SHORT NOTES the Extinct Anuran
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biostratigraphy and Paleoecology of Continental Tertiary Vertebrate Faunas in the Lower Rhine Embayment (NW-Germany)
Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2): 177-183 (2002) Biostratigraphy and paleoecology of continental Tertiary vertebrate faunas in the Lower Rhine Embayment (NW-Germany) Th. Mors Naturhistoriska Riksmuseet/Swedish Museum of Natural History, Department of Palaeozoology, P.O. Box 50007, SE-104 05 Stockholm, Sweden; e-mail: [email protected] Manuscript received: October 2000; accepted: January 2002 ^ Abstract This paper discusses the faunal content, the mammal biostratigraphy, and the environmental ecology of three important con tinental Tertiary vertebrate faunas from the Lower Rhine Embayment. The sites investigated are Rott (MP 30, Late Oligocene), Hambach 6C (MN 5, Middle Miocene), Frechen and Hambach 11 (both MN 16, Late Pliocene). Comparative analysis of the entire faunas shows the assemblages to exhibit many conformities in their general composition, presumably re sulting from their preference for wet lowlands. It appears that very similar environmental conditions for vertebrates reoc- curred during at least 20 Ma although the sites are located in a tectonically active region with high subsidence rates. Differ ences in the faunal composition are partly due to local differences in the depositional environment of the sites: lake deposits at the margin of the embayment (Rott), coal swamp and estuarine conditions in the centre of the embayment (Hambach 6C), and flood plain environments with small rivulets (Frechen and Hambach 1 l).The composition of the faunal assemblages (di versity and taxonomy) also documents faunal turnovers with extinctions and immigrations (Oligocene/Miocene and post- Middle Miocene), as a result of changing climate conditions. Additional vertebrate faunal data were retrieved from two new assemblages collected from younger strata at the Hambach mine (Hambach 11C and 14). -
G Refs Atlas2020.Pdf
REFERENCES REFERENCES G. REFERENCES Fastnet Basin, offshore southwest Ireland. Journal of Micropalaeontology, 5, 19-29. AINSWORTH, N. R. & RILEY, L. A. 2010. Triassic to Middle Jurassic stratigraphy of the Kerr McGee 97/12-1 exploration ABBOTTS, I. 1991. United Kingdom oil and gas fields, 25 years commemorative volume. Memoir of the Geological Society well, offshore southern England. Marine & Petroleum Geology, 27, 853-894. of London, No.14. AINSWORTH, N. R., HORTON, N. F. & PENNEY, R. A. 1985. Lower Cretaceous micropalaeontology of the Fastnet ACTLABS. 2018. Report on 10 Ar-Ar analyses carried out as part of project IS16/04. IS16_04_ActLabs_raddatingrpt_Ar- Basin, offshore southwest Ireland. Marine & Petroleum Geology, 2, 341-349. Ar.xlsx. [Copy included within the Digital Addenda of this Atlas] AINSWORTH, N. R., BAILEY, H. W., GUEINN, K. J., RILEY, L. A., CARTER, J. & GILLIS, E. 2014. Revised AGNINI, C., FORNACIARI, E., RAFFI, I., CATANZARITI, R., PÄLIKE, H., BACKMAN, J. & RIO, D. 2014. stratigraphic framework of the Labrador Margin through integrated biostratigraphic and seismic interpretation, Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Offshore Newfoundland and Labrador. Abstracts of the 4th Atlantic Conjugate Margins Conference. Go Deep: Back Stratigraphy, 47/2, 131–181. to the Source, 89-90. AINSWORTH, N. R. 1985. Upper Jurassic and Lower Cretaceous Ostracoda from the Fastnet Basin, offshore southwest AINSWORTH, N. R., BRAHAM, W., GREGORY, F. J., JOHNSON, B & KING, C. 1998a. A proposed latest Triassic to Ireland. Irish Journal of Earth Sciences. 7, 15-33. earliest Cretaceous microfossil biozonation for the English Channel and its adjacent areas. -
Baez NHM 1997.Pdf (3.622Mb)
