Carbon Monoxide Poisoning

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Monoxide Poisoning CARBON MONOXIDE POISONING DANA BARTLETT, BSN, MSN, MA, CSPI Dana Bartlett is a professional nurse and author. His clinical experience includes 16 years of ICU and ER experience and over 20 years of as a poison control center information specialist. Dana has published numerous CE and journal articles, written NCLEX material, written textbook chapters, and done editing and reviewing for publishers such as Elsevire, Lippincott, and Thieme. He has written widely on the subject of toxicology and was recently named a contributing editor, toxicology section, for Critical Care Nurse journal. He is currently employed at the Connecticut Poison Control Center and is actively involved in lecturing and mentoring nurses, emergency medical residents and pharmacy students. ABSTRACT Known as the silent killer, carbon monoxide poisoning in individuals can present in various ways and the medical literature continues to contain areas of uncertainty and controversy. Symptoms of carbon monoxide poisoning tend to be non-specific in mild and severe cases. Delayed neuropsychiatric effects can occur, which are considered a serious complication. Diagnosis of carbon monoxide poisoning is based upon the patient history and physical examination as well as an elevated carboxyhemoglobin level. The etiology, clinical presentation and treatment are discussed, including those for children and special cases such as pregnancy. nursece4less.com nursece4less.com nursece4less.com nursece4less.com 1 Policy Statement This activity has been planned and implemented in accordance with the policies of NurseCe4Less.com and the continuing nursing education requirements of the American Nurses Credentialing Center's Commission on Accreditation for registered nurses. It is the policy of NurseCe4Less.com to ensure objectivity, transparency, and best practice in clinical education for all continuing nursing education (CNE) activities. Continuing Education Credit Designation This educational activity is credited for 2 hours. Nurses may only claim credit commensurate with the credit awarded for completion of this course activity. Statement of Learning Need Carbon monoxide poisoning is a common and potentially fatal event with nonspecific clinical findings. Clinicians knowledgeable in the identification and treatment of carbon monoxide poisoning can help to initiate neuroprotective interventions and improve patient outcomes. Course Purpose This course will help clinicians identify carbon monoxide (CO) exposures and the standard treatments for CO poisoning. nursece4less.com nursece4less.com nursece4less.com nursece4less.com 2 Target Audience Advanced Practice Registered Nurses and Registered Nurses (Interdisciplinary Health Team Members, including Vocational Nurses and Medical Assistants may obtain a Certificate of Completion) Course Author & Planning Team Conflict of Interest Disclosures Dana Bartlett, RN, MA, MSN, CSPI, William S. Cook, PhD, Douglas Lawrence, MA, Susan DePasquale, MSN, FPMHNP-BC – all have no disclosures Acknowledgement of Commercial Support There is no commercial support for this course. Please take time to complete a self-assessment of knowledge, on page 4, sample questions before reading the article. Opportunity to complete a self-assessment of knowledge learned will be provided at the end of the course. nursece4less.com nursece4less.com nursece4less.com nursece4less.com 3 1. Carbon monoxide is produced by: a. incomplete combustion of carbon-containing fuel b. combustion of nitrogen-containing materials c. vapors emitted from carbon-containing fuel d. combustion of in organic acids 2. Carbon monoxide can also be produced by: a. toluene b. methylene chloride c. cyanide d. cadmium 3. One of the basic ways by which CO causes harm is: a. decreased production of hemoglobin b. production of abnormal hemoglobin c. tissue hypoxia d. pulmonary and coronary vasoconstriction 4. One of the basic ways by which CO causes harm is: a. damage to pulmonary capillaries b. production of methemoglobin c. hemolysis d. direct cellular toxicity 5. Two organs particularly vulnerable to CO poisoning are: a. the brain and the heart b. the kidneys and the pancreas c. the thyroid gland and the small bowel d. the lungs and the liver nursece4less.com nursece4less.com nursece4less.com nursece4less.com 4 Introduction Carbon monoxide (CO) is sometimes called the silent killer, and aptly so. It is a gas that is produced by incomplete combustion of carbon- containing material, it is colorless, odorless, and