea s/n, 38200 La Laguna, Canary Islands, Spain 16Astron. Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy ABSTRACT As part of the Fornax Deep Survey with the ESO VLT Survey Telescope, we present new g and r bands mosaics of the SW group of the Fornax cluster. -
Astronomy Astrophysics
A&A 415, 123–143 (2004) Astronomy DOI: 10.1051/0004-6361:20031448 & c ESO 2004 Astrophysics VLT spectroscopy of globular cluster systems? I. The photometric and spectroscopic data set??;??? T. H. Puzia1, M. Kissler-Patig2, D. Thomas3, C. Maraston3,R.P.Saglia1, R. Bender1,3, T. Richtler4, P. Goudfrooij5,andM.Hempel2 1 Sternwarte der Ludwig-Maximilians-Universit¨at, Scheinerstr. 1, 81679 M¨unchen, Germany e-mail: [email protected] 2 European Southern Observatory, 85749 Garching bei M¨unchen, Germany e-mail: [email protected] 3 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching bei M¨unchen, Germany e-mail: bender, maraston, [email protected] 4 Grupo de Astronom´ıa, Departamento de F´ısica, Casilla 160-C, Universidad de Concepci´on, Concepci´on, Chile e-mail: [email protected] 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] Received 14 May 2003 / Accepted 11 September 2003 Abstract. We present Lick line-index measurements of extragalactic globular clusters in seven early-type galaxies (NGC 1380, 2434, 3115, 3379, 3585, 5846, and 7192) with different morphological types (E–S0) located in field and group/cluster environ- ments. High-quality spectra were taken with the FORS2 instrument at ESO’s Very Large Telescope. 50% of our data allows an age resolution ∆t/t 0.3 and a metallicity resolution 0.25 0.4 dex, depending on the absolute metallicity.∼ Globular cluster candidates are selected≈ from deep B, V, R, I, K FORS2/ISAAC∼ − photometry with 80 100% success rate inside one effective ra- − dius. -
On Core-Collapse Sne and Hii Regions 17
On core-collapse SNe and H ii regions 17 APPENDIX A: DESCRIPTION OF INDIVIDUAL CCSNE regions lie 12′′ (400 pc) to the NNE and 17′′ (550 pc) to the NNW, ENVIRONMENTS with luminosities of 7×1037 erg s−1 and 1.4 × 1038 erg s−1, respec- tively. A brief description of the immediate environment of each ccSNe From inspection of HST/WFPC2 F547M and F656N imag- in its host galaxy is presented, together with ground-based net Hα ing (GO 8591, PI Richstone) neither a star cluster nor nebular and continuum images on a (projected) scale of 1×1 kpc (2×2 kpc emission are identified at the SN position. Isolated, moderately ex- or 4×4 kpc in some cases). tended sources are responsible for the nearby Hα emission, while the brighter regions to the NNE and NNW are multiple. A1 SN 1923A in M 83 ′ SN 1923A (II-P) was discovered in May 1923, 2.1 (0.33 R25) NE from the centre of M 83 (NGC 5236, Pennington et al. 1982). The A4 SN 1968L in M 83 low inclination of M 83 implies negligible projection effects, so this corresponds to 3.0 kpc for the adoped 4.9 Mpc distance to M This type II-P supernova was discovered in July 1968, and occurred 83 (1′′ closely approximates to 25 pc). As illustrated in Fig. A1, within the nuclear starburst of M 83 (van Dyk et al. 1996). As for the SN position is immediately to the south of a bright, extended, SN 1923A, the low inclination of M 83 implies negligible projec- ′′ star-forming region in our VLT/FORS2 imaging from June 2002, # tion effects, such that 1 approximates to 25 pc at 4.9 Mpc.