Casein Kinase 2 Controls the Survival of Normal Thymic and Leukemic Γδ T Cells Via Promotion of AKT Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Casein Kinase 2 Controls the Survival of Normal Thymic and Leukemic Γδ T Cells Via Promotion of AKT Signaling OPEN Leukemia (2017) 31, 1603–1610 www.nature.com/leu ORIGINAL ARTICLE Casein kinase 2 controls the survival of normal thymic and leukemic γδ T cells via promotion of AKT signaling ST Ribeiro1, M Tesio2,3, JC Ribot1,3, E Macintyre2, JT Barata1 and B Silva-Santos1 The thymus is the major site for normal and leukemic T-cell development. The dissection of the molecular determinants of T-cell survival and differentiation is paramount for the manipulation of healthy or transformed T cells in cancer (immuno)therapy. Casein kinase 2 (CK2) is a serine/threonine protein kinase whose anti-apoptotic functions have been described in various hematological and solid tumors. Here we disclose an unanticipated role of CK2 in healthy human thymocytes that is selective to the γδ T-cell lineage. γδ thymocytes display higher (and T-cell receptor inducible) CK2 activity than their αβ counterparts, and are strikingly sensitive to death upon CK2 inhibition. Mechanistically, we show that CK2 regulates the pro-survival AKT signaling pathway in γδ thymocytes and, importantly, also in γδ T-cell acute lymphoblastic leukemia (T-ALL) cells. When compared with healthy thymocytes or leukemic αβ T cells, γδ T-ALL cells show upregulated CK2 activity, potentiated by CD27 costimulation, and enhanced apoptosis upon CK2 blockade using the chemical inhibitor CX-4945. Critically, this results in inhibition of tumor growth in a xenograft model of human γδ T-ALL. These data identify CK2 as a novel survival determinant of both healthy and leukemic γδ T cells, and may thus greatly impact their therapeutic manipulation. Leukemia (2017) 31, 1603–1610; doi:10.1038/leu.2016.363 INTRODUCTION very poorly studied and lack defined molecular targets, we have T cells develop in the thymus. The dissection of the cell-intrinsic here addressed the potential role of casein kinase 2 (CK2), a and -extrinsic signals that regulate thymocyte survival, prolifera- signaling effector molecule previously implicated in chronic tion and differentiation is critical to understand their potential for lymphocytic leukemia,13,14 multiple myeloma,15 B-ALL,16,17 transformation and to devise new therapies for T-cell acute T-ALL18,19 and other hematological disorders (reviewed in Piazza lymphoblastic leukemia (T-ALL). et al.20). T-cell commitment is coupled to somatic T-cell receptor (TCR) CK2 is a ubiquitous and constitutively activated serine/ rearrangements, generating thymocytes bearing either an αβ or a threonine protein kinase that regulates multiple pathways γδ TCR.1 The expression of a pre-TCR composed of TCRβ and including phosphatidylinositol 3-kinase/AKT and WNT signaling, the invariant pTα chain in αβ thymocyte progenitors results nuclear factor-κB transcription and the DNA damage response.20 in a massive proliferative burst (‘β-selection’) that dictates that CK2 displays pro-survival and anti-apoptotic functions that were αβ T cells largely outnumber their γδ counterparts. Likely a described in several cancer cell types. CK2 is frequently over- consequence, although significant progress has been made expressed or hyperactivated in both solid tumors and hematolo- αβ in our understanding of human T-cell development, gical malignancies, thus making it a promising target for cancer γδ the molecular determinants of thymocytes remain poorly treatment.20 In contrast, the physiological function of CK2 in characterized.1 γδ nontransformed cells is less established. Recent studies in mice Most of what we know about thymic T-cell differentiation have demonstrated that CK2 activity is necessary for peripheral comes from studies performed in mice, showing how various T-cell activation and function: interference with CK2 signaling receptors (namely, TCRγδ, CD27 and LTβR) and downstream impaired CD4+ T-cell activation and differentiation into T helper transcription factors (such as Id3, Sox13, TCF1 and Lef1) control 21 αβ type 2 (Th2) or Th17 cells, , whereas the genetic deletion of CK2 various maturation steps, from divergence from the lineage to + + fl in