(Katian, Richmondian) Waynesville Formation Of

Total Page:16

File Type:pdf, Size:1020Kb

(Katian, Richmondian) Waynesville Formation Of Revised Correlations of the Ordovician (Katian, Richmondian) Waynesville Formation of Ohio, Indiana and Kentucky A thesis submitted to the Graduate School of The University of Cincinnati in partial fulfilment of the requirements of the degree of Master of Science in Department of Geology of McMicken College of Arts and Sciences by Christopher D Aucoin B.S. (Geology & Anthropology), State University of New York at the College of Oneonta, Oneonta, NY, 2012 Advisory Committee: Dr. Carlton Brett (Chair) Dr. Benjamin Dattilo (Member) Dr. Dave Meyer (Member) Dr. Arnold Miller (Member) Dr. Brenda Hunda (Member) ABSTRACT The Upper Ordovician Waynesville Formation of the Ohio, Kentucky and Indiana tri-state region is situated during and between two major paleoecological events:, the Richmondian Invasion, and the End Ordovician Extinction. Because of this juxtaposition, understanding the regional stratigraphy of this interval is vital to interpreting these events. Stratigraphic and paleontological work on this interval dates back to the late 1800s, and, as a result, numerous nomenclature schemes (biostratigraphical, lithostratigraphical, and state-line geology) have been developed to characterize the Waynesville Formation. The variety of schemes has inhibited the ability to make detailed bed-by-bed correlations. This study has attempted to rectify this issue by selecting the best nomenclature scheme, and create bed-by-bed correlations that cross state lines. The results of the study herein demonstrate that correlations are indeed possible from the deepest water facies to the shallowest water facies fairly readily. The study has also resulted in the discovery of a Mid-Richmondian Unconformity which has previously gone undocumented. This unconformity, which separates the Waynesville Formation from the overlying Blanchester Formation, at places cuts through the entirety of the Clarksville Member of the Waynesville. If extended further south, this unconformity likely removes the Fort Ancient Member and the underlying Arnheim Formation. The discovery of Mid-Richmondian Unconformity will have important implications for paleoecological studies of this interval. i ACKNOWLEDGEMENTS There a number of individuals I would like to thank for their assistance in making this project a reality. First and foremost, my advisor Dr. Carlton Brett, for introducing me to the stratigraphical side paleontology, something I value very highly now. Dr. Brett has always been available and enthusiastic to discuss my research and my thesis is all the better for it. I also owe a great deal of thanks to Dr. Benjamin Dattilo who has spent countless hours discussing my project, answering questions and reviewing manuscripts. I would also like to thank my other committee members, Dr. Arnold Miller, Dr. David Meyer, and Dr. Brenda Hunda for all their input into this project and this manuscript. I would also be amiss to not thank all my fellow graduate students, TJ Malgieri, James Thomka, Cameron Schwalbach, Allison Young, Gary Motz and Matt Vrazo, who have assisted with fieldwork and discussions of my research. There have also been a countless number of former and current undergraduate students, who have helped with fieldwork, and I cannot name them all, but among them are Alex Reis, and Ariane Castagner. Much of this work would not have been possible without the assistance of Dan Cooper who has granted me access to his various quarries in the Waynesville. This project was also funded in large part by the Dry Dredgers and its generous members. Lastly, I would like to thank my parents for their love and support throughout this entire process. I certainly would not be where I am now if it were not for them. ii iii CONTENTS ABSTRACT …………………………………………………………………………………….. i ACKNOWLEDGEMENT ……………………………………………………………………. iii LIST OF FIGURES ……………………………………………………………………………vii LIST OF TABLES ……………………………………………………………………………. xii LIST OF APPENDICES ……………………………………………………………………. xiii 1. INTRODUCTION: ………………………………………………………………………….. 