Debbie Lewis – Written Evidence (RSK0021)

Total Page:16

File Type:pdf, Size:1020Kb

Debbie Lewis – Written Evidence (RSK0021) Debbie Lewis – Written evidence (RSK0021) Resilience Preparedness Consultant, Axiom (Alderney) Limited, acting in an individual capacity 1. Introduction 1.1 The effects from Near-Earth Objects (NEO’s) are similar to those that have been experienced by natural disasters, such as the extent of the local and regional destruction and devastation caused by the Japan earthquake and tsunami that occurred on March 11th 2011. The hazard exists from both larger asteroids over 1km in diameter and from those under 100 metres in diameter. It is inevitable that, on an indeterminate date, the Earth will be in collision with a NEO. Although great uncertainty exists as to when such an event can be expected, it is another case, as with both the 2009 swine flu pandemic and the 2019 Corona Virus, of ‘when, not if.’ This assertion is evidenced from the numerous impact events which have occurred through the Earth’s history, such as the Yucatan Peninsula impact which resulted in the formation of the 200 km crater at Chicxulub in Mexico, 65 million years ago, Tunguska in 1908 which devastated 2000 km2 of forest and more recently, the Chelyabinsk meteor that entered Earth’s atmosphere, over Russia, on February 15th 2013. 1.2 The hazard to humanity from NEO’s demands the engagement of political establishments and international communities to review the severity of the risk and the likelihood of it occurring. In order to facilitate this, the NEO impact hazard ideally needs to be more considered as part of the UK’s National Security Risk Assessment. If, as a nation and through our membership of international community, we are able to substantially improve the collective resilience to the effects of NEO impact events, then we are also able to improve the resilience and response to emergencies from other natural hazard events. 2. Significant Extreme Risks 2.1 The most significant extreme risks that the UK faces are those posed by asteroids, meteors and comets. 2.2 These are discrete risks that have arisen from a naturally occurring phenomenon that, currently, is only recognised by the scientific community and does not appear to be fully understood by civil servants, politicians, non- specialist emergency planners and responders, nor by the general public. 2.3 In the NEO context, the term ‘extreme risk’ is defined as a potential event that is unlikely to occur but could have a catastrophic impact on human welfare, behaviour, essential services, security, the environment and the economy. 3. Types of Risks 3.1 The UK is poorly prepared to respond to impact events from asteroids, meteors and comets. 3.2 The reason for this is that the status quo determines that there is, perhaps understandably, more emphasis upon ensuring that lessons are leaned from previous incidents, so as to promote better preparedness for future disasters of the same or similar effect. However, there is a danger with preparing for previous incidents that the potential for new risks emerging and ‘Black Swan’ events are not effectively considered. An example of such an event was the eruption of the Eyjafjallajökull volcano in Iceland in 2010, the volcanic ash cloud from which severely disrupted aviation and led to stranded, displaced people and interrupted supply chains. 3.3 This type of event had not been considered, nor risk assessed, prior to its occurrence in 2010 and as a result it was not included within the UK’s National Security Risk Assessment. Consequently, no preparation to mitigate the effects from this risk had been considered nor put in place prior to this event occurring. However, since this event, the risk has subsequently been added to the NSRA. 3.4 The current arrangements for considering new risks needs to be reviewed and, in particular, a broader approach taken as to how new and emerging risks are assessed and managed. Ideally, scientists, subject-matter experts and specialist emergency planning professionals need to be more fully engaged in the process, conducting the required research and analysis when new risks are being considered for inclusion on the National Security Risk Assessment. 4. Risk Assessment 4.1 The Government’s approach to the risk assessment process could be strengthened by including the input from subject matter experts, particularly those who work in this area in the UK, such as The Spaceguard Centre, which is home to the National Near Earth Object Information Centre, as well as Universities, scientists, academics, and emergency planning professionals with expertise pertaining to the understanding of the risk posed by asteroids, meteors and comets. 4.2 The UK Space Agency and the Cabinet Office Civil Contingencies Secretariat could also be strengthened to coordinate and collaborate with other space agencies such as NASA’s ‘Planetary Defense Coordination Office’ and ESA’s NEO Coordination Centre as well as to enhance the role of The Spaceguard Centre. 