CD4 Foxp3 regulatory T cells abolished their suppressive the acquisition of effector functions such as pro-in ammatory 22 cytokine production.2–7 In contrast, much less is known about activity against allergy-promoting Th2 cells. However, no human thymic γδ T-cell differentiation. Notwithstanding, we functional role has yet been attributed to CK2 in the human recently showed that interleukin (IL-2) or IL-15 differentiate thymus. fi human γδ thymocytes into cytotoxic type 1 effector T cells, In this study we identi ed a novel role for CK2 in controlling the γδ γδ rendering them highly efficacious against leukemic cells in vitro survival of normal thymocytes and T-ALL cells. We analyzed γδ αβ and in vivo.8,9 CK2 activity in versus thymocytes and T-ALL cells, its γδ thymocytes can themselves transform into leukemic cells, regulation by cell-extrinsic signals, the downstream signaling causing a rare (o10% of all cases) form of T-ALL with distinctive mechanisms and the effect of its inhibition in vitro and in vivo in a clinical features.10–12 Given that malignant γδ T cells have been xenograft model of γδ T-ALL. 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal and 2Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, APHP et Université Paris, Paris, France. Correspondence: Professor B Silva-Santos, Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal. E-mail: [email protected] 3These two authors contributed equally to this work. Received 17 September 2015; revised 12 October 2016; accepted 18 November 2016; accepted article preview online 30 November 2016; advance online publication, 16 December 2016 CK2 controls γδ thymocyte and T-ALL cell survival ST Ribeiro et al 1604 MATERIALS AND METHODS blasts was measured on samples that showed comparable percentages of Statement of Ethics human engraftment (defined by fluorescence-activated cell sorting analysis based on the expression of CD45 and CD7 antigens). Thymic specimens (from newborn to 15-year-old children) were obtained during pediatric corrective cardiac surgery after parents’ written informed consent. The study was approved by the Ethics Board of Faculdade de Western blot analysis Medicina da Universidade de Lisboa. Primary T-ALL blasts derived from Cell lysates were used for immunobloting as previously described.14 Briefly, diagnostic samples (peripheral blood or bone marrow), obtained the cells were lysed, at 4 °C, in cold lysis buffer (50 mM Tris (pH 7.6), 150 mM after informed content and amplified upon xenografting into NSG EDTA, 1% Nonidet P-40 in phosphate-buffered saline) enriched with (NOD.Cg-Prkdc(scid)Il2rg(tm1Wjll)/SzJ) mice. protease and phosphatase inhibitor cocktails (Roche, Burgess Hill, UK). The total proteins were quantified using a Bradford assay (Bio-Rad, Hercules, ’ Isolation, cell culture and viral transduction CA, USA), following the manufacturer s instructions. Equal amounts of total protein was denatured in Laemmli buffer (Bio-Rad), boiled for 5 min at Thymic T cells were collected after thymus tissue dispersion and separation 95 °C and loaded in a 10% SDS–polyacrylamide gel electrophoresis. After by Histopaque-1077 (Sigma-Aldrich, St Louis, MO, USA) density gradient γδ 4 electrophoretic separation, the proteins were transferred to nitrocellulose separation. TCR -positive T cells were isolated (to 97% purity) by blotting paper (Amersham Biosciences, Little Chalfont, UK). The mem- magnetic positive selection; TCRαβ-positive T cells were isolated (to 496% γδ branes were blocked with 5% bovine serum albumin and 0.5% Tween-20 purity) by magnetic positive selection from the TCR -negative fraction (Sigma-Aldrich) in phosphate-buffered saline and probed with the (Miltenyi Biotec, Bergisch Gladbach, Germany). Cells were used as fresh or, indicated primary antibodies overnight. After rinse, the membranes were when indicted, cells were cultured at 37 °C with 5% CO2 in complete 23 probed using appropriate horseradish peroxidase-conjugated secondary RPMI-1640 as previously described on indicated conditions. For long- antibodies and developed by chemiluminescence using the ChemiDoc XRS term in vitro cell culture of thymocytes (7 days), recombinant human IL-2 + imaging system (Bio-Rad). was added to the medium. The PEER T-ALL (DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) and