Cellular Plasticity Cascades in the Pathophysiology and Treatment of Bipolar Disorder

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Plasticity Cascades in the Pathophysiology and Treatment of Bipolar Disorder Neuropsychopharmacology REVIEWS (2008) 33, 110–133 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 ............................................................................................................................................................... REVIEW 110 www.neuropsychopharmacology.org Cellular Plasticity Cascades in the Pathophysiology and Treatment of Bipolar Disorder 1,3 2,3 2 ,1 Robert J Schloesser , Jian Huang , Peter S Klein and Husseini K Manji* 1 Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, NIH, 2 Bethesda, MD, USA; Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, PA, USA Bipolar disorder (BPD) is characterized by recurrent episodes of disturbed affect including mania and depression as well as changes in psychovegetative function, cognitive performance, and general health. A growing body of data suggests that BPD arises from abnormalities in synaptic and neuronal plasticity cascades, leading to aberrant information processing in critical synapses and circuits. Thus, these illnesses can best be conceptualized as genetically influenced disorders of synapses and circuits rather than simply as deficits or excesses in individual neurotransmitters. In addition, commonly used mood- stabilizing drugs that are effective in treating BPD have been shown to target intracellular signaling pathways that control synaptic plasticity and cellular resilience. In this article we draw on clinical, preclinical, neuroimaging, and post-mortem data to discuss the neurobiology of BPD within a conceptual framework while highlighting the role of neuroplasticity in the pathophysiology and treatment of this disorder. Neuropsychopharmacology Reviews (2008) 33, 110–133; doi:10.1038/sj.npp.1301575; published online 3 October 2007 Keywords: bipolar disorder; neuroplasticity; intracellular signaling cascades; lithium; valproic acid; mood stabilizer INTRODUCTION assessing response to mood stabilizer and antidepressant medications. The monoaminergic systems are extensively Bipolar disorder (BPD) is a common, chronic, recurrent distributed throughout the network of limbic, striatal, and mental illness that affects the lives and functioning of prefrontal cortical neuronal circuits thought to support the millions of individuals worldwide. A growing number of behavioral and visceral manifestations of mood disorders recent studies indicate that for a majority of these (Drevets, 2000). Studies of cerebrospinal fluid chemistry, individuals, outcome is quite poor. High rates of relapse, neuroendocrine responses to pharmacological challenge, chronicity, lingering residual symptoms, subsyndromes, and neuroreceptor and transporter binding have demon- cognitive and functional impairment, psychosocial disabil- strated a number of abnormalities in monoaminergic ity, and diminished well-being are unfortunately common neurotransmitter and neuropeptide systems in mood occurrences in BPD (Belmaker, 2004). Furthermore, BPD is disorders (Goodwin and Jamison, 2007). a systemic disease that is frequently associated with a wide Unfortunately, these observations have not yet greatly range of physiological perturbations and medical problems, advanced our understanding of the underlying biology of including cardiovascular disease, diabetes mellitus, obesity, recurrent mood disorders, which must include an explana- and thyroid disease (Kupfer, 2005). Neurobiological studies tion for the predilection to episodic and often profound of mood disorders over the past 40 years have primarily mood disturbance that can become progressive over time. focused on abnormalities of the monoaminergic neuro- BPD likely arises from the complex interaction of multiple transmitter systems, on characterizing alterations of in- susceptibility (and protective) genes and environmental dividual neurotransmitters in disease states, and on factors, and the phenotypic expression of the disease includes not only mood disturbance, but also a constellation of cognitive, motor, autonomic, endocrine, and sleep/wake *Correspondence: Dr HK Manji, Laboratory of Molecular Pathophysio- abnormalities. Furthermore, while most antidepressants logy, Mood and Anxiety Disorders Program, National Institute of Mental exert their initial effects by increasing intrasynaptic levels Health, Porter Neuroscience Research Center, Building 35, Room 1C- 917, 35 Convent Drive, Bethesda, MD 20892, USA, Tel: + 1 301 496 of serotonin and/or norepinephrine, their clinical antide- 9802, Fax: + 1 301 480 0123, E-mail: [email protected] pressant effects are observed only after chronic adminis- 3Dr Schloesser and Dr Huang share first authorship. tration (over days to weeks), suggesting that a cascade of Received 16 July 2007; revised 1 August 2007; accepted 14 August downstream events is ultimately responsible for their 2007 therapeutic effects. These observations have led to the idea .............................................................................................................................................. Neuropsychopharmacology REVIEWS Cellular plasticity cascades in BPD RJ Schloesser et al REVIEW ............................................................................................................................................................... 