4.3 The UK Government should also be aware of the Discovery programme which seeks to: identify and quantify those asteroids, meteors and comets that could be on a collision course with the Earth; analyse whether the UK lies within the risk corridor; and assess the potential impact site to confirm whether that is either in the UK or a UK dependent territory and if British interests overseas could also be affected by an impact event. 4.4 Any panel of experts advising the Government should include representation from as wide a cross section of related disciplines as is appropriate to the likely impact of the hazard. 4.5 Scientific advice, which encompasses social sciences, engineering and technology, should be a central component of the National Security Risk Assessment (NSRA) process. The Government Chief Scientific Adviser (GCSA) and the Government Office for Science (GO-Science), in conjunction with the Cabinet Office, need to be officially participative in of all the NSRA stages. The CGSA, once satisfied that all risks requiring scientific involvement and evaluation have been fully considered, should sign off the NSRA. Further to this, consideration should be given for GO-Science to be located within the Cabinet Office, whilst retaining a semi-autonomous status. In addition to this the Cabinet Office should also include representation and participation from the UK Space Agency as the nominated lead government department for the NEO impact hazard. 4.6 As the NSRA is an understandably unpublished document, public and parliamentary assurance could be provided by an independent scientific advisory committee, which would be established to provide risk assessment advice to the Cabinet Office. This would be similar to the previous standing committee, the Scientific Advisory Panel on Emergency Response (SAPER) which provided scientific advice to the GCSA informed by a variety of sources such as the ministries, agencies and wider academia. This would ensure that effective decision-making mechanisms were in place prior to a disaster occurring, rather than the Scientific Advisory Group for Emergencies being activated only during the response to provide scientific advice to the government. It cannot be emphasised enough that, where a NEO impact event is concerned, this would be far too late to provide the scientific advice required. 4.7 The risk assessment process required for a NEO impact, would additionally benefit from the previously established behavioural insight team. The involvement of the team would be required for determining public policy in relation to civil protection in order to better understand human behaviour. Further consideration should be given to the appointment for the role of the Government Chief Social Scientist (GCSS) working with the GCSA and the Cabinet Office. 4.8 More openness and transparency are required in which risk assessments are conducted, along with the rationale used for decision-making. Consideration should be given to the provision of available information such as scientific papers and following the NEO characterisation missions, publication of the estimated size, scale and prediction of likely fatalities consequent upon an impact event occurring. 4.9 In conclusion, the Government should ensure that it identifies and considers as wide a range of risks as possible by reviewing the ‘register’ of those currently involved in the risk assessment process, broadening its scope through the inclusion of more subject matter experts. Submissions should be sought from a wider audience than that included under current arrangements, making these more inclusive and transparent. 5. Risks Currently Excluded from the National Security Risk Assessment 5.1 Within Annex B, Full Scenario Assessments, of the 2019 NSRA is the inclusion of section 07, entitled, “Risks Under Review”. This section provides a list of risks and the rationale for monitoring them. Although reassuringly this list is headed up by the NEO impact risk, the reasonable worst-case scenario is only based on a 50m diameter asteroid hitting the Earth and the example cites just one impact event, that of Tunguska which occurred in 1908. 5.2 Some rather one dimensional and spurious analysis has been conducted which asserts that, “a land fall of such an impact somewhere within the UK would be estimated to occur on average once every 200,000 years”. As a result of this observation the likelihood of occurrence is calculated to fall below the threshold required for inclusion of the NSRA. 5.3 This rather limited perspective fails to take into consideration other aspects of this hazard, such as impact scenario planning for the different types and sizes of asteroid; an awareness of previous impact events and their consequences; the impacts from small objects; and an awareness of the possible environmental impact effects. This information needs to be taken into consideration when determining the extent of the risk posed. The sheer diversity of likely NEO events and their likely effects - notwithstanding the singular example of the 1908 Tunguska event - are illustrated in the attached four annexes.