MOLT-4T- ALL (ATCC CRL-1582) were cultured in 90% RPMI-1640+10% fetal bovine In vivo mouse experiments serum following the manufacturer’s instructions. When indicated, PEER cell All experimental procedures were performed in strict accordance with the line was transduced using a bicistronic retroviral DNA construct, either recommendations of the European Commission (Directive 2010/63/UE), empty vector (LZRS) expressing only IRES followed by eGFP (LZRS-IRES- French National Committee (87/848) and Portuguese authorities (Decreto- eGFP) or vector co-expressing myrPKB/AKT (constitutively activated AKT) Lei 113/2013) for the care and use of laboratory animals. TCRαβ- or TCRγδ- and eGFP (LZRS-myrPKB/AKT-IRES-eGFP) as previously described.24 To positive T-ALL cells obtained from patient diagnostic were injected into increase the percentage of transduced cells for the following experiments, 8–12-week-old NSG mice (1 × 106 cells/mouse, tail vein injections). Mice GFP+ cells were sorted (≈100% purity) using a FACSAria high-speed cell were monitored weekly by flow cytometry for human leukemic
Recommended publications
  • Targeting Protein Kinase CK2 and CDK4/6 Pathways with a Multi-Kinase Inhibitor ON108110 Suppresses Pro-Survival Signaling and Gr
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 102), pp: 37753-37765 Research Paper Targeting protein kinase CK2 and CDK4/6 pathways with a multi-kinase inhibitor ON108110 suppresses pro-survival signaling and growth in mantle cell lymphoma and T-acute lymphoblastic leukemia Amol Padgaonkar1,3, Olga Rechkoblit2, Rodgrigo Vasquez-Del Carpio1,4, Venkat Pallela5, Venkata Subbaiah DRC1,6, Stephen C. Cosenza1, Stacey J. Baker1, M.V. Ramana Reddy1, Aneel Aggarwal2 and E. Premkumar Reddy1,2 1Department of Oncological Sciences, Icahn School of Medicine, New York 10029, NY, USA 2Department of Pharmacological Sciences, Icahn School of Medicine, New York 10029, NY, USA 3Present Address: Prescient Healthcare Group, Jersey City 07302, NJ, USA 4Present address: Sandoz, a Novartis Company, Miami 33126, FL, USA 5Present address: Pfizer, Collegeville 19426, PA, USA 6Present address: Carnegie Pharmaceuticals, Monmouth Junction 08852, NJ, USA Correspondence to: E. Premkumar Reddy, email: [email protected] Keywords: mantle cell lumphoma; T-cell acute lymphoblastic leukemia; CDK4; CK2 Received: December 06, 2018 Accepted: December 13, 2018 Published: December 28, 2018 Copyright: Padgaonkar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Overexpression and constitutive activation of CYCLIN D1 and Casein Kinase 2 are common features of many hematologic malignancies, including mantle cell lymphoma (MCL) and leukemias such as T-cell acute lymphoblastic leukemia (T-ALL). Although both CK2 and CDK4 inhibitors have shown promising results against these tumor types, none of these agents have achieved objective responses in the clinic as monotherapies.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T (51) International Patent Classification: CA 94121 (US). HUBBARD, Robert; 7684 Marker Road, A61K 31/52 (2006.01) C07D 473/02 (2006.01) San Diego, CA 92087 (US). MIKOLON, David; 6140 A61K 31/505 (2006.01) C07D 473/26 (2006.01) Calle Empinada, San Diego, CA 92120 (US). RAYMON, A61K 31/519 (2006.01) C07D 473/32 (2006.01) Heather; 3520 Vista de la Orilla, San Diego, CA 921 17 (US). SHI, Tao; 4650 Tarantella Lane, San Diego, CA (21) International Application Number: 92130 (US). TRAN, Tam, M.; 8953 Libra Drive, San PCT/US20 17/025252 Diego, CA 92126 (US). TSUJI, Toshiya; 4171 Donald (22) International Filing Date: Court, San Diego, CA 921 17 (US). WONG, Lilly, L.; 871 3 1 March 2017 (3 1.03.2017) Viva Court, Solana Beach, CA 92075 (US). XU, Suichan; 9650 Deer Trail Place, San Diego, CA 92127 (US). ZHU, (25) Filing Language: English Dan; 4432 Calle Mar De Armonia, San Diego, CA 92130 (26) Publication Language: English (US). (30) Priority Data: (74) Agents: BRUNER, Michael, J. et al; Jones Day, 250 Ve- 62/3 17,412 1 April 2016 (01.04.2016) US sey Street, New York, NY 10281-1047 (US). (71) Applicant: SIGNAL PHARMACEUTICALS, LLC (81) Designated States (unless otherwise indicated, for every [US/US]; 10300 Campus Point Drive, Suite 100, San kind of national protection available): AE, AG, AL, AM, Diego, CA 92121 (US).