tasteless, and CO can be lethal. Despite large-scale public education and prevention programs, CO exposure is still a serious public health problem. The pathophysiology, clinical effects, and the best methods for treating CO poisoning have been intensively studied, but there are still areas of uncertainty and controversy. Epidemiology As mentioned in the introduction, despite increased public awareness of the dangers of CO and widespread public education and prevention measures, CO poisoning is still very common. Many sources consider CO poisoning to be among the leading causes of poisoning deaths in the United States, and CO poisoning is perhaps the number one worldwide cause of death by poisoning.1,2,3 Carbon monoxide is produced by the incomplete combustion of carbon-containing material. Automobile exhaust and home heating and/or cooking systems that use oil, gas, coal, or wood are the most common causes of CO poisoning, excluding exposures to fires. Carbon monoxide is also produced when tobacco is burned. Exposures to carbon monoxide and cases of CO poisoning can happen at any time of the year but are more common during the winter months. If temperatures are particularly cold and/or there is a power outage, people may attempt to heat their homes in ways that are nursece4less.com nursece4less.com nursece4less.com nursece4less.com 5 unsafe. In 2011, in Connecticut, a heavy snowstorm caused a widespread power outage and ambient temperatures at the time were quite cold. Emergency rooms in the state were inundated with cases of carbon monoxide poisoning as people were using gasoline generators and charcoal burning grills inside their homes to try and stay warm.4 Two other sources of carbon monoxide are methylene chloride and methylene iodide. Methylene chloride is a chemical that is often used as a component of commercially available paint strippers. Inhaled methylene chloride vapors or methylene chloride that is ingested or dermally absorbed is converted in vivo to CO. Because it is stored in fat tissues and the metabolizing enzymes are quickly saturated, peak CO levels produced by methylene chloride inhalation, ingestion, or dermal absorption are seen 8 hours or longer after an exposure.5 Methylene iodide is used by jewelers to examine gems and, like methylene chloride, it is converted in vivo to CO.6 Carbon monoxide poisoning caused by either of these is very uncommon. Carbon Monoxide: Pathophysiology The traditional and commonly understood mechanism of CO poisoning is that CO preferentially binds to hemoglobin, displacing oxygen from hemoglobin binding sites and causing cellular and tissue hypoxia. The binding of CO to hemoglobin and the reduced oxygen delivery to tissues and organs is certainly one of the primary ways that CO acts a poison. But research has shown that CO poisoning is much more complex and there are multiple, dynamic processes by which CO causes harm. 7-13 Some of these are known to affect humans and some have only been found in animal models. nursece4less.com nursece4less.com nursece4less.com nursece4less.com 6 Hemoglobin Binding Carbon monoxide binds avidly to hemoglobin: it has an affinity for hemoglobin that is 200-250 times greater than that of oxygen. When CO displaces oxygen from hemoglobin and CO occupies the binding sites for oxygen on hemoglobin, this results in CO and hemoglobin combining to form carboxyhemoglobin (COHb). Carboxyhemoglobin does not bind with oxygen, so most of the hemoglobin is rendered functionally useless. Oxygen Transfer and the Oxyhemoglobin Dissociation Curve The oxyhemoglobin dissociation indicates how saturated hemoglobin is at any particular level of oxygen tension of the blood. It also indicates how tightly hemoglobin holds on to oxygen and how easily it releases oxygen for transfer to the tissues. Carbon monoxide shifts the oxyhemoglobin dissociation curve to the left so for any particular level of oxygen saturation less oxygen will be transferred to the tissues. This happens for two reasons. First, CO greatly increases the attachment of oxygen to hemoglobin. Second, because there is very little oxygen bound to hemoglobin, the difference between the oxygen level in tissues and the oxygen level of hemoglobin is greatly decreased. This difference is usually a strong driving force for the transfer of oxygen from hemoglobin to the tissues, but it is significantly diminished by the presence of CO. In CO poisoning the oxyhemoglobin dissociation curve shifts to the left and less oxygen reaches the tissues. nursece4less.com nursece4less.com nursece4less.com nursece4less.com 7 Binding to Myoglobin Myoglobin is an oxygen-transporting and storage pigment that is found inside cells. Carbon monoxide binds to myoglobin - particularly in the myocardium - thus preventing oxygen utilization. Interference with Oxidative Phosphorylation Carbon monoxide binds with mitochondrial cytochrome oxidase, an important enzyme that is needed for proper functioning of the electron transport chain in cellular respiration that produces the bulk of the adenosine