1 1.1 Review of Stratigraphic Nomenclature ………………………………………………….. 1 2. GEOLOGICAL SETTING: ………………………………………………………………… 5 2.1 Paleogeography …………………………………………………………………………. 5 2.2 Geochronology ………………………………………………………………………….. 5 3. METHODS: ………………………………………………………………………………….. 6 4. RESULTS: …………………………………………………………………………………… 8 4.1 Lower Richmondian Stratigraphic Units in Ohio and Indiana ………………………... 16 4.1.1 Arnheim Formation: Oregonia Member ……………………………………………... 16 4.1.2 Waynesville Formation: Fort Ancient Member ……………………………………… 17 4.1.2.1 South Gate Hill Submember …………………………………………………… 17 4.1.2.2 Lower Fort Ancient Shale Submember ………………………………………… 19 4.1.2.3 Bon Well Hill Submember ……………………………………………………... 20 4.1.2.4 Upper Shale Submember: Treptoceras duseri Shale – Trilobite Shale ………... 22 4.1.3 Waynesville Formation: Clarksville Member ………………………………………... 24 4.1.3.1 Lower Clarksville Submember: Cincinnetina Epibole Beds …………………... 27 4.1.3.2 Upper Clarksville Submember: Eochonetes-Leptaena Beds …………………... 30 4.1.3.3 Oldenburg Butter Shale ………………………………………………………… 30 iv 4.1.4 Waynesville Formation: Blanchester Member …………………………………….… 30 4.1.4.1 Mid-Richmondian Unconformity ……………………………………………… 31 4.1.4.2 Lowest Glyptorthis insculpta Submember and Rafinesquina "cornflakes" Submember …………………………………………………………………….. 32 4.1.4.3 Lyrodesma -Isotelus Shale Submember ……………………………………...… 35 4.1.4.4 "Lower Disturbed Zone" ……………………………………………………….. 36 4.1.4.5 Strophomena nutans - Tetrapharella neglecta Submember …………………… 38 4.1.4.6 Upper Disturbed Submember ………………………………………………….. 38 4.1.4.7 Coral-Isotelus Submember …………………………………………………….. 39 4.1.5 Liberty Formation (Redefined) ………………………………………………………. 39 4.1.5.1 Middle and Upper Glyptorthis insculpta Submember …………………………. 39 4.1.5.2 Lower Liberty including "Crinoid Beds" ………………………………………. 42 4.1.5.3 Flexicalymene retrorsa minuens-Isotelus Bed …………………………………… 42 4.1.5.4 Upper Liberty …………………………………………………………………... 43 4.2 Lower Richmondian Interval in Kentucky …………………………………...…………45 4.2.1 Bull Fork Formation …………………………………………………………………. 45 4.2.2 Fort Ancient Equivalent ……………………………………………………………… 46 4.2.3 South Gate Hill Submember …………………………………………………………. 47 4.2.4 Coral Bearing/Cherty Lower Shale …………………………………………………... 48 4.2.5 Fisherville Coral Bed ………………………………………………………………… 49 4.2.6 Cyphotrypa Shale ………………………………………………………….…………. 50 4.2.7 Rowland Member …………………………………………………………………….. 53 v 4.2.8 Marble Hill Beds ……………………………………………………………………... 55 4.2.9 Basal Liberty-Bardstown Coral Bed ………………………………………………… 58 4.3 Correlations ……………………………………………………………………………. 58 5. DISCUSSION: ........................................................................................................................ 62 5.1 Nomenclature …………………………………………………………………………... 62 5.2 Mid-Richmondian Unconformity ……………………………………….……………... 67 5.3 Implications for the Richmondian Invasion ……………………………………………. 68 5.3.1 Patterns of Incursion …………………………………………………………………. 68 5.3.2 Paleoecological Implications of the Blanchester-Marble Hill-Rowland Correlation ... 75 6. CONCLUSIONS: …………………………………………………………………………... 82 7. FUTURE RESEARCH: …………………………………………………………………… 83 REFERENCES: ………………………………………………………………………………. 85 APPENDIX: …………………………………………………………………………………… 93 vi LIST OF FIGURES Fig. 1: is a chart summarizing some, but not all, of the nomenclature used in the Cincinnati Arch region. …………………………………………………………………………………………… 4 Fig 2: Map of the Cincinnati Arch based on Holland (1993) showing key outcrop locations used in this study. 1 = Waynesville, OH; 2 = Maysville, KY; 3 = Flemingsburg, KY; 4 = Owingsville, KY; 5 = Brookville, IN; 6 = Oldenburg, IN; 7 = St Leon, IN; 8 = Madison, IN; 9 = Milton, KY; 10 = Bedford, KY; 11 = New Castle, KY; 12 = Fisherville, KY; 13 = Seatonville, KY; Star = Cincinnati. ………………………………………………………………………………………. 