    [Show full text]
  • Abstract Book
    ISSN 0390-6078 Volume 105 OCTOBER 2020 - S2 XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 ABSTRACT BOOK www.haematologica.org XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 COMITATO SCIENTIFICO Pellegrino Musto, Presidente Antonio Curti, Vice Presidente Mario Luppi, Past President Francesco Albano Niccolò Bolli Antonella Caivano Roberta La Starza Luca Malcovati Luca Maurillo Stefano Sacchi SEGRETERIA SIES Via De' Poeti, 1/7 - 40124 Bologna Tel. 051 6390906 - Fax 051 4210174 e-mail: [email protected] www.siesonline.it SEGRETERIA ORGANIZZATIVA Studio ER Congressi Via De' Poeti, 1/7 - 40124 Bologna Tel. 051 4210559 - Fax 051 4210174 e-mail: [email protected] www.ercongressi.it ABSTRACT BOOK supplement 2 - October 2020 Table of Contents XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 Main Program . 1 Best Abstracts . 20 Oral Communications Session 1. C001-C008 Acute Leukemia 1 . 23 Session 2. C009-C016 Chronic Lymphocytic Leukemia 1 . 28 Session 3. C017-C024 Multiple Myeloma 1 . 32 Session 4. C025-C032 Benign Hematology . 36 Session 5. C033-C040 Multiple Myeloma 2 . 42 Session 6. C041-C048 Acute Leukemia 2 . 45 Session 7. C049-C056 Molecular Hematology . 50 Session 8. C057-C064 Lymphomas. 54 Session 9. C065-C072 Chronic Lymphocytic Leukemia 2 . 57 Session 10. C073-C080 Myelodisplastic Syndromes and Acute Leukemia . 62 Session 11. C081-C088 Myeloproliferative Disorders and Chronic Myeloid Leukemia . 66 Session 12. C089-C096 Stem Cell Transplantation. 71 Posters Session 1. P001 Stem cells and growth factors .