Recommended publications
  • Direct Fusion Drive Rocket for Asteroid Deflection
    Direct Fusion Drive Rocket for Asteroid Deflection IEPC-2013-296 Presented at the 33rd International Electric Propulsion Conference, The George Washington University, Washington, D.C., USA October 6{10, 2013 Joseph B. Mueller∗ and Yosef S. Raziny and Michael A. Paluszek z and Amanda J. Knutson x and Gary Pajer { Princeton Satellite Systems, 6 Market St, Suite 926, Plainsboro, NJ, 08536, USA Samuel A. Cohenk Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ, 08540 and Allan H. Glasser∗∗ University of Washington, Department of Aeronautics and Astronautics, Guggenheim Hall, Seattle, WA 98195 Traditional thinking presumes that planetary defense is only achievable with years of warning, so that a mission can launch in time to deflect the asteroid. However, the danger posed by hard-to-detect small meteors was dramatically demonstrated by the 20 meter Chelyabinsk meteor that exploded over Russia in 2013 with the force of 440 kilotons of TNT. A 5-MW Direct Fusion Drive (DFD) engine allows rockets to rapidly reach threaten- ing asteroids that and deflect them using clean burning deuterium-helium-3 fuel, a compact field-reversed configuration, and heated by odd-parity rotating magnetic fields. This paper presents the latest development of the DFD rocket engine based on recent simulations and experiments as well as calculations for an asteroid deflection envelope and a mission plan to deflect an Apophis-type asteroid given just one year of warning. Armed with this new defense technology, we will finally have achieved a vital capability for ensuring our planet's safety from impact threats. ∗Senior Technical Staff, [email protected].
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]
  • 19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 Megaton Airburst ~1500 People Injured
    Astronomy 241: Foundations of Astrophysics I 19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 megaton airburst ~1500 people injured (C) Don Davis Asteroids 101 — B612 Foundation Great Daylight Fireball: 1972 Earthgrazer: The Great Daylight Fireball of 1972 Tunguska Meteor: 1908 Asteroid or comet: D ~ 40 m ~10 megaton airburst ~40 km destruction radius The Tunguska Impact Tunguska: The Largest Recent Impact Event Barringer Crater: ~50 ky BP M-type asteroid: D ~ 50 m ~10 megaton impact 1.2 km crater diameter Meteor Crater — Wikipedia Chicxulub Crater: ~65 My BP Asteroid: D ~ 10 km 180 km crater diameter Chicxulub Crater— Wikipedia Comets and Meteor Showers Comets shed dust and debris which slowly spread out as they move along the comet’s orbit. If the Earth encounters one of these trails, we get a Breakup of a Comet meteor shower. Meteor Stream Perseid Meteor Shower Raining Perseids Major Meteor Showers Forty Thousand Meteor Origins Across the Sky Known Potentially-Hazardous Objects Near-Earth object — Wikipedia Near-Earth object — Wikipedia Origin of Near-Earth Objects (NEOs) ! WHAM Mars Some fragments wind up on orbits which are resonant with Jupiter. Their orbits grow more elliptical, finally entering the inner solar system. Wikipedia: Asteroid belt Asteroid Families Many asteroids are members of families; they have similar orbits and compositions (indicated by colors). Asteroid Belt Populations Inner belt asteroids (left) and families (right). Origin of Key Stages in the Evolution of the Asteroid Vesta Processed Family Members Crust Surface Magnesium-Sliicate Lavas Meteorites Mantle (Olivine) Iron-Nickle Core Stony Irons? As smaller bodies in the early Solar System Heavier elements sink to the Occasional impacts with other bodies fall together, the asteroid agglomerates.
    [Show full text]
  • Assessment of Morelian Meteoroid Impact on Mexican Environment
    atmosphere Article Assessment of Morelian Meteoroid Impact on Mexican Environment Maria A. Sergeeva 1,2,*, Vladislav V. Demyanov 3,4, Olga A. Maltseva 5 , Artem Mokhnatkin 6, Mario Rodriguez-Martinez 7 , Raul Gutierrez 7, Artem M. Vesnin 3, Victor Jose Gatica-Acevedo 1,8, Juan Americo Gonzalez-Esparza 1 , Mark E. Fedorov 4, Tatiana V. Ishina 4, Marni Pazos 9, Luis Xavier Gonzalez 1,2, Pedro Corona-Romero 1,2, Julio Cesar Mejia-Ambriz 1,2, Jose Juan Gonzalez-Aviles 1,2, Ernesto Aguilar-Rodriguez 1, Enrique Cabral-Cano 10 , Blanca Mendoza 11, Esmeralda Romero-Hernandez 12, Ramon Caraballo 1 and Isaac David Orrala-Legorreta 1,13 1 SCiESMEX, LANCE, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan C.P. 58089, Mexico; [email protected] (V.J.G.-A.); americo@igeofisica.unam.mx (J.A.G.-E.); xavier@igeofisica.unam.mx (L.X.G.); p.coronaromero@igeofisica.unam.mx (P.C.-R.); jcmejia@geofisica.unam.mx (J.C.M.-A.); jjgonzalez@igeofisica.unam.mx (J.J.G.-A.); ernesto@igeofisica.unam.mx (E.A.-R.); rcaraballo@igeofisica.unam.mx (R.C.); [email protected] (I.D.O.-L.) 2 CONACYT, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan C.P. 58089, Mexico 3 Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; [email protected] (V.V.D.); [email protected] (A.M.V.) 4 Irkutsk State Transport University, 664074 Irkutsk, Russia; [email protected] (M.E.F.); [email protected] (T.V.I.) 5 Institute for Physics, Southern Federal University, 344090 Rostov-on-Don, Russia; [email protected] Citation: Sergeeva, M.A.; Demyanov, 6 Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 125047 Moscow, Russia; V.V.; Maltseva, O.A.; Mokhnatkin, A.; [email protected] 7 Rodriguez-Martinez, M.; Gutierrez, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan C.P.