Recommended publications
  • Breathing & Buoyancy Control: Stop, Breathe, Think, And
    Breathing & Buoyancy control: Stop, Breathe, Think, and then Act For an introduction to this five part series see: House of Cards 'As a child I was fascinated by the way marine creatures just held their position in the water and the one creature that captivated my curiosity and inspired my direction more than any is the Nautilus. Hanging motionless in any depth of water and the inspiration for the design of the submarine with multiple air chambers within its shell to hold perfect buoyancy it is truly a grand master of the art of buoyancy. Buoyancy really is the ultimate Foundation skill in the repertoire of a diver, whether they are a beginner or an explorer. It is the base on which all other skills are laid. With good buoyancy a problem does not become an emergency it remains a problem to be solved calmly under control. The secret to mastery of buoyancy is control of breathing, which also gives many additional advantages to the skill set of a safe diver. Calming one's breathing can dissipate stress, give a sense of well being and control. Once the breathing is calmed, the heart rate will calm too and any situation can be thought through, processed and solved. Always ‘Stop, Breathe, Think and then Act.' Breath control is used in martial arts as a control of the flow of energy, in prenatal training and in child birth. At a simpler more every day level, just pausing to take several slow deep breaths can resolve physical or psychological stress in many scenarios found in daily life.
    [Show full text]
  • Heat Stroke Heat Exhaustion
    Environmental Injuries Co lin G. Ka ide, MD , FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center The Most Dangerous Drug Combination… Accidental Testosterone Hypothermia and Alcohol! The most likely victims… Photo: Ralf Roletschek 1 Definition of Blizzard Hypothermia of Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F 1979 (35°C) Most Important Temperatures Thermoregulation 95°F (35° C) Hyper/Goofy The body uses a Poikilothermic shell to maintain a Homeothermic core 90°F (32°C) Shivering Stops Maintains core T° w/in 1.8°F(1°C) 80°F (26. 5°C) Vfib, Coma Hypothalamus Skin 65°F (18°C) Asystole Constant T° 96.896.8-- 100.4° F 2 Thermoregulation The 2 most important factors Only 3 Causes! Shivering (10x increase) Decreased Heat Production Initiated by low skin temperature Increased Heat Loss Warming the skin can abolish Impaired Thermoregulation shivering! Peripheral vasoconstriction Sequesters heat Predisposing Predisposing Factors Factors Decreased Production Increased Loss –Endocrine problems Radiation Evaporation • Thyroid Conduction* • Adrenal Axis Convection** –Malnutrition *Depends on conducting material **Depends on wind velocity –Neuromuscular disease 3 Predisposing Systemic Responses CNS Factors T°< 90°F (34°C) Impaired Regulation Hyperactivity, excitability, recklessness CNS injury T°< 80°F (27°C) Hypothalamic injuries Loss of voluntary
    [Show full text]
  • Analysis of Accidents and Sickness of Divers and Scuba Divers at the Training Centre for Divesr and Scuba Divers of the Polish Army
    POLISH HYPERBARIC RESEARCH 2(71)2020 Journal of Polish Hyperbaric Medicine and Technology Society ANALYSIS OF ACCIDENTS AND SICKNESS OF DIVERS AND SCUBA DIVERS AT THE TRAINING CENTRE FOR DIVESR AND SCUBA DIVERS OF THE POLISH ARMY Władysław Wolański Polish Army Diver and Diver Training Centre, Naval Psychological Laboratory, Gdynia, Poland ARTICLE INFO PolHypRes 2020 Vol. 71 Issue 2 pp. 75 – 78 ISSN: 1734-7009 eISSN: 2084-0535 DOI: 10.2478/phr-2020-0013 Pages: 14, figures: 0, tables: 0 page www of the periodical: www.phr.net.pl Publisher Polish Hyperbaric Medicine and Technology Society 2020 Vol. 71 Issue 2 INTRODUCTION The first group of diseases occurs as a result of mechanical action directly on the body of the diver. Among The prerequisite for the prevention of diving- them are: ear and paranasal sinus barotrauma, pulmonary related sicknesses and accidents is strict compliance with barotrauma, crushing. both technical and