Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Book ISSN 0390-6078 Volume 105 OCTOBER 2020 - S2 XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 ABSTRACT BOOK www.haematologica.org XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 COMITATO SCIENTIFICO Pellegrino Musto, Presidente Antonio Curti, Vice Presidente Mario Luppi, Past President Francesco Albano Niccolò Bolli Antonella Caivano Roberta La Starza Luca Malcovati Luca Maurillo Stefano Sacchi SEGRETERIA SIES Via De' Poeti, 1/7 - 40124 Bologna Tel. 051 6390906 - Fax 051 4210174 e-mail: [email protected] www.siesonline.it SEGRETERIA ORGANIZZATIVA Studio ER Congressi Via De' Poeti, 1/7 - 40124 Bologna Tel. 051 4210559 - Fax 051 4210174 e-mail: [email protected] www.ercongressi.it ABSTRACT BOOK supplement 2 - October 2020 Table of Contents XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 Main Program . 1 Best Abstracts . 20 Oral Communications Session 1. C001-C008 Acute Leukemia 1 . 23 Session 2. C009-C016 Chronic Lymphocytic Leukemia 1 . 28 Session 3. C017-C024 Multiple Myeloma 1 . 32 Session 4. C025-C032 Benign Hematology . 36 Session 5. C033-C040 Multiple Myeloma 2 . 42 Session 6. C041-C048 Acute Leukemia 2 . 45 Session 7. C049-C056 Molecular Hematology . 50 Session 8. C057-C064 Lymphomas. 54 Session 9. C065-C072 Chronic Lymphocytic Leukemia 2 . 57 Session 10. C073-C080 Myelodisplastic Syndromes and Acute Leukemia . 62 Session 11. C081-C088 Myeloproliferative Disorders and Chronic Myeloid Leukemia . 66 Session 12. C089-C096 Stem Cell Transplantation. 71 Posters Session 1. P001 Stem cells and growth factors . 76 Session 2. P002-P004 Molecular Hematology . 76 Session 3. P005-P016 Myeloproliferative Disorders and Chronic Myeloid Leukemia . 78 Session 4. P017-P018 Myelodysplastic Syndromes . 83 Session 5. P019-P043 Acute Leukemia. 84 Session 6. P044-P050 Chronic Lymphocytic Leukemia and Chronic Lymphoproliferative Disorders . 97 Session 7. P051-P057 Lymphomas . 100 Session 8. P058-P063 Monoclonal Gammopathies and Multiple Myeloma. 104 Session 9. P064-P069 Stem Cell Transplantation . 107 Session 10. P070 Immunotherapy and Cell Therapy. 109 Haematologica 2020; vol. 105; supplement 2 - October 2020 http://www.haematologica.org/ XVI Congress of the Italian Society of Experimental Hematology Napoli, Italy, October 15-17, 2020 MAIN PROGRAM HYPOTESIS-DRIVEN DISSECTION OF MOLECULAR COMPO- NENTS OF INNATE IMMUNITY AND INFLAMMATION: FROM CANCER TO COVID-19 A. Gomes,1 B. Bottazzi,1 M. Locati,1,2 C. Garlanda,1,3 A. Mantovani1,3,4 1Humanitas Clinical and Research Center – IRCCS, Rozzano (Mi) - Italy; 2Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano; 3Humanitas University, Department of Biomedical Sciences, Pieve Emanuele – Milan, Italy; 4The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom Inflammation is a manifestation of innate immunity and has emerged as a metanarrative of modern medicine (Mantovani et al., Immunity, 2019; Furman et al., Nature Medicine, 2019), a component of diverse disease ranging from cancer to COVID-19 (Mantovani et al., Nature 2008; Mantovani e Netea, New England Journal of Medicine, 2020 in press). Dissection of the diversity and complexity of regulatory pathways Figure 1. Selected genes (in red) involved in innate immunity inflammation of innate immunity has taken advantage of hypothesis driven and non- discovered and functionally characterized by the authors. Unbiased fishing hypothesis driven approaches. was coupled with hypothesis-driven experimental approaches. IL-1 is the prototypic member of a complex family of cytokines and receptors which play a central role in innate immunity and in the activa- tion and regulation of adaptive immune responses (Mantovani et al. References Immunity, 2019). Based on structure, we originally hypothesized that Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related IL-1R2 should behave as a decoy receptor, a tenet confirmed by extensive Cytokines in the Regulation of Inflammation and Immunity. Immunity. experimental data. In the same line, we cloned IL-1R8 and focused on it 2019;50(4):778-795. doi:10.1016/j.immuni.2019.03.012 Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of dis- based on the hypothesis that it would behave as a negative regulator. IL- ease across the life span. Nat Med. 2019;25(12):1822-1832. 