    [Show full text]
  • Global Challenges Foundation
    Artificial Extreme Future Bad Global Global System Major Asteroid Intelligence Climate Change Global Governance Pandemic Collapse Impact Artificial Extreme Future Bad Global Global System Major Asteroid Global Intelligence Climate Change Global Governance Pandemic Collapse Impact Ecological Nanotechnology Nuclear War Super-volcano Synthetic Unknown Challenges Catastrophe Biology Consequences Artificial Extreme Future Bad Global Global System Major Asteroid Ecological NanotechnologyIntelligence NuclearClimate WarChange Super-volcanoGlobal Governance PandemicSynthetic UnknownCollapse Impact Risks that threaten Catastrophe Biology Consequences humanArtificial civilisationExtreme Future Bad Global Global System Major Asteroid 12 Intelligence Climate Change Global Governance Pandemic Collapse Impact Ecological Nanotechnology Nuclear War Super-volcano Synthetic Unknown Catastrophe Biology Consequences Ecological Nanotechnology Nuclear War Super-volcano Synthetic Unknown Catastrophe Biology Consequences Artificial Extreme Future Bad Global Global System Major Asteroid Intelligence Climate Change Global Governance Pandemic Collapse Impact Artificial Extreme Future Bad Global Global System Major Asteroid Intelligence Climate Change Global Governance Pandemic Collapse Impact Artificial Extreme Future Bad Global Global System Major Asteroid Intelligence Climate Change Global Governance Pandemic Collapse Impact Artificial Extreme Future Bad Global Global System Major Asteroid IntelligenceEcological ClimateNanotechnology Change NuclearGlobal Governance
    [Show full text]
  • Cloudy with a Chance of Near-Earth Asteroids
    Cloudy with a chance of near-Earth asteroids KU LEUVEN - UGENT MASTER OF SPACE STUDIES 2018-2019 CORNEEL BOGAERT Space Sciences and Exploration Professor: C. Waelkens Table of contents Introduction ................................................................................................................................. 1 1. Asteroids .................................................................................................................................. 2 1.1 Near-Earth asteroids ..................................................................................................................... 3 2. Potentially hazardous asteroids ................................................................................................ 4 2.1 Remote sensing from Earth ........................................................................................................... 5 2.2 Missions in space ........................................................................................................................... 6 3. Exploration missions to NEAs .................................................................................................... 8 3.1 Asteroid flybys ............................................................................................................................... 8 3.2 NEAR Shoemaker ........................................................................................................................... 9 3.3 Hayabusa (MUSES-C) & Hayabusa2 ............................................................................................