7 Fig. 3: Stratigraphic cross section showing the correlation of the Waynesville and Brookville Formations and their members along the western side of the Cincinnati Arch. Datum is the basal Bon Well Hill Submembers. Correlation extends from the northernmost outcrop on the left (#5 on Figure 2) to the southernmost outcrop on the right (#12 on Figure 2). Vertical scale is in meters. ………………………………………………………………………………………….... 9 Fig. 4: Stratigraphic cross section showing the correlation of the key marker beds in the Oregonia-Liberty interval along the western side of the Cincinnati Arch. Datum is the Bon Well Hill Submember. Correlation extends from the northernmost outcrop on the left (#5 on Figure 2) to the southernmost outcrop on the right (#12 on Figure 2). Vertical scale is in meters. ……… 11 Fig. 5: Stratigraphic cross section showing the correlation of the Waynesville and Brookville Formations and their members along the western side of the Cincinnati Arch. Datum is the Mid- vii Richmondian Unconformity. Correlation extends from the northernmost outcrop on the left (#5 on Figure 2) to the southernmost outcrop on the right (#12 on Figure 2). Vertical scale is in meters. ………………………………………………………………………………………….. 13 Fig. 6: Stratigraphic cross section showing the correlation of the key marker beds in the Oregonia-Liberty interval along the western side of the Cincinnati Arch. Datum is the Mid- Richmondian Unconformity. Correlation extends from the northernmost outcrop on the left (#5 on Figure 2) to the southernmost outcrop on the right (#12 on Figure 2). Vertical scale is in meters. ………………………………………………………………………………………….. 15 Fig. 7: Photographs of the South Gate Hill Bed that marks the base of the Waynesville
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Detrital Zircon Geochronology of Palaeozoic Siliciclastic Rocks from the Ellsworth Mountains, West Antarctica
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Detrital zircon geochronology of Palaeozoic siliciclastic rocks from the Ellsworth Mountains, West Antarctica Paula Castillo* and C. Mark Fanning Research School of Earth Sciences, The Australian National University, Canberra, Australia. Rodrigo Fernández University of Texas Institute for Geophysics, The University of Texas at Austin, Austin, Texas, USA. Fernando Poblete Geosciences Rennes, Université de Rennes 1, Rennes, France. Departamento de Geología, Universidad de Chile, Santiago, Chile. *Contact email: [email protected] Abstract. In the Ellsworth Mountains there is an extensive record of sedimentation from early Cambrian to Permian times. However, the tectonic history and the palaeogeographic significance remain enigmatic. Nine sandstone samples were analysed for their U-Pb detrital zircon age spectra using SHRIMPII and RG. They belong to the early Cambrian to Carboniferous-Permian sequences and record typical Gondwana margin signatures. Variations up section/sequence in zircon provenance suggest restricted basinal deposition during the Cambrian,! with likely sources in the Namaqua-Natal and Mozambique/Maud Belts. There are little or no contributions from older cratons and so the Ellsworth basin evolved as a separate basin to that in the Transantarctic Mountains.! This basin configuration changed after the Devonian and deposition continued Figure 1. Reconstruction of part of Gondwana at ca. 500 Ma. during the late Palaeozoic, when the Ellsworth Mountains South America: SFC - Sao Francisco craton; PPC - basin only received detritus from the Ross/Pan-African Paranapanema craton; RPC - Río de la Plata craton.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Distribution of the Middle Ordovician Copenhagen Formation and Its Trilobites in Nevada