medical regulations during diving In the second group we most often encounter the training and work [3,4]. consequences of the toxic effects of gaseous components of A very important issue is good knowledge of the air on the human body. This group includes decompression work of a diver and the anticipation of possible dangers by sickness, oxygen poisoning, nitrogen poisoning, CO2 the personnel participating in the dive [1]. The Military poisoning, carbon monoxide (CO) poisoning. Maritime Medical Committee (WKML) determines When analysing the causes of diving sicknesses whether or not an individual is healthy enough to dive, and accidents at the Diver and Scuba Diver Training Centre granting those who meet the required standards a medical of the Polish Army, certain groups of additional factors certificate that is valid for one year [1,2].
    [Show full text]
  • Traveler Information
    Traveler Information QUICK LINKS Marine Hazards—TRAVELER INFORMATION • Introduction • Risk • Hazards of the Beach • Animals that Bite or Wound • Animals that Envenomate • Animals that are Poisonous to Eat • General Prevention Strategies Traveler Information MARINE HAZARDS INTRODUCTION Coastal waters around the world can be dangerous. Swimming, diving, snorkeling, wading, fishing, and beachcombing can pose hazards for the unwary marine visitor. The seas contain animals and plants that can bite, wound, or deliver venom or toxin with fangs, barbs, spines, or stinging cells. Injuries from stony coral and sea urchins and stings from jellyfish, fire coral, and sea anemones are common. Drowning can be caused by tides, strong currents, or rip tides; shark attacks; envenomation (e.g., box jellyfish, cone snails, blue-ringed octopus); or overconsumption of alcohol. Eating some types of potentially toxic fish and seafood may increase risk for seafood poisoning. RISK Risk depends on the type and location of activity, as well as the time of year, winds, currents, water temperature, and the prevalence of dangerous marine animals nearby. In general, tropical seas (especially the western Pacific Ocean) are more dangerous than temperate seas for the risk of injury and envenomation, which are common among seaside vacationers, snorkelers, swimmers, and scuba divers. Jellyfish stings are most common in warm oceans during the warmer months. The reef and the sandy sea bottom conceal many creatures with poisonous spines. The highly dangerous blue-ringed octopus and cone shells are found in rocky pools along the shore. Sea anemones and sea urchins are widely dispersed. Sea snakes are highly venomous but rarely bite.
    [Show full text]
  • Dysbarism - Barotrauma
    DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA.
    [Show full text]
  • Asphyxia Neonatorum
    CLINICAL REVIEW Asphyxia Neonatorum Raul C. Banagale, MD, and Steven M. Donn, MD Ann Arbor, Michigan Various biochemical and structural changes affecting the newborn’s well­ being develop as a result of perinatal asphyxia. Central nervous system ab­ normalities are frequent complications with high mortality and morbidity. Cardiac compromise may lead to dysrhythmias and cardiogenic shock. Coagulopathy in the form of disseminated intravascular coagulation or mas­ sive pulmonary hemorrhage are potentially lethal complications. Necrotizing enterocolitis, acute renal failure, and endocrine problems affecting fluid elec­ trolyte balance are likely to occur. Even the adrenal glands and pancreas are vulnerable to perinatal oxygen deprivation. The best form of management appears to be anticipation, early identification, and prevention of potential obstetrical-neonatal problems. Every effort should be made to carry out ef­ fective resuscitation measures on the depressed infant at the time of delivery. erinatal asphyxia produces a wide diversity of in­ molecules brought into the alveoli inadequately com­ Pjury in the newborn. Severe birth asphyxia, evi­ pensate for the uptake by the blood, causing decreases denced by Apgar scores of three or less at one minute, in alveolar oxygen pressure (P02), arterial P02 (Pa02) develops not only in the preterm but also in the term and arterial oxygen saturation. Correspondingly, arte­ and post-term infant. The knowledge encompassing rial carbon dioxide pressure (PaC02) rises because the the causes, detection, diagnosis, and management of insufficient ventilation cannot expel the volume of the clinical entities resulting from perinatal oxygen carbon dioxide that is added to the alveoli by the pul­ deprivation has been further enriched by investigators monary capillary blood.