    [Show full text]
  • Collisions in Space: the Threat of Asteroid Impacts
    Collisions in Space: The Threat of Asteroid Impacts Chelyabinsk meteor, Feb. 15, 2013 Dr. Melissa N. Hayes-Gehrke Astronomy Dept. University of Maryland Mid-Atlantic Senior Physicists Group Sep. 17, 2014 Image from asterisk.apod.com/viewtopic.php?t=30724 1 Talk Outline Comet Shoemaker-Levy 9 impact sites on Jupiter, 1994 ● What we've learned from past impacts ● Which asteroids pose an impact threat? ● What could we do to Image by JPL/NASA/STScI stop an impact? 2 What We've Learned from Past Impacts ● Meteor Crater Meteor Crater ● Tunguska ● K-T Impact ● Shoemaker-Levy 9 ● Chelyabinsk Image copyright M.N. Hayes-Gehrke 3 About 50,000 years ago, a 50-m metallic asteroid impacted the surface in Arizona at about 12 km/s, creating Meteor Crater. Approx. 1.5 km across, 175 m deep Image by D. Roddy 4 From late 1800s to mid-1900s, Meteor Crater's impact origin was debated. Image by NASA 5 Earth Observatory By studying Meteor Crater, scientists have learned the basics of crater formation. 6 In 1908, a 40-m meteoroid entered the Earth's atmosphere over Tunguska, Siberia, and was visible as a bright fireball. artist's conception Image copyright William K. Hartmann 7 It entered the Earth's atmosphere at 15 km/s and fragmented explosively 8 km above the surface. artist's conception 8 Image copyright William K. Hartmann The airburst created a huge fireball and shockwave, which flattened 2200 km2 and ignited a huge forest fire. Image from http://members.aol.com/mrb26/ 9 By studying the Tunguska event, scientists learned that an impactor does not have to hit the surface in order to be destructive.
    [Show full text]
  • Small Near-Earth Asteroids As a Source of Meteorites
    Small Near-Earth Asteroids as a Source of Meteorites Jiří Borovička and Pavel Spurný Astronomical Institute of the Czech Academy of Sciences Peter Brown University of Western Ontario __________________________________________________________________________ Small asteroids intersecting Earth’s orbit can deliver extraterrestrial rocks to the Earth, called meteorites. This process is accompanied by a luminous phenomena in the atmosphere, called bolides or fireballs. Observations of bolides provide pre-atmospheric orbits of meteorites, physical and chemical properties of small asteroids, and the flux (i.e. frequency of impacts) of bodies at the Earth in the centimeter to decameter size range. In this chapter we explain the processes occurring during the penetration of cosmic bodies through the atmosphere and review the methods of bolide observations. We compile available data on the fireballs associated with 22 instrumentally observed meteorite falls. Among them are the heterogeneous falls Almahata Sitta (2008 TC3) and Benešov, which revolutionized our view on the structure and composition of small asteroids, the Příbram-Neuschwanstein orbital pair, carbonaceous chondrite meteorites with orbits on the asteroid-comet boundary, and the Chelyabinsk fall, which produced a damaging blast wave. While most meteoroids disrupt into fragments during atmospheric flight, the Carancas meteoroid remained nearly intact and caused a crater-forming explosion on the ground. 1. INTRODUCTION Well before the first asteroid was discovered, people unknowingly had asteroid samples in their hands. Could stones fall from the sky? For many centuries, the official answer was: NO. Only at the end of the 18th century and the beginning of the 19th century did the evidence that rocks did fall from the sky become so overwhelming that this fact was accepted by the scientific community.
    [Show full text]
  • Two Years On, Source of Russian Chelyabinsk Meteor Remains Elusive 13 February 2015
    Two years on, source of Russian Chelyabinsk meteor remains elusive 13 February 2015 between Chelyabinsk and 1999 NC43 is unlikely. "The composition of Chelyabinsk meteorite that was recovered after the event is similar to a common type of meteorite called LL chondrites. However, the near-Earth asteroid has a composition that is distinctly different from this," Reddy said. They study also showed that linking specific meteorites to an asteroid is extremely difficult due to the chaotic nature of the orbits of these bodies. More information: "Link Between the Potentially Hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk fireball recorded by a dashcam from Chelyabinsk Meteoroid Tenuous," Vishnu Reddy et Kamensk-Uralsky north of Chelyabinsk where it was still al., Icarus, Volume 252, 15 May 2015. Visit dawn. www.psi.edu/news/reddypaper to see the paper. Two years after a 20-meter rock slammed into the Earth after a meteoroid dramatically fragmented in Provided by Planetary Science Institute the atmosphere over the Chelyabinsk region in Russia and injured hundreds of people, its parent asteroid remains elusive, a new paper published in the journal Icarus shows. Astronomers had originally predicted that a 2-km near-Earth asteroid (NEA) designated (86039) 1999 NC43 could be the source body from which the Chelyabinsk meteoroid was ejected prior to its encounter with the Earth. "These two bodies shared similar orbits around the Sun, and initial studies suggested even similar compositions," said Planetary Science Institute research scientist Vishnu Reddy, lead author of "Link Between the Potentially Hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk Meteoroid Tenuous" that appears in Icarus.
