Machine Shop Safety

Total Page:16

File Type:pdf, Size:1020Kb

Machine Shop Safety Machine Shop Safety Despite advancements in machining technology over • Hot work the past few decades, many hazards still exist for areas — Hot employees working with machine tools. work areas, such as According to the Bureau of Labor Statistics, workers welding and who operate and maintain machinery experience grinding approximately 18,000 amputations, lacerations, areas, crushing injuries, abrasions and over 800 fatalities should be each year. Most machine shops also contain separated flammable liquids and other chemicals that may by at least increase the risk of fire. 35 feet from Fire Prevention flammable Fires occurring in machines using oil-based coolant can and combustible materials. Sparks should be cause significant damage within seconds, potentially controlled through the use of screens, if necessary. spreading throughout the facility and causing extensive Supervisor and Operator Responsibilities damage. Even with the operator standing by, machines Due to the many hazards that exist in machine shops, have been completely destroyed by fire in a matter of it is important for the plant manager to employ well minutes. The following guidelines can reduce the risk qualified and safety conscious supervisors. Supervisors of fire in machine shops: should have the experience, knowledge and training • Housekeeping — Floors, machines and other to mitigate hazards associated with machine tool surfaces should be kept free of wood and metal use. Safety should be of primary importance to chips, dirt, and debris. A “no smoking” policy supervisors, and they should ensure that: should be enforced. • Only trained and qualified operators are allowed • Flammable and combustible liquids — to operate machinery and equipment. Flammable and combustible liquids such as oils, • Machinery and equipment are in good gasoline, cleaners, solvents, paints and thinners mechanical and operating condition. should be stored in UL approved flammable and combustible liquid storage cabinets. No • Employees comply with all applicable safety more than a one day supply of a flammable or regulations, such as wearing appropriate combustible liquid should be stored outside personal protective equipment, performing of the cabinet in a UL approved storage can. lockout/tagout and ensuring machines are UL approved rag cans are also available for properly guarded. the storage of rags soaked with flammable or • All injuries and “near misses” are reported to the combustible liquids. appropriate safety coordinator. • Chemicals — Chemicals should be stored in cabinets approved for that use. Do not store Continued incompatible chemicals together. Material safety data sheets should be kept in the shop area for all chemicals used. www.emcins.com Machine Shop Safety • Regular safety inspections are conducted • Lockout/tagout procedures to be followed when throughout the work areas. guards are removed. • Employees do not work alone in hazardous areas. • What to do if a safeguard is damaged, missing or unable to provide adequate protection. Machine operators also have specific responsibilities to ensure their own safety and that of their coworkers. • Use, care and maintenance of personal The following guidelines should be followed: protective equipment. • Observe all safety regulations relating to machine • Emergency planning for medical incidents, chemical tool use and operation. spills, loss of power and evacuation alarms. • Provide suggestions for improving safety, such as For Additional Information enhancements to existing machine guards. EMC Tech Sheets: www.emcins.com • Report any machine that does not have a guard • Ergonomic Risk Factors covering all points of operation, nip points • Machine Safeguarding or cutting, shearing, punching and forming mechanisms. • Lockout Tagout Program • Wear appropriate clothing and personal • Fire Prevention Plan protective equipment. Machine shop employees should also be trained to • Immediately report any machine tools that identify ergonomic risk factors in their jobs. Although exhibit signs of excessive wear or have damaged many machine shop injuries involve the machine or misused parts. (crushing injuries, abrasions and amputations), • Report any injuries or “near misses” to the injuries also result when the employee is handling supervisor immediately. materials being loaded into and unloaded from the • Keep the work area clean. machine. Ergonomic risk factors common to machine shops include: Operator Training In addition to their responsibilities described above, • Excessive force — lifting heavy parts from supervisors may also be responsible for operator pallets and bins training. Even if an employee has previous experience • Repetitive motions — continuously feeding on similar equipment, it is imperative that they be parts into a machine trained on the rules specific to the company. Operator • Awkward postures — reaching to place parts training should include: into a CNC lathe • A description and identification of the hazards By training employees to identify these risk factors, associated with the machinery the employee they may be able to recommend solutions that not may operate. only improve their safety, but may also increase • The safeguards present on each machine, how productivity and improve product quality. they provide protection and the hazards from which they are intended to protect. • How, and under what circumstances, safeguards can be removed. Home Office: 717 Mulberry • Des Moines, IA 50309 • 800-447-2295 • www.emcins.com Disclaimer: This material is designed and intended for general information purposes only, and is not intended, nor shall be construed or relied upon, as specific legal advice. ©Copyright Employers Mutual Casualty Company 2010. All rights reserved. Image ©2010 JupiterImages Corporation. 6244 (10-10).