    [Show full text]
  • Den170044 Summary
    DE NOVO CLASSIFICATION REQUEST FOR CLEARMATE REGULATORY INFORMATION FDA identifies this generic type of device as: Isocapnic ventilation device. An isocapnic ventilation device is a prescription device used to administer a blend of carbon dioxide and oxygen gases to a patient to induce hyperventilation. This device may be labeled for use with breathing circuits made of reservoir bags (21 CFR 868.5320), oxygen cannulas (21 CFR 868.5340), masks (21 CFR 868.5550), valves (21 CFR 868.5870), resuscitation bags (21 CFR 868.5915), and/or tubing (21 CFR 868.5925). NEW REGULATION NUMBER: 21 CFR 868.5480 CLASSIFICATION: Class II PRODUCT CODE: QFB BACKGROUND DEVICE NAME: ClearMateTM SUBMISSION NUMBER: DEN170044 DATE OF DE NOVO: August 23, 2017 CONTACT: Thornhill Research, Inc. 5369 W. Wallace Ave Scottsdale, AZ 85254 INDICATIONS FOR USE ClearMateTM is intended to be used by emergency department medical professionals as an adjunctive treatment for patients suffering from carbon monoxide poisoning. The use of ClearMateTM enables accelerated elimination of carbon monoxide from the body by allowing isocapnic hyperventilation through simulated partial rebreathing. LIMITATIONS Intended Patient Population is adults aged greater than 16 years old and a minimum of 40 kg (80.8 lbs) ClearMateTM is intended to be used by emergency department medical professionals. This device should always be used as adjunctive therapy; not intended to replace existing protocol for treating carbon monoxide poisoning. When providing treatment to a non-spontaneously breathing patient using the ClearMate™ non-spontaneous breathing patient circuit, CO2 monitoring equipment for the measurement of expiratory carbon dioxide concentration must be used. PLEASE REFER TO THE LABELING FOR A MORE COMPLETE LIST OF WARNINGS AND CAUTIONS.
    [Show full text]
  • Pulmonary Barotrauma During Hypoxia in a Diver While Underwater
    POLISH HYPERBARIC RESEARCH 2(71)2020 Journal of Polish Hyperbaric Medicine and Technology Society PULMONARY BAROTRAUMA DURING HYPOXIA IN A DIVER WHILE UNDERWATER Brunon Kierznikowicz, Władysław Wolański, Romuald Olszański Institute of Maritime and Tropical Medicine of the Military Medical Academy, Gdynia, Poland ABSTRACT The article describes a diver performing a dive at small depths in a dry suit, breathing from a single-stage apparatus placed on his back. As a result of training deficiencies, the diver began breathing from inside the suit, which led to hypoxia and subsequent uncontrolled ascent. Upon returning to the surface, the diver developed neurological symptoms based on which a diagnosis of pulmonary barotrauma was made. The diver was successfully treated with therapeutic recompression-decompression. Keywords: diving, accident, hypoxia, pulmonary barotrauma. ARTICLE INFO PolHypRes 2020 Vol. 71 Issue 2 pp. 45 – 50 ISSN: 1734-7009 eISSN: 2084-0535 Casuistic (case description) article DOI: 10.2478/phr-2020-0009 Pages: 6, figures: 0, tables: 1 Originally published in the Naval Health Service Yearbook 1977-1978 page www of the periodical: www.phr.net.pl Acceptance for print in PHR: 27.10.2019 r. Publisher Polish Hyperbaric Medicine and Technology Society 2020 Vol. 71 Issue 2 INTRODUCTION that he suddenly experienced an "impact" from an increased amount of air flowing into his lungs during In recent years, we can observe a continuous inhalation. Fearing a lung injury, he immediately pulled the dynamic development of diving technology. At the same mouthpiece out of his mouth and started breathing air time, the spectrum of works carried out by scuba divers for from inside the suit for about 2 minutes.