1R8 was then found to be a negative regulator of signaling downstream doi:10.1038/s41591-019-0675-0 Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. of members of the IL-1 and Toll like receptor (TLR) family and a com- 2008;454(7203):436-444. doi:10.1038/nature07205 ponent of the receptor complex recognized by the anti-inflammatory Mantovani A, Netea M immunosuppression cytokine IL-37. Trained Innate Immunity: epigenetics and Covid-19 New Engl J Med, 2020, in press. As a result of a fishing expedition we originally cloned PTX3 as a Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a Humoral gene induced by IL-1 (Garlanda et al., Physiol Rev, 2020). This distant Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Can- relative of C reactive protein (CRP) was then found to represent an essen- cer. Physiol Rev. 2018;98(2):623-639. doi:10.1152/physrev.00016.2017 Macropahge expression and prognostic significance of the long pentraxin PTX3 tial component of the humoral of innate immunity playing a role in in COVID-19 antimicrobial resistance and in the regulation of inflammation. The latter Enrico Brunetta, Marco Folci, Barbara Bottazzi, Maria De Santis, Alessandro Prot- includes selected solid tumors and hematological malignancies (Garlanda ti, Sarah Mapelli, Roberto Leone, Ilaria My, Monica Bacci, Veronica Zanon, Gi anmarco Spata, Andrea Gianatti, Marina Sironi, Claudio Angelini, Cecilia Gar- et al., Physiol Rev, 2020). We also cloned in silico PTX4, but its function landa, Michele Ciccarelli, Maurizio Cecconi, Alberto Mantovani remains to be defined. Interestingly, PTX3 was recently found to be high- medRxiv 2020.06.26.20139923; doi: https://doi.org/10.1101/2020.06.26.20139923 ly expressed in monocytes and lung macrophages at population and sin- Locati m, Curtale G, Mantovani A. Diversity, Mechanisms and Significance of Macrophage Plasticity. Ann Rev Pathol 2020; 15:123-47 gle cell level in COVID-19 and to represent a candidate novel biomarker Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated of disease severity (Brunetta et al., medRxiv, 2020). Stemming from our macrophages as treatment targets in oncology. Nat Rev Clin Oncol. interest in macrophage diversity and polarization (Locati, Curtale, Man- 2017;14(7):399-416. doi:10.1038/nrclinonc.2016.217 Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil tovani, Ann Rev Pathol 2020; Mantovani et al., Nature Rev. Clin. Onc. diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2017; Jaillon et al., Nature Rev Cancer 2020). We identified the tetraspan 2020;20(9):485-503. doi:10.1038/s41568-020-0281-y MS4A4A, a gene of unknown function, as a gene associated with M2- Mattiola I, Tomay F, De Pizzol M, et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat like macrophage polarization (Mattiola et al., Nat Immunol. 2019). We Immunol. 2019;20(8):1012-1022. doi:10.1038/s41590-019-0417-y found that MS4A4A partner with Dectin-1 and is essential for full syk signalling downstream of this pattern recognition receptors. The exam- ples discussed above, selected from our previous and ongoing research efforts, highlight the complexity of innate immunity and its regulation. The dissection of the daunting complexity and diversity of cellular and human innate immunity requires the use of unbiased non-hypothesis- driven approaches complemented by hypothesis-driven, biased experi- mental and clinical testing. haematologica | 2020; 105(s2) | S1 Main Program “OMICS” APPROACHES AND BIG DATA ANALYSES ered a cornerstone of Italian hematology. In the following years he quick- 2 G.S. Vassiliou ly became one of the leader in this field of medicine. Ferrata soon felt Cambridge, UK the need for an Italian scientific journal that would become a means of disseminating research in the hematology field in Europe. The project Throughout human history big advances have followed “disrup- was developed in Naples in 1920 during a meeting in the “Gambrinus” 3 tive” changes in technology or society. The examples go as far back as café, between Ferrata and Carlo Moreschi (1876-1921). The latter had the first agricultural revolution of more than 10,000 years ago, which been a pupil of Camillo Golgi (1943-1926) and, subsequently, worked changed human civilisation irrevocably. Biology and Medicine are in Paul Ehrlich’s laboratory in Frankfurt. In 1907 and in 1908, he devel- currently going through their most dramatic period of progress in liv- oped the antiglobulin test, rediscovered many years later by Robin ing memory, driven by advances in omics and high-content data analy- Coombs (and known nowadays as “Coombs test”). Ferrata and Moreschi ses. These approaches are not only useful in improving our under- therefore launched the Haematologica under the best auspices of the standing and ability to classify, but also represents powerful engines of Neapolitan sun. Initially published in Naples by the typography “N. discovery. Furthermore, these technologies operate on different mathe- Jovene & Co.”, in 1924 the editorial office of the journal followed Ferrata matical scales to romantic human endeavour and promise to effect who had obtained the chair of medical clinic at the University of Pavia. exponential progress that will transform Medicine as we know it. The first article in the new journal was signed by Camillo Golgi, the Brace yourselves! most prestigious name of Italian medicine, also known for his hemato- logical studies on malarial infection.