111 Table 1 Putative Roles for Signaling Pathways in Mood Disorders and Nestler, 1996); furthermore, substantial life events that occur during development of the organism often have a Amplify, attenuate, and integrate multiple signals that form the basis for intracellular circuits and cellular modules greater impact than they would later in life. In recent years, research has linked mood disorders with Regulate multiple neurotransmitter and peptide systems structural and functional impairments related to neuroplas- Play critical role in cellular memory and long-term neuroplasticity ticity in various regions of the CNS. In addition, psycho- Regulate complex signaling networks that form the basis for higher order brain tropic drugs commonly used to treat these conditions target function, mood, and cognition molecules and signaling cascades implicated in the control Act as major targets for many hormones implicated in mood disorders, including of neuroplasticity. Research on the biological underpin- gonadal steroids, thyroid hormones, and glucocorticoids nings of mood disorders has therefore moved away from Act as targets for medications that are most effective in the treatment of mood focusing on absolute changes in neurochemicals such as disorders monoamines and neuropeptides, and instead has begun highlighting the role of neural circuits and synapses, and the plastic processes controlling their function. Thus, these illnesses can best be conceptualized as genetically influ- that while dysfunction within the monoaminergic neuro- enced disorders of synapses and circuits rather than simply transmitter systems is likely to play an important role in as deficits or excesses in individual neurotransmitters. The mediating some facets of the pathophysiology of BPD, it integration of knowledge derived from different physiolo- likely represents the downstream effects of other, more gical and phenomenological levels continues to help move primary abnormalities in signaling pathways (Table 1) us toward a more conceptual understanding of the etiology (Goodwin and Jamison, 2007) (Figure 1a). and pathophysiology of BPD. As we review in this paper, a growing body of data supports the contention that BPD Why Consider Plasticity Cascades as Playing arises from abnormalities in cellular plasticity cascades, a Central Role in the Pathophysiology and leading to aberrant information processing in synapses and Treatment of BPD? circuits mediating affective, cognitive, motoric, and neuro- vegetative functions (Catapano et al, in press; Post, 2007; Plasticity, the ability to undergo and sustain change, is Young, 2007). Indeed, in a recent whole-genome association essential for the proper functioning of our nervous system. study of BPD, all of the highly significant associations This capacity for change allows organisms to adapt to implicated signaling cascades (Baum et al, 2007). complex alterations in both their internal and external The role of cellular signaling cascades has the potential to environments, a feature fundamentally important for explain much of the complex neurobiology of BPD (Good- survival and reproduction. Besides the evident need for win and Jamison, 2007). Cellular signaling cascades regulate significant adaptation mechanisms in learning and memory the multiple neurotransmitter and neuropeptide systems as well as physiological homeostasis, all complex behavioral implicated in the disorder, and are targets for the most phenomenaFincluding mood and emotionFare dynamic effective treatments. Signaling pathways are also targets for processes that rely on plastic neural circuitry. The biological hormones that have been implicated in the pathophysiology basis of this capacity to adapt encompasses a diverse set of of BPD. The highly integrated monoamine and prominent cellular and molecular mechanisms that fall under the broad neuropeptide pathways are known to originate and project term ‘neuroplasticity’. In this paper, we make the distinc- heavily to limbic-related regions such as the hippocampus, tion between synaptic plasticity and neuroplasticity. hypothalamus, and brain stem, which are likely associated Synaptic
Recommended publications