HERP QL 668 B33 l':iif;,O0i.U'.Z06l("'^ ocxentxpc Papers Natural History Museum The University of Kansas 29 October 1997 Number 4:1^1 Redescription of the Paleogene Shelania pascuali from Patagonia and Its Bearing on the Relationships of Fossil and Recent Pipoid Frogs >. By o O Ana Maria BAez^ and Linda Trueb- o ^Departamento de Geologia, FacuUad de Ciencias Exactas, Universidad de 0) w >. > t- Buenos Aires, Pabellon II, Ciudad Universitaria, 1428 Buenos Aires, Argentina CO !-> >^ ^ £ -^ '^Division of Herpetology, Natural Histoiy Museum, and Department of P Kansas 66045-2454, J3 o, Systematics and Ecology, The University of Kansas, Lawrence, USA a o t3 o CO ^ t. CONTENTS ° CO I ABSTRACT 2 « RESUMEN 2 5S INTRODUCTION 2 Previous Paleontological Work 4 Acknowledgments 4 MATERIALS AND METHODS 5 General Methodology 5 Cladistic Methodology 5 Specimens Examined 6 STRATIGRAPHIC PROVENANCE AND AGE OF MATERIAL 6 REDESCRIPTION OF SHELANIA 8 ANALYSIS OF CHARACTERS 16 RESULTS 31 DISCUSSION 35 Taxonomic Considerations 35 Characters 36 LITERATURE CITED 37 APPENDIX 40 © Natural History Museum, The University of Kansas ISSN No. 1094-0782 — 2 Scientific Papers, Natural History Museum, The University of Kansas 1960, is redescribed on the basis of a series of 30 recently I ABSTIMCT Shdania pascuali Casamiquela, .'-\ ' . discovered specimens, which range in estimated snout-vent length from 30-100 mm, from the Paleo- y ' gene of Patagonia. This large pipoid anuran is distinguished by possessing a long, narrow braincase; an hourglass-shaped frontoparietal; a robust antorbital process on the edentate maxilla; long, straight {/) '/^ I ilia that describe a V-shape in dorsal profile; and a trunk that is long relative to the lengths of the head and limbs. -
A Review of Neusibatrachus Wilferti, an Early Cretaceous Frog from the Montsec Range, Northeastern Spain
A review of Neusibatrachus wilferti, an Early Cretaceous frog from the Montsec Range, northeastern Spain ANA M. BÁEZ and BORJA SANCHIZ Báez, A.M. and Sanchiz, B. 2007. A review of Neusibatrachus wilferti, an Early Cretaceous frog from the Montsec Range, northeastern Spain. Acta Palaeontologica Polonica 52 (3): 477–487. Neusibatrachus wilferti is an anuran from the late Berriasian–early Valanginian fossiliferous lacustrine limestones that are exposed in the eastern part of the Montsec Range, province of Lleida, Spain. It was originally described by Seiffert in 1972 and its phylogenetic position has since been discussed. Neusibatrachus has been considered an undeterminable fos− sil, an abnormal individual, or a primitive palaeobatrachid. Here we redescribe the only available specimen, and clarify features, such as absence of palatines, nine presacrals, and procoelous vertebral centra, that have been the subject of previ− ous debates. We consider the specimen to be a postmetamorphic individual and make developmental interpretations of some of its characters. In particular, we provide evidence of a living anuran (Rana iberica) that resembles Neusibatrachus in the development of intervertebral articulations. Neusibatrachus is considered a valid genus, which differs from other anurans, except for the pipoids, in the joint presence of an azygous frontoparietal and a parasphenoid lacking the subotic alae, although it differs from the pipoids in having nine presacral vertebrae. Morphological evidence indicates that Neusi− batrachus is related to Xenoanura, the pipoid branch in the living Amphibia Tree of Life based on molecular data. More− over, it might be a member of the pipoid clade proper, which presently includes the Pipidae, Rhinophrynidae, and several fossil taxa, including the Palaeobatrachidae, although the evidence is not conclusive. -
Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002). -
COURSE OUTLINE and SYLLABUS for M.Sc., ZOOLOGY UNDER CBCS SCHEME SEMESTER-I