Recommended publications
  • Targeting Protein Kinase CK2 and CDK4/6 Pathways with a Multi-Kinase Inhibitor ON108110 Suppresses Pro-Survival Signaling and Gr
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 102), pp: 37753-37765 Research Paper Targeting protein kinase CK2 and CDK4/6 pathways with a multi-kinase inhibitor ON108110 suppresses pro-survival signaling and growth in mantle cell lymphoma and T-acute lymphoblastic leukemia Amol Padgaonkar1,3, Olga Rechkoblit2, Rodgrigo Vasquez-Del Carpio1,4, Venkat Pallela5, Venkata Subbaiah DRC1,6, Stephen C. Cosenza1, Stacey J. Baker1, M.V. Ramana Reddy1, Aneel Aggarwal2 and E. Premkumar Reddy1,2 1Department of Oncological Sciences, Icahn School of Medicine, New York 10029, NY, USA 2Department of Pharmacological Sciences, Icahn School of Medicine, New York 10029, NY, USA 3Present Address: Prescient Healthcare Group, Jersey City 07302, NJ, USA 4Present address: Sandoz, a Novartis Company, Miami 33126, FL, USA 5Present address: Pfizer, Collegeville 19426, PA, USA 6Present address: Carnegie Pharmaceuticals, Monmouth Junction 08852, NJ, USA Correspondence to: E. Premkumar Reddy, email: [email protected] Keywords: mantle cell lumphoma; T-cell acute lymphoblastic leukemia; CDK4; CK2 Received: December 06, 2018 Accepted: December 13, 2018 Published: December 28, 2018 Copyright: Padgaonkar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Overexpression and constitutive activation of CYCLIN D1 and Casein Kinase 2 are common features of many hematologic malignancies, including mantle cell lymphoma (MCL) and leukemias such as T-cell acute lymphoblastic leukemia (T-ALL). Although both CK2 and CDK4 inhibitors have shown promising results against these tumor types, none of these agents have achieved objective responses in the clinic as monotherapies.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Evaluation of Chromatin Accessibility in Prefrontal Cortex of Individuals with Schizophrenia
    ARTICLE DOI: 10.1038/s41467-018-05379-y OPEN Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia Julien Bryois 1, Melanie E. Garrett2, Lingyun Song3, Alexias Safi3, Paola Giusti-Rodriguez 4, Graham D. Johnson 3, Annie W. Shieh13, Alfonso Buil5, John F. Fullard6, Panos Roussos 6,7,8, Pamela Sklar6, Schahram Akbarian 6, Vahram Haroutunian 6,9, Craig A. Stockmeier 10, Gregory A. Wray3,11, Kevin P. White12, Chunyu Liu13, Timothy E. Reddy 3,14, Allison Ashley-Koch2,15, Patrick F. Sullivan 1,4,16 & Gregory E. Crawford 3,17 1234567890():,; Schizophrenia genome-wide association studies have identified >150 regions of the genome associated with disease risk, yet there is little evidence that coding mutations contribute to this disorder. To explore the mechanism of non-coding regulatory elements in schizophrenia, we performed ATAC-seq on adult prefrontal cortex brain samples from 135 individuals with schizophrenia and 137 controls, and identified 118,152 ATAC-seq peaks. These accessible chromatin regions in the brain are highly enriched for schizophrenia SNP heritability. Accessible chromatin regions that overlap evolutionarily conserved regions exhibit an even higher heritability enrichment, indicating that sequence conservation can further refine functional risk variants. We identify few differences in chromatin accessibility between cases and controls, in contrast to thousands of age-related differential accessible chromatin regions. Altogether, we characterize chromatin accessibility in the human prefrontal cortex, the effect of schizophrenia and age on chromatin accessibility, and provide evidence that our dataset will allow for fine mapping of risk variants. 