    [Show full text]
  • BTS Guideline for Oxygen Use in Adults in Healthcare and Emergency
    BTS guideline BTS guideline for oxygen use in adults in healthcare Thorax: first published as 10.1136/thoraxjnl-2016-209729 on 15 May 2017. Downloaded from and emergency settings BRO’Driscoll,1,2 L S Howard,3 J Earis,4 V Mak,5 on behalf of the British Thoracic Society Emergency Oxygen Guideline Group ▸ Additional material is EXECUTIVE SUMMARY OF THE GUIDELINE appropriate oxygen therapy can be started in the published online only. To view Philosophy of the guideline event of unexpected clinical deterioration with please visit the journal online ▸ (http://dx.doi.org/10.1136/ Oxygen is a treatment for hypoxaemia, not hypoxaemia and also to ensure that the oxim- thoraxjnl-2016-209729). breathlessness. Oxygen has not been proven to etry section of the early warning score (EWS) 1 have any consistent effect on the sensation of can be scored appropriately. Respiratory Medicine, Salford ▸ Royal Foundation NHS Trust, breathlessness in non-hypoxaemic patients. The target saturation should be written (or Salford, UK ▸ The essence of this guideline can be summarised ringed) on the drug chart or entered in an elec- 2Manchester Academic Health simply as a requirement for oxygen to be prescribed tronic prescribing system (guidance on figure 1 Sciences Centre (MAHSC), according to a target saturation range and for those (chart 1)). Manchester, UK 3Hammersmith Hospital, who administer oxygen therapy to monitor the Imperial College Healthcare patient and keep within the target saturation range. 3 Oxygen administration NHS Trust, London, UK ▸ The guideline recommends aiming to achieve ▸ Oxygen should be administered by staff who are 4 University of Liverpool, normal or near-normal oxygen saturation for all trained in oxygen administration.
    [Show full text]
  • Failure of Hypothermia As Treatment for Asphyxiated Newborn Rabbits R
    Arch Dis Child: first published as 10.1136/adc.51.7.512 on 1 July 1976. Downloaded from Archives of Disease in Childhood, 1976, 51, 512. Failure of hypothermia as treatment for asphyxiated newborn rabbits R. K. OATES and DAVID HARVEY From the Institute of Obstetrics and Gynaecology, Queen Charlotte's Maternity Hospital, London Oates, R. K., and Harvey, D. (1976). Archives of Disease in Childhood, 51, 512. Failure of hypothermia as treatment for asphyxiated newborn rabbits. Cooling is known to prolong survival in newborn animals when used before the onset of asphyxia. It has therefore been advocated as a treatment for birth asphyxia in humans. Since it is not possible to cool a human baby before the onset of birth asphyxia, experiments were designed to test the effect of cooling after asphyxia had already started. Newborn rabbits were asphyxiated in 100% nitrogen and were cooled either quickly (drop of 1 °C in 45 s) or slowly (drop of 1°C in 2 min) at varying intervals after asphyxia had started. When compared with controls, there was an increase in survival only when fast cooling was used early in asphyxia. This fast rate of cooling is impossible to obtain in a human baby weighing from 30 to 60 times more than a newborn rabbit. Further litters ofrabbits were asphyxiated in utero. After delivery they were placed in environmental temperatures of either 37 °C, 20 °C, or 0 °C and observed for spon- taneous recovery. The animals who were cooled survived less often than those kept at 37 'C. The results of these experiments suggest that hypothermia has little to offer in the treatment of birth asphyxia in humans.