    [Show full text]
  • Targeting Stat3 and Kinases in Lymphoid Malignancies
    "9;MDLQG>AGDG?A;9D9F<!FNAJGFE=FL9D/;A=F;=K 1FAN=JKALQG>$=DKAFCA "AFD9F< %FKLALML=>GJ)GD=;MD9J)=<A;AF="AFD9F<"%)) $=DKAFCA%FKLALML=G>(A>=/;A=F;=$A(%"! 1FAN=JKALQG>$=DKAFCA 9F< G;LGJ9D,JG?J9EE=AFAGE=<A;AF= ,) 1FAN=JKALQG>$=DKAFCA !)% %//!.00%+* 0G:=HJ=K=FL=< OAL@L@=H=JEAKKAGFG>L@="9;MDLQG>AGDG?A;9D9F< !FNAJGFE=FL9D/;A=F;=K 1FAN=JKALQG>$=DKAFCA >GJHM:DA;=P9EAF9LAGFGF 0@MJK<9Q G>)9Q 9LHE 0@==P9EAF9LAGFAKGH=F>GJ9M<A=F;=L@JGM?@J=EGL=9;;=KK $=DKAFCA %/* HJAFL %/* , " %//* HJAFL %//* 4GFDAF= 1FA?J9>A9 $=DKAFCA /MH=JNAKGJ 53*5-67)5#)22)5&)5+ %FKLALML=>GJ)GD=;MD9J)=<A;AF="AFD9F<"%)) $=DKAFCA%FKLALML=G>(A>=/;A=F;=$A(%"! 1FAN=JKALQG>$=DKAFCA $=DKAFCA "AFD9F< AGL=;@.=K=9J;@%FFGN9LAGF=FLJ=.% 9F< *GNG*GJ<AKC"GMF<9LAGF=FL=J>GJ/L=E=DDAGDG?Q 9F/L=E 1FAN=JKALQG>GH=F@9?=F GH=F@9?=F =FE9JC 0@=KAK<NAKGJQGEEALL== 53*-5.3%%//32)2 53*"-2')2<3)58003 "9;MDLQG>)=<A;AF= "9;MDLQG>,@9JE9;Q 1FAN=JKALQG>$=DKAFCA 1FAN=JKALQG>$=DKAFCA $=DKAFCA "AFD9F< $=DKAFCA "AFD9F< 0@=KAK.=NA=O=JK 3')2722-/%)-2%2()5, 3')270//%8277-0%, "9;MDLQG>/;A=F;=9F<!F?AF==JAF? "9;MDLQG>)=<A;AF=9F<$=9DL@ =DDAGDG?Q 0=;@FGDG?Q T:GC9<=EA1FAN=JKALQ 09EH=J=1FAN=JKALQ 0MJCM "AFD9F< 09EH=J= "AFD9F< +HHGF=FL !2-953*51)(")532-/%):0 %FKLALML=G>,@9JE9;GDG?Q9F<0GPA;GDG?Q 1FAN=JKALQG>2=L=JAF9JQ)=<A;AF=G>2A=FF9 2A=FF9 MKLJA9 MKLGK 53*%5-)-2>2)2 "9;MDLQG>AGDG?A;9D!FNAJGFE=FL9D/;A=F;=K 1FAN=JKALQG>$=DKAFCA $=DKAFCA "AFD9F< #20:-)0./: !" " QKJ=?MD9L=< ;=DDMD9J KA?F9DAF?
    [Show full text]
  • Development of Rational Combination Therapy with Parp Inhibitors and Kinase Inhibitors in Tnbc
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2016 DEVELOPMENT OF RATIONAL COMBINATION THERAPY WITH PARP INHIBITORS AND KINASE INHIBITORS IN TNBC Wen-Hsuan Yu Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medical Cell Biology Commons, Medical Molecular Biology Commons, and the Oncology Commons Recommended Citation Yu, Wen-Hsuan, "DEVELOPMENT OF RATIONAL COMBINATION THERAPY WITH PARP INHIBITORS AND KINASE INHIBITORS IN TNBC" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 682. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/682 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. DEVELOPMENT OF RATIONAL COMBINATION THERAPY WITH PARP INHIBITORS AND KINASE INHIBITORS IN TNBC By Wen-Hsuan Yu, B.S. APPROVED: Mien-Chie Hung, PhD Advisory Professor Dihua Yu, M.D., Ph.D. Jennifer Litton, M.D. Paul Chiao, Ph.D. Zhimin Lu, M.D., Ph.D. APPROVED: Dean, The University of Texas Graduate School of Biomedical Science at Houston DEVELOPMENT OF RATIONAL COMBINATION THERAPY WITH PARP INHIBITORS AND KINASE INHIBITORS IN TNBC A DISSERTATION Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas M.D.