COURSE OUTLINE AND SYLLABUS FOR M.Sc., ZOOLOGY UNDER CBCS SCHEME SEMESTER-I Sl. Paper Title of the Paper Instructi Credits Duration Marks No on Hrs of the IA Exam Total per Exam Marks Marks Marks Week (Hrs) 1 CPT-1.1 Animal Systematics 4 4 3 20 80 100 2 Biology of Non- CPT-1.2 4 4 3 20 80 100 Chordates 3 CPT-1.3 Molecular Cell Biology 4 4 3 20 80 100 4 Computer Applications & SPT-1.4A Methods in Biology 4 4 3 20 80 100 SPT-1.4B Aquatic Biology 5 CPP-1.5 Animal Systematics 4 2 4 10 40 50 6 Biology of Non- CPP-1.6 4 2 4 10 40 50 Chordates 7 CPP-1.7 Molecular Cell Biology 4 2 4 10 40 50 8 Computer Applications SPP-1.8A & Methods in Biology 4 2 4 10 40 50 SPP-1.8B Aquatic Biology Total 24 600 SEMESTER-II Sl. Paper Title of the Paper Instructi Credits Duration Marks No on Hrs of the IA Exam Total per Exam Marks Marks Marks Week (Hrs) 1 CPT-2.1 Biology of 4 4 3 20 80 100 Chordates 2 CPT-2.2 Developmental 4 4 3 20 80 100 Biology 3 SPT-2.3A Molecular Genetics SPT-2.3B Wildlife Biology & 4 4 3 20 80 100 Conservation 4 OET-2.4 Human Physiology 4 4 3 20 80 100 5 CPP-2.5 Biology of 4 2 4 10 40 50 Chordates 6 CPP-2.6 Developmental 4 2 4 10 40 50 Biology 7 SPP-2.7A Molecular Genetics 4 2 4 10 40 50 SPP-2.7B Wildlife Biology & Conservation 8 OEP-2.8 Human Physiology 4 2 4 10 40 50 Total 24 600 1 SEMESTER-III Sl. -
ROCEK, Z. and WUTTKE, M. (2010) Amphibia of Enspel (Late
Palaeobio Palaeoenv (2010) 90:321–340 DOI 10.1007/s12549-010-0042-0 ORIGINAL PAPER Amphibia of Enspel (Late Oligocene, Germany) ZbyněkRoček & Michael Wuttke Received: 23 April 2010 /Revised: 9 July 2010 /Accepted: 12 August 2010 /Published online: 29 September 2010 # Senckenberg Gesellschaft für Naturforschung and Springer 2010 Abstract Amphibia from the Late Oligocene (MP 28) One specimen is a large premetamorphic tadpole (no locality Enspel, Germany are represented by two caudates: rudimentary limbs) with a total body length of 147 mm. a hyperossified salamandrid Chelotriton paradoxus and an Anatomically, it can be equally assigned to Pelobates or to indeterminate salamandrid different from Chelotriton in Eopelobates; the second possibility was excluded only on proportions of vertebral column. Anurans are represented the basis of absence of adult Eopelobates in this locality. by two forms of the genus Palaeobatrachus, one of which is nearly as large as P. gigas (now synonymized with P. Keywords Enspel . Oligocene . Salamandridae . grandipes). Pelobates cf. decheni, represented in this Chelotriton . Anura . Palaeobatrachus . Pelobates . Rana locality by three nearly complete adult skeletons and a large number of tadpoles, is the earliest record for the Abbreviation genus. Compared with later representatives of the genus, it DP FNSP Department of Palaeontology Faculty of does not yet possess specializations for burrowing. Ranidae Natural Sciences, Prague are represented by two rather fragmentary and incomplete skeletons referred to as Rana sp. A comparatively large series of tadpoles was assigned to the Pelobatidae on the basis of tripartite frontoparietal complex. Most of them are Introduction premetamorphic larvae, and a few older ones are post- metamorphic, but they do not exceed Gossner stage 42. -
Late Eocene and Early Oligocene) of the Hampshire Basin
Cainozoic Research, 4(1-2), pp. 27-39, February 2006 The Neritidae of the Solent Group (Late Eocene and Early Oligocene) of the Hampshire Basin M.F. Symonds The Cottage in the Park, Ashtead Park, Ashtead, Surrey KT21 1LE, United Kingdom Received 1 June 2003; revised version accepted 7 March 2005 Gastropods of the family Neritidae in the Solent Group of the Hampshire Basin, southern England are reviewed and two previously unde- scribed taxa are described. New genus: Pseudodostia. New species: Clithon (Pictoneritina) cranmorensis and Clithon (Vittoclithon) headonensis. Neotypes designated for Neritina planulata Edwards, 1866 and Neritina tristis Forbes, 1856. Amended diagnosis: subgenus Vittoclithon. New combinations: Pseudodostia aperta (J. de C. Sowerby, 1823), Clithon (Pictoneritina) concavus (J. de C. Sowerby, 1823), Clithon (Pictoneritina) planulatus (Edwards, 1866) and Clithon (Pictoneritina) bristowi Wenz, 1929. KEY WORDS: Mollusca, Gastropoda, Neritidae, Palaeogene, Hampshire Basin. Introduction Systematic Palaeontology Family Neritidae Rafinesque, 1815 Although the number of species of Neritidae in the Solent Genus Pseudodostia gen. nov. Group is rather limited, specimens are common at certain horizons and they have received the attention of numerous Type species — Nerita aperta J. de C. Sowerby, 1825. Eo- authors in the past. In particular Curry (1960, 265-270) cene, Headon Hill Formation. dealt in detail with the taxonomy of Theodoxus concavus (J. de C. Sowerby, 1823), Theodoxus planulatus (Edwards, Derivatio nominis — The name reflects the close resem- 1866) and Theodoxus bristowi Wenz, 1929. The purpose of blance between the shell of the type species of this genus this paper is to update Curry’s work and to cover additional and that of Nerita crepidularia Lamarck, 1822, the type species. -