  • A Minimum-Labeling Approach for Reconstructing Protein Networks Across Multiple Conditions
    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions Arnon Mazza1, Irit Gat-Viks2, Hesso Farhan3, and Roded Sharan1 1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email: [email protected]. 2 Dept. of Cell Research and Immunology, Tel Aviv University, Tel Aviv 69978, Israel. 3 Biotechnology Institute Thurgau, University of Konstanz, Unterseestrasse 47, CH-8280 Kreuzlingen, Switzerland. Abstract. The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to fa- cilitate the interpretation and representation of these data. A fundamen- tal challenge in this domain is the reconstruction of a protein-protein sub- network that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorith- mic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza in- fection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes. 1 Introduction With the increasing availability of high-throughput data, network biol- arXiv:1307.7803v1 [q-bio.QM] 30 Jul 2013 ogy has become the method of choice for filtering, interpreting and rep- resenting these data.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • PROTEOME of the HUMAN CHROMOSOME 18: GENE-CENTRIC IDENTIFICATION of TRANSCRIPTS, PROTEINS and PEPTIDES Addendum to the Roadmap
    PROTEOME OF THE HUMAN CHROMOSOME 18: GENE-CENTRIC IDENTIFICATION OF TRANSCRIPTS, PROTEINS AND PEPTIDES Addendum to the Roadmap: HEALTH ASPECTS 1. PROTEOMICS MEETS MEDICINE At its very beginning, one of the goals of human proteomics became a disease biomarker discovery. Many works compared diseased and normal tissues and liquids to get diagnostic profiles by many proteomics methods. Of them, some cancer proteome profiling studies were considered too optimistic in terms of clinical applicability due to incorrect experimental design [Petricoin], thereby conferring the negative expectations from proteomics in translational medicine [Diamantidis, Nature]. The interlaboratory reproducibility of proteomics pipelines also was considered as a shortage in some papers, e.g. in the works of Bell et al [2009] who tested the proteome MS methods with 20-protein standard sample. These difficulties at the early stage of proteomics were partly caused by the fact that many attempts were mostly directed to the technique adjustment rather than to the clinically relevant result. However, the recent advances in mass-spectrometry including the use of MRM to quantify peptides of proteome [Anderson Hunter 2006] made the community to have a view of cautious optimism on the problem of translation to medicine [Nilsson 2010]. A reproducibility problem stated in [Bell 2009] was shown to be mainly caused by the bioinformatics misinterpretation whereas the MS itself worked properly. The readiness of MRM-based platforms to the clinical use is illustrated by the attempt to pass FDA with the mock application which describes MS-based quantitation test for 10 proteins [Regnier FE 2010]. In its current state, the test has not got a clearance.
    [Show full text]
  • Overview of Research on Fusion Genes in Prostate Cancer
    2011 Review Article Overview of research on fusion genes in prostate cancer Chunjiao Song1,2, Huan Chen3 1Medical Research Center, Shaoxing People’s Hospital, Shaoxing University School of Medicine, Shaoxing 312000, China; 2Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China; 3Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310000, China Contributions: (I) Conception and design: C Song; (II) Administrative support: Shaoxing Municipal Health and Family Planning Science and Technology Innovation Project (2017CX004) and Shaoxing Public Welfare Applied Research Project (2018C30058); (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: C Song; (V) Data analysis and interpretation: H Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Chunjiao Song. No. 568 Zhongxing Bei Road, Shaoxing 312000, China. Email: [email protected]. Abstract: Fusion genes are known to drive and promote carcinogenesis and cancer progression. In recent years, the rapid development of biotechnologies has led to the discovery of a large number of fusion genes in prostate cancer specimens. To further investigate them, we summarized the fusion genes. We searched related articles in PubMed, CNKI (Chinese National Knowledge Infrastructure) and other databases, and the data of 92 literatures were summarized after preliminary screening. In this review, we summarized approximated 400 fusion genes since the first specific fusion TMPRSS2-ERG was discovered in prostate cancer in 2005. Some of these are prostate cancer specific, some are high-frequency in the prostate cancer of a certain ethnic group. This is a summary of scientific research in related fields and suggests that some fusion genes may become biomarkers or the targets for individualized therapies.