    Distribution of the Middle Ordovician Copenhagen Formation and its Trilobites in Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 749 Distribution of the Middle Ordovician Copenhagen Formation and its Trilobites in Nevada By REUBEN JAMES ROSS, JR., and FREDERICK C. SHAW GEOLOGICAL SURVEY PROFESSIONAL PAPER 749 Descriptions of Middle Ordovician trilobites belonging to 21 genera contribute to correlations between similar strata in Nevada) California) and 0 klahoma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. lVIOR TON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 78-190301 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2109 CONTENTS Page Page Abstract ______________________________ -------------------------------------------------- 1 Descriptions of trilobites __________________________________________________ _ 14 Introduction ________________________________________________________________________ _ 1 Genus T1·iarth1·us Green, 1832 .... ------------------------------ 14 Previous investigations _____________________________________________ _ 1 Genus Carrickia Tripp, 1965 ____________________________________ _ 14 Acknowledgments-------------------------------------------------------· 1 Genus Hypodicranotus Whittington, 1952 _____________ _ 15 Geographic occurrences of the Copenhagen Genus Robergia Wiman, 1905·----------------------------------
    [Show full text]
  • IGS 2015B-Maquoketa Group
    ,QGLDQD*HRORJLFDO6XUYH\ $ERXW8V_,*66WDII_6LWH0DS_6LJQ,Q ,*6:HEVLWHIGS Website Search ,1',$1$ *(2/2*,&$/6859(< +20( *HQHUDO*HRORJ\ (QHUJ\ 0LQHUDO5HVRXUFHV :DWHUDQG(QYLURQPHQW *HRORJLFDO+D]DUGV 0DSVDQG'DWD (GXFDWLRQDO5HVRXUFHV 5HVHDUFK ,QGLDQD*HRORJLF1DPHV,QIRUPDWLRQ6\VWHP'HWDLOV 9LHZ&DUW 7ZHHW *1,6 0$482.(7$*5283 $ERXWWKH,*1,6 $JH 6HDUFKIRUD7HUP 2UGRYLFLDQ 6WUDWLJUDSKLF&KDUW 7\SHGHVLJQDWLRQ 7\SHORFDOLW\7KH0DTXRNHWD6KDOHZDVQDPHGE\:KLWH S IRUH[SRVXUHVRIEOXHDQGEURZQVKDOH 025(,*65(6285&(6 WKDWDJJUHJDWHIW P LQWKLFNQHVVDORQJWKH/LWWOH0DTXRNHWD5LYHULQ'XEXTXH&RXQW\,RZD *UD\DQG6KDYHU 5HODWHG%RRNVWRUH,WHPV +LVWRU\RIXVDJH 6LQFHLWVILUVWXVHWKHWHUPKDVVSUHDGJUDGXDOO\HDVWZDUGLQWKHSURFHVVEHFRPLQJDJURXSWKDWHPEUDFHVVHYHUDO IRUPDWLRQV *UD\DQG6KDYHU ,WLVQRZXVHGWKURXJKRXW,OOLQRLV :LOOPDQDQG%XVFKEDFKS ZDV H[WHQGHGLQWRQRUWKZHVWHUQ,QGLDQDE\*XWVWDGW DQGZDVDGRSWHGIRUXVHLQDJURXSVHQVHWKURXJKRXW,QGLDQD 5(/$7('6,7(6 E\*UD\ *UD\DQG6KDYHU 86*6*(2/(; 'HVFULSWLRQ 1RUWK$PHULFDQ6WUDWLJUDSKLF $VGHVFULEHGE\*UD\ WKH0DTXRNHWD*URXSLQ,QGLDQDLVDZHVWZDUGWKLQQLQJZHGJHIW P WKLFNLQ &RGH VRXWKHDVWHUQ,QGLDQDDQGIW P WKLFNLQQRUWKZHVWHUQ,QGLDQD *UD\DQG6KDYHU ,WFRQVLVWVSULQFLSDOO\RI $$3*&2681$&KDUW VKDOH DERXWSHUFHQW OLPHVWRQHFRQWHQWLVPLQLPDOWKURXJKRXWPRVWRI,QGLDQDEXWLQFUHDVHVSURPLQHQWO\LQWKH VRXWKHDVWVRWKDWSDUWVRIWKHJURXSDUHLQSODFHVGRPLQDQWO\OLPHVWRQH *UD\DQG6KDYHU 7KHORZHUSDUWRIWKH JURXSLVHYHU\ZKHUHDOPRVWHQWLUHO\VKDOHDQGWKHORZHUSDUWRIWKHVKDOHLVGDUNEURZQWRQHDUO\EODFN *UD\DQG 6KDYHU $VDFRQVHTXHQFHRIWKLVSDWWHUQRIURFNGLVWULEXWLRQWZRVFKHPHVRIQRPHQFODWXUHDUHXVHGLQVXEGLYLVLRQRIWKH 0DTXRNHWD*URXSLQ,QGLDQD
    [Show full text]
  • Bryozoan Skeletal Index (BSI): a Measure of the Degree of Calcification in Stenolaemate Bryozoans
    BRYOZOAN STUDIES 2019 Bryozoan Skeletal Index (BSI): a measure of the degree of calcification in stenolaemate bryozoans Patrick N. Wyse Jackson1*, Marcus M. Key, Jr.2 and Catherine M. Reid3 1 Department of Geology, Trinity College, Dublin 2, Ireland [*corresponding author: e-mail: [email protected]] 2 Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013-2896, USA [e-mail: [email protected]] 3 School of Earth and Environment, University of Canterbury, Private Bag 4800, Christchurch, New Zealand [e-mail: [email protected]] ABSTRACT minimal. In this study the differences observed in The Upper Ordovician of the Cincinnati Arch region BSI between trepostome and cystoporate species in of the United States has yielded a highly diverse the Cincinnatian is significant, and ramose colonies bryozoan fauna, and which provides an excellent show a higher BSI than encrusting zoaria in the data source for use in this study that proposes same fauna. a novel measure of the degree of skeletal material in Palaeozoic stenolaemate bryozoans. This study is based on 16 trepostome species and one cystoporate INTRODUCTION species described from the Dillsboro Formation Bryozoans of the Class Stenolaemata are characterised (Maysvillian to early Richmondian, Cincinnatian) of by having autozooecial chambers that are broadly Indiana and in 20 species (15 trepostomes and five tubular in nature. They were significant members of cystoporates) from the Lexington Limestone and the Palaeozoic faunas appearing in the Ordovician Clays Ferry
    [Show full text]