Recommended publications
  • 10 Tips & Tricks for Improving Machine Shop Efficiency
    10 Tips & Tricks for Improving Machine Shop Efficiency At Xometry Supplies, our mission is to help your shop be as efficient and profitable as possible. That’s why we provide instant quotes and fast shipping on high-quality materials and tools. Visit us at www.xometry.com/supplies and check out our selection of top tooling brands and custom cuts. But we want to do more than provide you materials—we want to help you run your shop more efficiently. Below are 10 tips for running a more efficient shop. If you have anything you think we should add to this list, please reach out to us at [email protected]. 1. Learn About Lean Manufacturing Principles One of the most popular ways to improve almost any manufacturing process is to adopt a Lean Manufacturing framework. Lean management is all about improving operations continuously (you can always get better!) and reducing waste wherever you find it. Some key concepts from lean manufacturing to keep in mind are: • Customer Value: Define what your customer thinks is most valuable and optimize your operations to deliver on these things. By keeping the customer in mind, you ensure that everything you do will have an impact • Flow: Lean is all about making things flow faster. Every day, look for ways to simplify your procedures, keep your manufacturing floor organized, and have the right people doing the right jobs at the right times. • Respect & Empowerment: Create a culture where every employee—from the highest ranking to the lowest—feels comfortable pointing out opportunities for improvement and is empowered to fix things and make changes.
    [Show full text]
  • The Digital Journey of the Modern Machine Shop Reporting Findings from the Nc Machining Study the Digital Journey of the Modern Machine Shop 2
    THE DIGITAL JOURNEY OF THE MODERN MACHINE SHOP REPORTING FINDINGS FROM THE NC MACHINING STUDY THE DIGITAL JOURNEY OF THE MODERN MACHINE SHOP 2 INTRODUCTION Running a machine shop in today’s economic environment is no easy task. The margins are razor thin. Competition for a job might be located across town or across the ocean. Customers demand top quality yet require delivery on incredibly short schedules. The opportunities are there, but it takes highly skilled organizations to profit from them. It is in this context that Lifecycle Insights conducted our 2017 NC Machining Research Study. Findings indicated that the dominant driver for any attempts to improve operations is Time-to-Delivery. However, a myriad of technical challenges undermines those efforts, ranging from high friction in the process of working with models, debilitating difficulty in creating toolpaths, unreliable verification of G-code, and low reuse levels of machining knowledge. Fortunately, many of these challenges can be addressed with the digital journey of the modern machine shop. The technologies that enable this digital journey allow machinists to seamlessly prepare and manipulate models from any CAD application, develop high quality toolpaths in an automated fashion, simulate the execution of the resulting G-code, and standardize NC knowledge for reuse across the entire process. The purpose of this eBook is to dive deeper into these issues. First, this publication formally publishes and contextualizes the NC Machining study findings. Next, it introduces an ecosystem of technologies that address the needs of modern machine shops. Last, it offers recommendations for next steps. There are many challenges in running a machine shop.
    [Show full text]
  • Electroplating Benchmarking SHOPS American Metal Coatings 2019 Leads North American Shops
    PFonline.com Electroplating Benchmarking SHOPS American Metal Coatings 2019 Leads North American Shops 2019 Benchmarking Results TOP SHOPS for Plating – 16 Owner finds ‘traction’ for POWDER optimizing operations – 22 Coating lines rebuild after LIQUID EF-3 Tornado – 26 Increasing bath life of PLATING trivalent passivates – 30 A property of Gardner Business Media APRIL 2019 / VOLUME 83 / NO. 7 3s Selective Separation System Sometimes it’s what lies beneath the surface that makes you change course No formation of cyanide Reduction in For use with PERFORMA proprietary additive Alkaline Zinc Nickel consumption Systems Minimal sludge High efficiency maintained formation. in perpetuity No shoveling required Significant increase in production throughput Elimination of expensive auxillary carbonate removal equipment Eliminates bleed and feed operation. Dramatic reduction in solution growth Effective removal of nickel and zinc from rinses with OMEGA MP 5152 Less chilling required Visit www.coventya.com for details or scan the code Reduced energy use below for more information. SCR Units Up to 100,000 amps Air, Water and Oil-cooled Standard and custom designs Suited for aggressive environments Optional reversing and ripple correction Switchmode Power Supplies Up to 30,000 Amps Bench-top, Wall-mount, Free-standing and multiple output configurations Air or Water-cooled Expandable, modular designs that change with your process DC, Pulse or Pulse Reverse Controls Versatile local and remote control solutions that can be added to each rectifier model Create and store custom profiles On-screen diagnostics Remote interface via Ethernet/IP, Modbus, Profibus, Analog I/O, etc. PC software to interface with the rectifiers for control, monitoring and data collection to meet quality control standards P: 239.275.5877 AMERICANPLATINGPOWER.COM PRODUCTS FINISHING CONTENTS EMPHASIS TOP SHOPS VOLUME 83 / NO.