    [Show full text]
  • Inflammatory Discovery in COVID-19
    Published OnlineFirst April 12, 2021; DOI: 10.1158/2159-8290.CD-21-0144 REVIEW Repurposing of Anticancer Drugs Expands Possibilities for Antiviral and Anti- Inflammatory Discovery in COVID-19 Mihaela Aldea1, Jean-Marie Michot2, Francois-Xavier Danlos3,4, Antoni Ribas5, and Jean-Charles Soria2,4 ABSTRACT In 2020, the COVID-19 pandemic led to an unprecedented destabilization of the world’s health and economic systems. The rapid spread and life-threatening conse- quences of COVID-19 have imposed testing of repurposed drugs, by investigating interventions already used in other indications, including anticancer drugs. The contours of anticancer drug repurposing have been shaped by similarities between the pathogenesis of COVID-19 and malignancies, including abnormal inflammatory and immunologic responses. In this review, we discuss the salient positive and negative points of repurposing anticancer drugs to advance treatments for COVID-19. Significance: Targeting anti-inflammatory pathways with JAK/STAT inhibitors or anticytokine thera- pies aiming to curb COVID-19–related cytokine storm, using antiangiogenic drugs to reduce vascular abnormalities or immune-checkpoint inhibitors to improve antiviral defenses, could be of value in COVID-19. However, conflicting data on drug efficacy point to the need for better patient selection and biomarker studies. INTRODUCTION coronavirus disease 2019 (COVID-19) pandemic (3). Interna- tional relationships were greatly affected by the virus dissemi- A huge international effort has been made in the last 50 nation and government interventions to limit its spread (4, years to highlight cancer’s mechanisms of proliferation and 5). A huge effort by the scientific and biomedical community dissemination (1). Beyond chemotherapy, new drugs such as has sought to understand the pathophysiology and clinical targeted therapy, immunotherapy, epigenetic modifiers, and manifestations of COVID-19.
    [Show full text]
  • A SARS-Cov-2 Protein Interaction Map Reveals Targets for Drug Repurposing
    Article A SARS-CoV-2 protein interaction map reveals targets for drug repurposing https://doi.org/10.1038/s41586-020-2286-9 A list of authors and affiliations appears at the end of the paper Received: 23 March 2020 Accepted: 22 April 2020 A newly described coronavirus named severe acute respiratory syndrome Published online: 30 April 2020 coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than Check for updates 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efcacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and eforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identifed the human proteins that physically associated with each of the SARS-CoV-2 proteins using afnity-purifcation mass spectrometry, identifying 332 high-confdence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Inhibitors & Agonists Compound Screening Libraries
    www.MedChemExpress.com MedChemExpress Inhibitors & Agonists 25,000+ Specific Inhibitors & Agonists Targeting 20+ Classic Signaling Pathways Compound Screening Libraries 50+ Compound Screening Libraries Optimized for Disease Mechanism Revealing & Drug Repurposing Nature. 2020 Apr;580(7803):386-390. Cell. 2020 Apr 6. pii: S0092-8674(20)30268-3. Cell. 2020 Mar 5;180(5):941-955.e20. Nature. 2020 Mar;579(7799):433-437. Science. 2020 Feb 14;367(6479):806-810. Cell. 2020 Feb 20;180(4):645-654.e13. Nature. 2019 Dec;576(7786):274-280. Cell. 2019 Dec 12;179(7):1483-1498.e22. Cell. 2019 Dec 12;179(7):1566-1581.e16. Nature. 2019 Nov;575(7782):375-379. Nature. 2019 Nov;575(7784):683-687. Nature. 2019 Oct;574(7777):264-267. Cell. 2019 Oct 31;179(4):864-879.e19. Nat Nanotechnol. 2019 Oct;14(10):988-993. Publications Citing Use of MCE Products Citing Use of Publications Nat Biotechnol. 2019 Oct;37(10):1209-1216. Cell. 2019 Aug 22;178(5):1145-1158.e20. Cell. 2019 Aug 22;178(5):1132-1144.e10. Nature. 2019 Jul;571(7763):127-131. Science. 2019 Jul 19;365(6450). Cell. 2019 Jul 25;178(3):585-599.e15. Cell. 2019 Jul 11;178(2):330-345.e22. Inhibitors & Agonists “ 25,000+ selective Inhibitors and Agonists We offer Targeting 375 key proteins in 20+ signaling pathways only the Applications in different disease areas highest- Screening Libraries grade MCE Compound Screening Libraries consist of 10,000+ small molecules with products! validated biological and pharmacological activities Quality Our robust quality control methods assure product high quality and purity.