    [Show full text]
  • Identifying Mitochondrial-Related Genes NDUFA10 and NDUFV2 As Prognostic Markers for Prostate Cancer Through Biclustering
    Hindawi BioMed Research International Volume 2021, Article ID 5512624, 15 pages https://doi.org/10.1155/2021/5512624 Research Article Identifying Mitochondrial-Related Genes NDUFA10 and NDUFV2 as Prognostic Markers for Prostate Cancer through Biclustering Haokun Zhang ,1,2 Yuanhua Shao,1 Weijun Chen,1 and Xin Chen 1 1Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China 2School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China Correspondence should be addressed to Xin Chen; [email protected] Received 15 February 2021; Accepted 5 May 2021; Published 24 May 2021 Academic Editor: Mohsin Khurshid Copyright © 2021 Haokun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Prostate cancer is currently associated with higher morbidity and mortality in men in the United States and Western Europe, so it is important to identify genes that regulate prostate cancer. The high-dimension gene expression profile impedes the discovery of biclusters which are of great significance to the identification of the basic cellular processes controlled by multiple genes and the identification of large-scale unknown effects hidden in the data. We applied the biclustering method MCbiclust to explore large biclusters in the TCGA cohort through a large number of iterations. Two biclusters were found with the highest silhouette coefficient value. The expression patterns of one bicluster are highly similar to those found by the gene expression profile of the known androgen-regulated genes.
    [Show full text]
  • Supplementary Table 1: Genes Located on Chromosome 18P11-18Q23, an Area Significantly Linked to TMPRSS2-ERG Fusion
    Supplementary Table 1: Genes located on Chromosome 18p11-18q23, an area significantly linked to TMPRSS2-ERG fusion Symbol Cytoband Description LOC260334 18p11 HSA18p11 beta-tubulin 4Q pseudogene IL9RP4 18p11.3 interleukin 9 receptor pseudogene 4 LOC100132166 18p11.32 hypothetical LOC100132166 similar to Rho-associated protein kinase 1 (Rho- associated, coiled-coil-containing protein kinase 1) (p160 LOC727758 18p11.32 ROCK-1) (p160ROCK) (NY-REN-35 antigen) ubiquitin specific peptidase 14 (tRNA-guanine USP14 18p11.32 transglycosylase) THOC1 18p11.32 THO complex 1 COLEC12 18pter-p11.3 collectin sub-family member 12 CETN1 18p11.32 centrin, EF-hand protein, 1 CLUL1 18p11.32 clusterin-like 1 (retinal) C18orf56 18p11.32 chromosome 18 open reading frame 56 TYMS 18p11.32 thymidylate synthetase ENOSF1 18p11.32 enolase superfamily member 1 YES1 18p11.31-p11.21 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 LOC645053 18p11.32 similar to BolA-like protein 2 isoform a similar to 26S proteasome non-ATPase regulatory LOC441806 18p11.32 subunit 8 (26S proteasome regulatory subunit S14) (p31) ADCYAP1 18p11 adenylate cyclase activating polypeptide 1 (pituitary) LOC100130247 18p11.32 similar to cytochrome c oxidase subunit VIc LOC100129774 18p11.32 hypothetical LOC100129774 LOC100128360 18p11.32 hypothetical LOC100128360 METTL4 18p11.32 methyltransferase like 4 LOC100128926 18p11.32 hypothetical LOC100128926 NDC80 homolog, kinetochore complex component (S. NDC80 18p11.32 cerevisiae) LOC100130608 18p11.32 hypothetical LOC100130608 structural maintenance
    [Show full text]
  • Common Promoter Variants of the NDUFV2 Gene Do Not Confer