1 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T (51) International Patent Classification: CA 94121 (US). HUBBARD, Robert; 7684 Marker Road, A61K 31/52 (2006.01) C07D 473/02 (2006.01) San Diego, CA 92087 (US). MIKOLON, David; 6140 A61K 31/505 (2006.01) C07D 473/26 (2006.01) Calle Empinada, San Diego, CA 92120 (US). RAYMON, A61K 31/519 (2006.01) C07D 473/32 (2006.01) Heather; 3520 Vista de la Orilla, San Diego, CA 921 17 (US). SHI, Tao; 4650 Tarantella Lane, San Diego, CA (21) International Application Number: 92130 (US). TRAN, Tam, M.; 8953 Libra Drive, San PCT/US20 17/025252 Diego, CA 92126 (US). TSUJI, Toshiya; 4171 Donald (22) International Filing Date: Court, San Diego, CA 921 17 (US). WONG, Lilly, L.; 871 3 1 March 2017 (3 1.03.2017) Viva Court, Solana Beach, CA 92075 (US). XU, Suichan; 9650 Deer Trail Place, San Diego, CA 92127 (US). ZHU, (25) Filing Language: English Dan; 4432 Calle Mar De Armonia, San Diego, CA 92130 (26) Publication Language: English (US). (30) Priority Data: (74) Agents: BRUNER, Michael, J. et al; Jones Day, 250 Ve- 62/3 17,412 1 April 2016 (01.04.2016) US sey Street, New York, NY 10281-1047 (US). (71) Applicant: SIGNAL PHARMACEUTICALS, LLC (81) Designated States (unless otherwise indicated, for every [US/US]; 10300 Campus Point Drive, Suite 100, San kind of national protection available): AE, AG, AL, AM, Diego, CA 92121 (US).
    [Show full text]
  • The Early Years of Hematology: Gabriel Andral and Giulio Bizzozero’S Solutions to the Blood Enigma
    THE EARLY YEARS OF HEMATOLOGY: GABRIEL ANDRAL AND GIULIO BIZZOZERO’S SOLUTIONS TO THE BLOOD ENIGMA Sofia Bruzzese Università Campus Biomedico di Roma Introduction Andral and Bizzozero’s innovations “…the field of hematology, under the guide of Andral, assumed a Both Andral and Bizzozero were two farsighted new fundamental role in the branch of pathology.” scientists. Since the start of haematologic studies Andral Gabriel Andral (1797-1876) is the undisputed father of modern developed more efficient methods for its work, hematology, a position already aknowledged by his contemporaries. introducing his innovative point of view on the Since his early studies in physiopathology, Andral showed his interest use of the microscope. This instrument was not for this field and between 1840 and 1842, he started to center his commonly used during this period, but Andral, research on the composition of blood. In this manner the field of understood the benefit of its practice, especially hematology, under the guide of Andral, assumed a new fundamental role in the study of the blood. For that reason, the in the branch of pathology. His findings laid the foundation stone for the analysis of blood and its alteration were only next generations of doctors. Following in Andral's footsteps, Italian Giulio run following a strict pattern of three phases: all Bizzozero (1846-1901) conducted important studies on the of them needed the use of the microscope. hematopoietic function of the bone marrow and on the platelets. “As for Bizzozero, […] he was considered as the most expert Italian doctor in the use of microscopic techniques.” As for Bizzozero, thanks to the published work between 1862 and 1868, he was considered as the most expert Italian doctor in the use of microscopic techniques.