Tayside, Central and Fife Tayside, Central and Fife
Detail of the Lower Devonian jawless, armoured fish Cephalaspis from Balruddery Den. © Perth Museum & Art Gallery, Perth & Kinross Council Review of Fossil Collections in Scotland Tayside, Central and Fife Tayside, Central and Fife Stirling Smith Art Gallery and Museum Perth Museum and Art Gallery (Culture Perth and Kinross) The McManus: Dundee’s Art Gallery and Museum (Leisure and Culture Dundee) Broughty Castle (Leisure and Culture Dundee) D’Arcy Thompson Zoology Museum and University Herbarium (University of Dundee Museum Collections) Montrose Museum (Angus Alive) Museums of the University of St Andrews Fife Collections Centre (Fife Cultural Trust) St Andrews Museum (Fife Cultural Trust) Kirkcaldy Galleries (Fife Cultural Trust) Falkirk Collections Centre (Falkirk Community Trust) 1 Stirling Smith Art Gallery and Museum Collection type: Independent Accreditation: 2016 Dumbarton Road, Stirling, FK8 2KR Contact: [email protected] Location of collections The Smith Art Gallery and Museum, formerly known as the Smith Institute, was established at the bequest of artist Thomas Stuart Smith (1815-1869) on land supplied by the Burgh of Stirling. The Institute opened in 1874. Fossils are housed onsite in one of several storerooms. Size of collections 700 fossils. Onsite records The CMS has recently been updated to Adlib (Axiel Collection); all fossils have a basic entry with additional details on MDA cards. Collection highlights 1. Fossils linked to Robert Kidston (1852-1924). 2. Silurian graptolite fossils linked to Professor Henry Alleyne Nicholson (1844-1899). 3. Dura Den fossils linked to Reverend John Anderson (1796-1864). Published information Traquair, R.H. (1900). XXXII.—Report on Fossil Fishes collected by the Geological Survey of Scotland in the Silurian Rocks of the South of Scotland. -
Larval Development in Oligocene Palaeobatrachid Frogs
Larval development in Oligocene palaeobatrachid frogs ZBYNĚK ROČEK Roček, Z. 2003. Larval development in Oligocene palaeobatrachid frogs. Acta Palaeontologica Polonica 48 (4): 595–607. A detailed account of the development of skeletal and some soft−tissue structures is based on 171 fossil tadpoles and meta− morphosing froglets of Palaeobatrachus sp. from the Late Oligocene of the Czech Republic (locality Bechlejovice). Their exceptionally good preservation resulted from fossilization in diatomites. The fossil developmental series was com− pared with normal development of the contemporary anuran Xenopus laevis (Pipidae) represented by cleared and stained (alizarin/toluidin−blue) whole−mount specimens. The comparison revealed that in spite of differences in the sequence of ossification and its timing (e.g., ossification of the otic capsules and ribs was retarded in Xenopus whereas dermal ossifi− cation was retarded in Palaeobatrachus), in the number of free ribs, and in composition of the sacral region (the synsacrum in Palaeobatrachus involves two posterior presacrals, whereas there is a single sacral in Xenopus), both gen− era were similar in great number of anatomical features that appear during development. The most important difference is the shape of vertebral centrum (procoelous in Palaeobatrachus, opisthocoelous in all Pipidae) which is formed in com− paratively early developmental stages. A view that could result from anatomical comparisons is that Palaeobatrachus could be derived from the Pipidae, but this is doubtful due to biostratigraphic and palaeogeographic discrepancies. The earliest palaeobatrachids were recorded from the Late Cretaceous of Europe but pipids could not invade northern conti− nents after the Early Cretaceous when the Tethys Sea prevented interchanges of anuran faunas. -