    [Show full text]
  • 2018 Medicines in Development for Cancer
    2018 Medicines in Development for Cancer Bladder Cancer Product Name Sponsor Indication Development Phase ABI-009 AADi Bioscience non-muscle invasive bladder cancer Phase I/II (nab-rapamycin/mTOR inhibitor) Los Angeles, CA www.aadibio.com ALT-801 Altor BioScience non-muscle invasive bladder cancer Phase I/II (tumor antigen-specific T-cell Miramar, FL www.altorbioscience.com receptor linked to IL-2) NantKwest Culver City, CA ALT-803 Altor BioScience non-muscle invasive bladder cancer Phase II (IL-15 superagonist protein complex) Miramar, FL (BCG naïve) (Fast Track), www.altorbioscience.com NantKwest non-muscle invasive bladder cancer Culver City, CA (BCG unresponsive) (Fast Track) B-701 BioClin Therapeutics 2L locally advanced or metastatic Phase I/II (anti-FGFR3 mAb) San Ramon, CA bladder cancer www.bioclintherapeutics.com Bavencio® EMD Serono 1L urothelial cancer Phase III avelumab Rockland, MA www.emdserono.com (anti-PD-L1 inhibitor) Pfizer www.pfizer.com New York, NY BC-819 BioCanCell Therapeutics non-muscle invasive bladder cancer Phase II (gene therapy) Cambridge, MA (Fast Track) www.biocancell.com Medicines in Development: Cancer ǀ 2018 1 Bladder Cancer Product Name Sponsor Indication Development Phase Capzola® Spectrum Pharmaceuticals non-muscle invasive bladder cancer application submitted apaziquone Henderson, NV (Fast Track) www.sppirx.com Cavatak® Viralytics bladder cancer (+pembrolizumab) Phase I coxsackievirus Sydney, Australia www.viralytics.com CG0070 Cold Genesys non-muscle invasive bladder cancer Phase II (oncolytic immunotherapy)
    [Show full text]
  • The Network Edge Volume 13: Fall, 2016
    The Network Edge Volume 13: Fall, 2016 The Network Edge brings you regular updates on the latest neurofibromatosis (NF) research and clinical advances from recent scientific publications. The Network Edge is organized into “bite sized” sections by specific subtopic, so you can focus on the information that interests you most. The Network Edge features… - The Bottom Line: Each section starts with a summary sentence highlighting the “take home” points. - Federally-Funded Research: All research identified as being either fully or partly funded by the Congressionally Directed Medical Research Neurofibromatosis Research Program (CDMRP NFRP) or the National Institutes of Health (NIH) is tagged CDMRP or NIH after the author name. - A Global NF Picture: To keep you abreast of all NF research advances, The Network Edge includes publications from the United States and around the world. Country of origin of the research study is indicated after the author name. - The Network Edge Archive: At the end of this volume of The Network Edge, there is a table showing topics covered by past volumes. This should help if you wish to search for further information in The Network Edge archive. - FREE Publications: Many scientific publications are now available at no charge. These are tagged in the text as FREE. To download full articles visit www.pubmed.gov and “search” for the publication title, then follow the links to download. Highlights from Volume 13 of The Network Edge: Congressional Update: Twenty-one new NF projects are being funded by the Congressionally Directed Medical Research Program - Neurofibromatosis Research Program (CDMRP-NFRP). NF Clinical Trials: Pegylated interferon slows down the growth of plexiform neurofibromas in young people with NF1; vinblastine may be an effective treatment for optic pathway glioma.
    [Show full text]