    [Show full text]
  • Targeting Stat3 and Kinases in Lymphoid Malignancies
    "9;MDLQG>AGDG?A;9D9F<!FNAJGFE=FL9D/;A=F;=K 1FAN=JKALQG>$=DKAFCA "AFD9F< %FKLALML=>GJ)GD=;MD9J)=<A;AF="AFD9F<"%)) $=DKAFCA%FKLALML=G>(A>=/;A=F;=$A(%"! 1FAN=JKALQG>$=DKAFCA 9F< G;LGJ9D,JG?J9EE=AFAGE=<A;AF= ,) 1FAN=JKALQG>$=DKAFCA !)% %//!.00%+* 0G:=HJ=K=FL=< OAL@L@=H=JEAKKAGFG>L@="9;MDLQG>AGDG?A;9D9F< !FNAJGFE=FL9D/;A=F;=K 1FAN=JKALQG>$=DKAFCA >GJHM:DA;=P9EAF9LAGFGF 0@MJK<9Q G>)9Q 9LHE 0@==P9EAF9LAGFAKGH=F>GJ9M<A=F;=L@JGM?@J=EGL=9;;=KK $=DKAFCA %/* HJAFL %/* , " %//* HJAFL %//* 4GFDAF= 1FA?J9>A9 $=DKAFCA /MH=JNAKGJ 53*5-67)5#)22)5&)5+ %FKLALML=>GJ)GD=;MD9J)=<A;AF="AFD9F<"%)) $=DKAFCA%FKLALML=G>(A>=/;A=F;=$A(%"! 1FAN=JKALQG>$=DKAFCA $=DKAFCA "AFD9F< AGL=;@.=K=9J;@%FFGN9LAGF=FLJ=.% 9F< *GNG*GJ<AKC"GMF<9LAGF=FL=J>GJ/L=E=DDAGDG?Q 9F/L=E 1FAN=JKALQG>GH=F@9?=F GH=F@9?=F =FE9JC 0@=KAK<NAKGJQGEEALL== 53*-5.3%%//32)2 53*"-2')2<3)58003 "9;MDLQG>)=<A;AF= "9;MDLQG>,@9JE9;Q 1FAN=JKALQG>$=DKAFCA 1FAN=JKALQG>$=DKAFCA $=DKAFCA "AFD9F< $=DKAFCA "AFD9F< 0@=KAK.=NA=O=JK 3')2722-/%)-2%2()5, 3')270//%8277-0%, "9;MDLQG>/;A=F;=9F<!F?AF==JAF? "9;MDLQG>)=<A;AF=9F<$=9DL@ =DDAGDG?Q 0=;@FGDG?Q T:GC9<=EA1FAN=JKALQ 09EH=J=1FAN=JKALQ 0MJCM "AFD9F< 09EH=J= "AFD9F< +HHGF=FL !2-953*51)(")532-/%):0 %FKLALML=G>,@9JE9;GDG?Q9F<0GPA;GDG?Q 1FAN=JKALQG>2=L=JAF9JQ)=<A;AF=G>2A=FF9 2A=FF9 MKLJA9 MKLGK 53*%5-)-2>2)2 "9;MDLQG>AGDG?A;9D!FNAJGFE=FL9D/;A=F;=K 1FAN=JKALQG>$=DKAFCA $=DKAFCA "AFD9F< #20:-)0./: !" " QKJ=?MD9L=< ;=DDMD9J KA?F9DAF?
    [Show full text]
  • 576065839024.Pdf
    Autopsy and Case Reports ISSN: 2236-1960 Hospital Universitário da Universidade de São Paulo Rocha, Luiz Otávio Savassi Luigi Bogliolo: master of a glorious lineage Autopsy and Case Reports, vol. 10, no. 4, 2020 Hospital Universitário da Universidade de São Paulo DOI: 10.4322/acr.2020.234 Available in: http://www.redalyc.org/articulo.oa?id=576065839024 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Editorial Luigi Bogliolo: master of a glorious lineage Luiz Otávio Savassi Rocha1 How to cite: Rocha LOS. Luigi Bogliolo: master of a glorious lineage. [editorial]. Autops Case Rep [Internet]. 2020;10(4):e2020234. https://doi.org/10.4322/acr.2020.234 Keywords History of Medicine; Pathology; Autopsy LUIGI BOGLIOLO (1908-1981) Of Italian origin but Brazilian by adoption, of Prof. Enrico Emilio Franco, who was a source of Luigi Bogliolo was born on April 18, 1908, on the inspiration for him throughout his life. In the 1931- island of Sardinia, in Sassari, the main commune 1932 biennium, he was a volunteer assistant at the of the province of the same name. He died in Belo Institute of Pathological Anatomy and Histology of Horizonte on September 6, 1981. The firstborn child the University of Sassari, directed by Franco. At the of Enrico Bogliolo, a railroad worker, and Maria end of 1932, he moved, along with his mentor, to Ruju, he graduated with a medical degree from the the Royal Adriatic University Benito Mussolini, based University of Sassari in 1930 as the best student in Bari, where he became a staff assistant in the in his class.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Epigenetic Services Citations