Frontoparietal Bone in Extinct Palaeobatrachidae (Anura): Its Variation and Taxonomic Value
THE ANATOMICAL RECORD 298:1848–1863 (2015) Frontoparietal Bone in Extinct Palaeobatrachidae (Anura): Its Variation and Taxonomic Value ZBYNEK ROCEK, 1* RENAUD BOISTEL,2 NICOLAS LENOIR,3 ARNAUD MAZURIER,4 STEPHANIE E. PIERCE,5 JEAN-CLAUDE RAGE,6 SERGEI V. SMIRNOV,7 ACHIM H. SCHWERMANN,8 XAVIER VALENTIN,2 9 10 11 MARTON VENCZEL, MICHAEL WUTTKE, AND TOMA S ZIKMUND 1Department of Palaeobiology, Geological Institute, Academy of Sciences of the Czech Republic, Prague, Czech Republic 2Institut International de Paleoprimatologie et de Paleontologie Humaine, UMR 7262 CNRS, Universite de Poitiers, Poitiers, France 3Multiscale Group, Laboratoire Navier, UMR8205-CNRS/ENPC/IFSTTAR/Universite Paris-Est, Champs-sur-Marne, France 4Institut de Chimie des Milieux et Materiaux de Poitiers, UMR 7285 Universitede Poitiers, UFR SFA, Poitiers, France 5Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 6Sorbonne Universites—CR2P—MNHN, CNRS, UPMC-Paris 6, Museum National d’Histoire Naturelle, Paris, France 7Laboratory of Evolutionary Morphology, a.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia 8Steinmann-Institut fur€ Geologie, Mineralogie und Palaontologie,€ Universitat€ Bonn, Bonn, Germany 9 T; arii Cris¸urilor Museum, Oradea, Romania 10Department of Archaeology, General Department of Cultural Heritage Rhineland Palatinate, Section Geological History of the Earth, Mainz, Germany 11X-Ray Micro CT and Nano CT Research Group, CEITEC—Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic ABSTRACT Palaeobatrachidae are extinct frogs from Europe closely related to the Gondwanan Pipidae, which includes Xenopus. Their frontoparietal is a distinctive skeletal element which has served as a basis for establishing the genus Albionbatrachus. -
Distribution of Landslides and Geotechnical Properties Within the Hampshire Basin
Distribution of landslides and geotechnical properties within the Hampshire Basin Kwanjai Yuangdetkla, Andy Gibson & Malcolm Whitworth University of Portsmouth, Portsmouth, UK Claire Foster, David Entwisle & Catherine Pennington British Geological Survey, Nottingham UK ABSTRACT This paper outlines the sedimentary sequences and geotechnical properties of the Hampshire Basin, a basin of filled with 700 m of Palaeogene clays, silts, sands and limestones in southern England. The paper presents results so far of a study to synthesize relevant geological and geotechnical data and relate these to the nature of the landslides in this basin. The study has found that stratigraphic sequences and geotechnical properties vary considerably across the basin owing to basin morphology and depositional environments which are correspond to complex paleogeography and tectonic movements during the Tertiary. Over-consolidated clays with low residual shear strengths are extensive on moderately steep slopes and prone to landsliding, especially on over-steepened coastal sections. Landslides vary from mudflows through mudslides, rotational landslides and minor falls. Landslide characteristics are strongly influenced by lithology but gradient appears to be the controlling factor in many cases. The presences of weak strata (clays, lignite, laminated layers), the pre-existing shear surface, the lithological interface (sand overlying clay) play important roles to locally control the position of the shear surface and the type of movements. At a basin scale, inland landslides are associated with the development of drainage system during and since the Tertiary. 1 INTRODUCTION structures trend east-west or northeast-southwest (Melville and Freshney, 1982). Locally, the complex 2 The Hampshire Basin underlies 3 400km of the mainland reactivation of basement faulting has produced many of Southern England and the northern half of the nearby local structures forming gentle hills and valleys such as Isle of Wight (Figure 1).