    [Show full text]
  • Machine Design
    INDUSTRY PERSPECTIVE / 001 Machine Design — Machine design involves the development, design, and production of machines. It is key to ensure machines run efficiently, produce consistent results and can be easily repaired as components wear out or break. Industry Perspective Series: Machine Design > Machine Design Solutions 02 Challenge For simplicity, speed, and most importantly cost, machine designers strive to use as many off-the-shelf components as possible. Invariably, though, some parts must be custom-made - and therein lies most of the challenge. Due to the relatively small volumes needed, custom parts are typically CNC machined, a process that can be expensive and time-consuming, due to limited machine shop resources and nonrecurring engineering (NRE) time and costs. This NRE usually consists of the necessity to create custom workholding fixtures for machining of complex parts, even if parts are being produced in low volume, leading to significant waste and added part cost. Machine design firms may also face challenges related to equipment that is already operating - as parts wear out or break, firms need to be able to quickly manufacture replacement parts to get the machine back up and running while keeping per-part costs low and avoid warehousing costs. Solution Additive manufacturing dramatically simplifies the process of creating custom parts. Because it doesn’t rely on tooling or fixturing, 3D printing often allows users to print parts faster and at lower costs than machining. The technology also opens the door to parts with greater geometric complexity, these complex parts may be better suited for the application but generally cannot be justified with traditional manufacturing methods.
    [Show full text]
  • Machine Shop Safety for Academic Departments Guideline Revision Date: 08/11/21 Applies To: All University Academic Departments
    Machine Shop Safety for Academic Departments Guideline Revision Date: 08/11/21 Applies To: All University academic departments. Employees and non-employees who actively work in machine shops, laboratories and other University facilities with machining tools and machining equipment are covered under this guideline. Table of Contents Machine Shop Safety for Academic Departments Guideline Statement .........................................2 Related Machine Shop Safety for Academic Departments Guideline Documents .......................... 2 Additional Resources ................................................................................................................................ 2 Unit-Specific Machine Shop Safety Policy Development ................................................................2 Potential Hazards .........................................................................................................................2 Training Requirements .................................................................................................................3 Developing a Basic Machine Shop Safety Training Program ........................................................... 3 Proficiency Testing ................................................................................................................................... 4 Recordkeeping ................................................................................................................................. 4 Re-Training ......................................................................................................................................
    [Show full text]
  • Machine Tool Technology (MACH)
    2021-2022 CWI Catalog Machine Tool Technology (MACH) MACH 155 Machine Shop Theory III MACHINE TOOL TECHNOLOGY (2 Credits, Spring) Theory of machining processes and their applications (as practiced (MACH) in the corequisite lab course [MACH 105]) with safe work habits being emphasized in all phases of instruction. Includes setup, operation, MACH 103 Machine Shop Laboratory I and maintenance of manual milling machines, advanced manual (3 Credits, Fall) engine lathe set-up techniques and operations, and precision surface Practice basic setup, safety, operation, and maintenance of the engine grinding and measuring techniques. PREREQ: MACH 103, MACH 104, lathe machine. Prepare for operations utilized in the advanced lathe MACH 126, MACH 153, and MACH 154. COREQ: MACH 105, MACH 127, practice labs, including setup and operation of supporting equipment. and MACH 224. (2 lecture hours, 0 lab hours, 2 credits) PREREQ: Machine Tool Technology major. COREQ: MACH 104, MACH 199 Machine Tool Technology Special Topics MACH 126, MACH 153, and MACH 154. (0 lecture hours, 9 lab hours, 3 (1-5 Credits, Varies) credits) This course is designed to permit the offering of special topics MACH 104 Machine Shop Laboratory II appropriate to a student's program. Regular or frequently recurring topics (3 Credits, Fall) are not offered under this title. The course may be repeated as new topics Introduction to the operation of milling machines. Includes safety are presented. (1 lecture hours, 0 lab hours, 1 credits) practices, setup and maintenance, and manipulation of all controls. Also MACH 203 Advanced Machine Shop Laboratory I includes instruction and practice using supporting equipment.