    [Show full text]
  • The Post-Mortem Appearances in Cases of Asphyxia Caused By
    a U?UST 1902.1 ASPHYXIA CAUSED BY DROWNING 297 Table I. Shows the occurrence of fluid and mud in the 55 fresh bodies. ?ritfinal Jlrttclcs. Fluid. Mud. Air-passage ... .... 20 2 ? ? and stomach ... ig 6 ? ? stomach and intestine ... 7 1 ? ? and intestine X ??? Stomach ... ??? THE POST-MORTEM APPEARANCES IN Intestine ... ... 1 Stomach and intestine ... ... i CASES OF ASPHYXIA CAUSED BY DROWNING. Total 46 9 = 55 By J. B. GIBBONS, From the above table it will be seen that fluid was in the alone in 20 LIEUT.-COL., I.M.S., present air-passage cases, in the air-passage and stomach in sixteen, Lute Police-Surgeon, Calcutta, Civil Surgeon, Ilowrah. in the air-passage, stomach and intestine in seven, in the air-passage and intestine in one. As used in this table the term includes frothy and non- frothy fluid. Frothy fluid is only to be expected In the period from June 1893 to November when the has been quickly recovered from months which I body 1900, excluding three during the water in which drowning took place and cases on leave, 15/ of was privilege asphyxia examined without delay. In some of my cases were examined me in the due to drowning by it was present in a most typical form; there was For the of this Calcutta Morgue. purpose a bunch of fine lathery froth about the nostrils, all cases of death inhibition paper I exclude by and the respiratory tract down to the bronchi due to submersion and all cases of or syncope was filled with it. received after into death from injuries falling The quantity of fluid in the air-passage varies the water.
    [Show full text]
  • Respiratory and Gastrointestinal Involvement in Birth Asphyxia
    Academic Journal of Pediatrics & Neonatology ISSN 2474-7521 Research Article Acad J Ped Neonatol Volume 6 Issue 4 - May 2018 Copyright © All rights are reserved by Dr Rohit Vohra DOI: 10.19080/AJPN.2018.06.555751 Respiratory and Gastrointestinal Involvement in Birth Asphyxia Rohit Vohra1*, Vivek Singh2, Minakshi Bansal3 and Divyank Pathak4 1Senior resident, Sir Ganga Ram Hospital, India 2Junior Resident, Pravara Institute of Medical Sciences, India 3Fellow pediatrichematology, Sir Ganga Ram Hospital, India 4Resident, Pravara Institute of Medical Sciences, India Submission: December 01, 2017; Published: May 14, 2018 *Corresponding author: Dr Rohit Vohra, Senior resident, Sir Ganga Ram Hospital, 22/2A Tilaknagar, New Delhi-110018, India, Tel: 9717995787; Email: Abstract Background: The healthy fetus or newborn is equipped with a range of adaptive, strategies to reduce overall oxygen consumption and protect vital organs such as the heart and brain during asphyxia. Acute injury occurs when the severity of asphyxia exceeds the capacity of the system to maintain cellular metabolism within vulnerable regions. Impairment in oxygen delivery damage all organ system including pulmonary and gastrointestinal tract. The pulmonary effects of asphyxia include increased pulmonary vascular resistance, pulmonary hemorrhage, pulmonary edema secondary to cardiac failure, and possibly failure of surfactant production with secondary hyaline membrane disease (acute respiratory distress syndrome).Gastrointestinal damage might include injury to the bowel wall, which can be mucosal or full thickness and even involve perforation Material and methods: This is a prospective observational hospital based study carried out on 152 asphyxiated neonates admitted in NICU of Rural Medical College of Pravara Institute of Medical Sciences, Loni, Ahmednagar, Maharashtra from September 2013 to August 2015.
    [Show full text]