    Active Motif Epigenetic Services Publications The papers below contain data generated by Active Motif’s Epigenetic Services team. To learn more about our services, please give us a call or visit us at www.activemotif.com/services. Technique Target Journal Year Reference Justin C. Boucher et al. CD28 Costimulatory Domain- ATAC-Seq, Cancer Immunol. Targeted Mutations Enhance Chimeric Antigen Receptor — 2021 RNA-Seq Res. T-cell Function. Cancer Immunol. Res. doi: 10.1158/2326- 6066.CIR-20-0253. Satvik Mareedu et al. Sarcolipin haploinsufficiency Am. J. Physiol. prevents dystrophic cardiomyopathy in mdx mice. RNA-Seq — Heart Circ. 2021 Am J Physiol Heart Circ Physiol. doi: 10.1152/ Physiol. ajpheart.00601.2020. Gabi Schutzius et al. BET bromodomain inhibitors regulate Nature Chemical ChIP-Seq BRD4 2021 keratinocyte plasticity. Nat. Chem. Biol. doi: 10.1038/ Biology s41589-020-00716-z. Siyun Wang et al. cMET promotes metastasis and ChIP-qPCR FOXO3 J. Cell Physiol. 2021 epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J. Cell Physiol. doi: 10.1002/jcp.30142. Sonia Iyer et al. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of ATAC-Seq — Cancer Discovery 2021 Combination Immunotherapy. Cancer Discov. doi: doi: 10.1158/2159-8290 Vinod Krishna et al. Integration of the Transcriptome and Genome-Wide Landscape of BRD2 and BRD4 Binding BRD2, BRD4, RNA Motifs Identifies Key Superenhancer Genes and Reveals ChIP-Seq J. Immunol. 2021 Pol II the Mechanism of Bet Inhibitor Action in Rheumatoid Arthritis Synovial Fibroblasts. J. Immunol. doi: doi: 10.4049/ jimmunol.2000286. Daniel Haag et al.
    [Show full text]
  • Platelet Function Disorders
    TREATMENT OF HEMOPHILIA APRIL 2008 • NO 19 PLATELET FUNCTION DISORDERS Second Edition Anjali A. Sharathkumar Amy Shapiro Indiana Hemophilia and Thrombosis Center Indianapolis, U.S.A. Published by the World Federation of Hemophilia (WFH), 1999; revised 2008. © World Federation of Hemophilia, 2008 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s website at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff.
    [Show full text]
  • Functional Annotation of Human Long Noncoding Rnas Using Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426305; this version posted January 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Funconal annotaon of human long noncoding RNAs using chroman conformaon data Saumya Agrawal1, Tanvir Alam2, Masaru Koido1,3, Ivan V. Kulakovskiy4,5, Jessica Severin1, Imad ABugessaisa1, Andrey Buyan5,6, Josee Dos&e7, Masayoshi Itoh1,8, Naoto Kondo9, Yunjing Li10, Mickaël Mendez11, Jordan A. Ramilowski1,12, Ken Yagi1, Kayoko Yasuzawa1, CHi Wai Yip1, Yasushi Okazaki1, MicHael M. Ho9man11,13,14,15, Lisa Strug10, CHung CHau Hon1, CHikashi Terao1, Takeya Kasukawa1, Vsevolod J. Makeev4,16, Jay W. SHin1, Piero Carninci1, MicHiel JL de Hoon1 1RIKEN Center for Integra&ve Medical Sciences, YokoHama, Japan. 2College of Science and Engineering, Hamad Bin KHalifa University, DoHa, Qatar. 3Ins&tute of Medical Science, THe University of Tokyo, Tokyo, Japan. 4Vavilov Ins&tute of General Gene&cs, Russian Academy of Sciences, Moscow, Russia. 5Ins&tute of Protein ResearcH, Russian Academy of Sciences, PusHcHino, Russia. 6Faculty of Bioengineering and Bioinforma&cs, Lomonosov Moscow State University, Moscow, Russia. 7Department of BiocHemistry, Rosalind and Morris Goodman Cancer ResearcH Center, McGill University, Montréal, QuéBec, Canada. 8RIKEN Preven&ve Medicine and Diagnosis Innova&on Program, Wako, Japan. 9RIKEN Center for Life Science TecHnologies, YokoHama, Japan. 10Division of Biosta&s&cs, Dalla Lana ScHool of PuBlic HealtH, University of Toronto, Toronto, Ontario, Canada. 11Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. 12Advanced Medical ResearcH Center, YokoHama City University, YokoHama, Japan.
    [Show full text]