    [Show full text]
  • "How to Prepare Your Solid Model for Manufacturing
    How to Prepare Your Solid Model for Rapid Machining by Montie Roland, Montie Design, [email protected] Solid modelers have allowed us, as mechanical engineers and industrial designers, to design better products, quicker. Toolmakers now create complex tools directly from solid models of the end product. Clients can view visualizations of products before the first prototype is made. One thing that has not changed however, is how most machine shops receive design information. The standard line is “send me a drawing and I’ll get you a quote.” Solid models are very precise. Solid modeling programs allows us as engineers, and industrial designers, to take design intent and turn it into a design that can be communicated to others. Why should your local machine shop not be able to accept your solid model and make you a part? What can be that complicated? Many local machine shops should be able take your solid model and give you back a functioning, accurate part. We, as engineers and designers, just need to make sure that we give them all the information that they need. They, as shop owners and operators, need to have the software and skills necessary to work with the digital file that you send. Traditional Process to Source Machined Parts The traditional path from concept to part looks like this 1) product concept is developed by the industrial designer who generates ideations and renderings 2) engineer works with the designer to understand the design intent of the concept 3) engineer translates the concept into a cad model(s) 4) engineer creates
    [Show full text]
  • Machine Tool Technology (MTT)
    Machine Tool Technology 177 Machine Tool Technology The College for Real Careers (MTT) Program Information Average Full-Time Wage Almost every product made by American industry The average full-time wage is variable dependent contains metal parts or is manufactured by machines upon the size of the company offering employment. made with metal parts. With high demand for The current average full time wage is $42,110 for this type of equipment, Trenholm State Technical machinists/tool and die makers and $32,950 for College offers a highly specialized program to C.N.C. operators/programmers. prepare students to become general machinists. A machinist must use intricate technology to operate Source: Bureau of Labor and Statistics Occupational Outlook Handbook, 2016-2017 Edition, 2015 Survey. various metal-working machines and machine tools that cut, drill, grind, or otherwise form a piece of Awards Available metal accurately into precise dimensions. Associate in Applied Science Degree TrenholmState offers several options in Machine Machine Tool Technology Tool Technology that are designed to equip a student Associate in Applied Science Degree with the skills and technical knowledge needed to Machine Tool Technology be a success in this interesting field. The student Injection Mold Concentration is assigned specific lab projects which must be completed while studying the theory directly related Certificate to the projects. Additionally, each student is taught Machine Tool Technology to read blueprints, determine sequence of operations, make set-ups, and select the correct machines for Short Term Certificate the job. Machine Tool Technology CNC Concentration Due to the cost associated with the manufacture of Engine Lathe Concentration metal components, more businesses are using molded Milling Concentration plastic where engineering specifications will allow.
    [Show full text]
  • MACHINE SHOP CAPABILITIES and SERVICES Fast Lead Times
    MACHINE SHOP CAPABILITIES AND SERVICES Fast Lead Times. Quality Focused. Custom Machined Parts. Repair Services. The Accu Tech USA Machine Shop provides our customers with quality machined parts as FEATURES a value added service to fully satisfy our customers’ requirements. Working collectively with our production and sales teams, we are able to provide complete, cost effective, • CNC Machining and high quality solutions to fulfill our customers goals. • Precision Milling and Turning • Custom Parts “We pride ourselves on having a deep commitment to giving excellent customer sup- • Customer Custom Designs • Precision Inspection Capabilities port, and meeting quality and delivery requirements to ensure customer satisfaction,” • Reverse Engineering said Diana Frost, production manager, Accu Tech USA. “Our skilled staff paired with our • CAD CAM Capabilities focus on developing long-lasting relationships with our customers has uniquely posi- tioned us as a trusted supply source in the industry.” CUSTOM SOLUTIONS Quality Focused On-Time Delivery Accu Tech USA is committed to supplying precision machined We recognize the importance of delivery and how we could parts that fully satisfy our customers’ requirements. As a affect the timely completion of our customers projects. Work- trusted source of supply, we strive to exceed your expecta- ing in partnership with our production team, we are contin- tions with your overall satisfaction in terms of service, quality, uously working on how we can deliver custom machined delivery, and fair pricing. parts on time and on budget. 919.863.0837SEND US [email protected] PRINT FOR A PROPOSALwww.accu-techusa.com MACHINERY CAPACITY Accu Tech USA Machine Shop provides custom- ers with complete, high quality, and cost effective solutions to fully meet requirements.