    Zhang et al. Behavioral and Brain Functions 2010, 6:75 http://www.behavioralandbrainfunctions.com/content/6/1/75 RESEARCH Open Access Common promoter variants of the NDUFV2 gene do not confer susceptibility to schizophrenia in Han Chinese Wen Zhang1,3, Xiaogang Chen2*, Wei Gong1,4, Jinsong Tang2, Liwen Tan2, Hao Guo1,5, Yong-Gang Yao1* Abstract Background: The NADH-ubiquinone oxidoreductase flavoprotein gene (NDUFV2), which encodes a 24 kD mitochondrial complex I subunit, has been reported to be positively associated with schizophrenia and bipolar disorder in different populations. Methods: We genotyped the promoter variants of this gene (rs6506640 and rs1156044) by direct sequencing in 529 unrelated Han Chinese schizophrenia patients and 505 matched controls. Fisher’s Exact test was performed to assess whether these two reported single nucleotide polymorphisms (SNPs) confer susceptibility to schizophrenia in Chinese. Results: Allele, genotype and haplotype comparison between the case and control groups showed no statistical significance, suggesting no association between the NDUFV2 gene promoter variants and schizophrenia in Han Chinese. Conclusion: The role of NDUFV2 played in schizophrenia needs to be further studied. Different racial background and/or population substructure might account for the inconsistent results between studies. Background expression in postmortem prefrontal cortex and striatum Mitochondrial dysfunction was considered as a risk of schizophrenia patients [9-11] and in lymphoblastoid cell factor for the onset of
    [Show full text]
  • Psychiatric Syndromes in Individuals with Chromosome 18 Abnormalities
    BRIEF RESEARCH COMMUNICATION Neuropsychiatric Genetics Psychiatric Syndromes in Individuals With Chromosome 18 Abnormalities Juan Zavala,1 Mercedes Ramirez,1 Rolando Medina,1,2 Patricia Heard,3 Erika Carter,3 AnaLisa Crandall,3 Daniel Hale,3 Jannine Cody,3 and Michael Escamilla1,4,5* 1Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 2Psychiatry Service, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas 3Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 4Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 5South Texas Medical Genetics Research Group, Regional Academic Health Center, Edinburg, Texas Received 3 December 2008; Accepted 17 September 2009 Chromosome 18 abnormalities are associated with a range of physical abnormalities such as short stature and hearing impair- How to Cite this Article: ments. Psychiatric manifestations have also been observed. This Zavala J, Ramirez M, Medina R, Heard P, study focuses on the presentations of psychiatric syndromes as Carter E, Crandall A, Hale D, Cody J, they relate to specific chromosomal abnormalities of chromo- Escamilla M. 2010. Psychiatric Syndromes in some 18. Twenty-five subjects (13 with an 18q deletion, 9 with Individuals With Chromosome 18 18p tetrasomy, and 3 with an 18p deletion), were interviewed by Abnormalities. psychiatrists (blind to specific chromosomal abnormality) using Am J Med Genet Part B 153B:837–845. the DIGS (subjects 18 and older) or KSADS-PL (subjects under 18). A consensus best estimation diagnostic process was employed to determine psychiatric syndromes.
    [Show full text]
  • Mitochondria-Localized AMPK Responds to Local Energetics and Contributes to Exercise and Energetic Stress-Induced Mitophagy
    Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy Joshua C. Drakea,b,1, Rebecca J. Wilsona,c, Rhianna C. Lakera, Yuntian Guana,d, Hannah R. Spauldinga, Anna S. Nichenkob, Wenqing Shena, Huayu Shanga, Maya V. Dorna, Kian Huanga, Mei Zhanga,e, Aloka B. Bandarab, Matthew H. Brisendineb, Jennifer A. Kashatusf, Poonam R. Sharmag, Alexander Younga, Jitendra Gautamh, Ruofan Caoi, Horst Wallrabei,j, Paul A. Changk, Michael Wongk, Eric M. Desjardinsl,m, Simon A. Hawleyn, George J. Christg,o, David F. Kashatusf, Clint L. Millerc,g,p,q, Matthew J. Wolfa,e, Ammasi Periasamyi,j, Gregory R. Steinbergl,r, D. Grahame Hardien, and Zhen Yana,d,e,s,1 aCenter for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville,VA 22908; bDepartment of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; cDepartment of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908; dDepartment of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908; eDepartment of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908; fDepartment of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; gDepartment of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908; hDepartment
    [Show full text]