    [Show full text]
  • College of Engineering Machine Shop Training Plan
    COLLEGE OF ENGINEERING MACHINE SHOP TRAINING PLAN OUR PURPOSE: To provide a facility equipped with tools and machinery, and a competent staff to introduce and train engineering students in the operation, methods and techniques of a basic machine shop. Our goal is to produce engineers with a solid understanding of how it’s made and enough knowledge to develop ideas and follow through with finished products. The machine shop also provides custom machining, CNC and manual, for university project’s only. Work order forms can be picked up in machine shop office or http://www.fit.edu/machine/. MACHINE SHOP CERTIFICATION I TRAINING: EGN1100 Freshman training known as “Certification I” or an introduction to the machine shop, can be arranged between mechanical and aerospace professors or others that desire to include this shop training as part of their curriculum. Upon completion, this training gives students limited access to the machine shop to complete class projects assigned by their professor only. Generally this training includes viewing a safety video, signing a liability release and shop rules agreements as well as an introduction to the shop facilities, tools and equipment. Each student will be signed off after use of common hand power tools, band saws, miter saws and sanders. Basic layout methods and measuring instruments are covered. A written skill test will be given on the last day of class. In addition, Certification I training is required prior to the machine shop Certification II training. The course can be accomplished in 4 to 5 hours. MACHINE SHOP CERTIFICATION II TRAINING: EGN2100 “Certification II” is the term used to describe the training required for students needing further use of the machine shop to work on required university projects.
    [Show full text]
  • Mr. Taylor, Mr. Ford, and the Advent of High-Volume Mass Production: 1900-1912
    Mr. Taylor, Mr. Ford, and the Advent of High-Volume Mass Production: 1900-1912 John Paxton Wayne State College Abstract: While most management professionals recognize the names of Taylor and Ford, they do not realize the unsung connection between the two men and the import of this connection to high-volume mass production (HVMP). Taylor is best known for his work with scientific management; however, it was Taylor and his research group at Bethlehem Steel that made the critical discovery that made interchangeable parts possible. Ford used this advance to fuel the advent of HVMP; this jump occurred several years before Ford's use of moving assembly lines. This paper argues that it is neither "scientific management" principles nor moving assembly lines that most intimately conjoins Taylor and Ford; it is Taylor's work as a mechanical engineer and Ford's use of that work. Introduction Biographers of Ford spend time and effort discussing the possible impact of Frederick Taylor's "Principles of Scientific Management" and "Shop Management", and "efficiency engineering" in general, on Henry Ford's practices in Model T design and production. For example, Hounshell1 spends five pages on this discussion and Brinkley2 spends two. Most sources agree that the two were pursuing different goals with different strategies, and that, overall Taylor's work had little effect on Ford's processes and factory design. 1 Hounshell, David A. From the American System of Mass Production, 1800-1932. Baltimore, MD: The Johns Hopkins University Press, 1985, pps. 249-253. 2 Brinkley, David. Wheels for the World: Henry Ford, his company, and a century of progress.
    [Show full text]
  • SVSU Mechanical Engineering Laboratory and Machine Shop Policies for 2007 - 2008
    1 SVSU Mechanical Engineering Laboratory and Machine Shop Policies for 2007 - 2008 General Safety Precautions o Become very familiar with the SVSU Code Of Student Conduct; On the SVSU Home page, select ‘Current Students,’ which will direct you to ‘Student Services’ and select ‘Code of Conduct’ which will tell you most of everything you will need to know to be successful and safe while at SVSU; Note: Departments creating special usage regulations not specifically covered in the code become, in fact, subject to the same conditions, procedures and penalties contained within the code. o The following are typical industry ‘standard-of-care’ guidelines: o Think through the entire task before starting and ask for help if you have questions … o Safety glasses must be worn at all times by everyone in the Machine Shop whenever any equipment is being operated or hand tools are being used … Protect your eyes at all times because they’re the only pair you will ever get … o Follow all written and verbal instructions; If you do not understand a direction or a procedure, whether written or oral, ask your Instructor before proceeding … o Never work alone; No student may work in a Lab or Machine Shop environment without another student being present; Students are encouraged to care about their health and safety and that of others … o The industry standard is absolutely no ‘boom boxes’, or any music-playing devices are allowed in a Machine Shop environment when equipment is being operated; the Machine Shop is not an entertainment center and distractions
    [Show full text]