    [Show full text]
  • HAYABUSA2: a Significant Milestone on the Road to Space Settlements
    HAYABUSA2 A SIGNIFICANT MILESTONE ON THE ROAD TO SPACE SETTLEMENTS BY DALE SKRAN Hayabusa 2 plans to rendezvous with an asteroid, land a small probe plus three mini rovers on its surface, and then return samples to Earth. IMAGE CREDIT: © JAXA/AKIHIRO IKESHITA/KYODO 26 Fall 2015 AD ASTRA HAYABUSA2 A SIGNIFICANT MILESTONE ON THE ROAD TO SPACE SETTLEMENTS Fall 2015 AD ASTRA 27 ilestone 18 in the NSS Space Settlement Roadmap is titled “Exploration, Utilization, and Settlement Mof Asteroids” (http://www.nss.org/settlement/ roadmap/RoadmapPart6.html). Asteroids have long beckoned as potential sources of easily reached resources in space. Since asteroids have extremely small gravity fields, mining them at low cost becomes a real possibility. When this is added to the fact that many asteroids orbit the Sun in such a fashion that they can be more easily reached energetically (i.e. using less fuel) than the lunar surface, mining becomes an even more attractive idea. The third enabler for asteroid mining lies in the diverse composition of asteroids, which includes carbon, water, iron, and the platinum-group metals. IMAGE CREDIT © JAXA Mining the asteroids is clearly a long-term project, but every Engineers with the Japan Aerospace Exploration Agency work on Hayabusa 2 as the asteroid probe is attached to its H-2A rocket ahead of a journey starts with a single step. Or two steps. Hayabusa2 is December 3, 2014 (JST) launch target at the Tanegashima Space Center. one of those second steps. demonstrated an impressive final feat of engineering while Launched December 3, 2014 on a Japanese H-IIA rocket returning to the desert in Woomera, Australia, when the from the Tanegashima Space Center, Hayabusa2 is the sample return capsule underwent peak deceleration of 25 second in a series of Japanese asteroid sample return G, with heat about 30 times that experienced by the Apollo missions.
    [Show full text]
  • Meteoroids, Meteors and Meteorites
    Meteoroids, Meteors and Meteorites Learn about formation of meteroids. Ronan Smith, Cardiff University; Jorge Rivero González, Leiden Observatory; Christian Eistrup, Leiden Observatory AGE LEVEL 6 - 12 Primary, Middle School, Secondary TIME GROUP 1h30 Group SUPERVISED COST PER STUDENT Yes Low Cost LOCATION Small Indoor Setting (e.g. classroom) CORE SKILLS Asking questions, Analysing and interpreting data, Engaging in argument from evidence, Communicating information TYPE(S) OF LEARNING ACTIVITY Interactive Lecture, Lecture Demonstration, Case Study KEYWORDS Meteors, meteorites, asteroids, shooting stars, comets SUMMARY GOALS • Learn the difference between meteoroids, meteors and meteorites • Learn that shooting stars are not stars but meteors • Learn that meteorites can affect life on Earth • Learn about the origins of meteoroids LEARNING OBJECTIVES • Explain the differences between meteoroids, meteors and meteorites • Demonstrate how meteoroids are formed using flint stones. Students will demonstrate how small pieces can break off when two asteroids collide or when a comet warms and begins to melt. • Explain that shooting stars are not actually stars • Understand the impact of a meteorite EVALUATION • Students should list the differences between meteoroids, meteors and meteorites • Students should explain the process of how meteoroids are formed, from both asteroids and comets • Students should understand that shooting stars are meteors • Students should provide examples of how meteorite impacts have affected life on Earth MATERIALS • Rocks, preferably flint • Safety glasses • Cup (or similar-sized freezer-proof container for use as a mould) • Water • Gravel sized rocks and/or sand • Freezer • Printed worksheets • Projector for watching video and images. BACKGROUND INFORMATION The Solar System not only consists of planets and satellites but also many other objects such as asteroids, comets and meteoroids.
    [Show full text]
  • An Automated Bolide Detection Pipeline for GOES GLM
    Highlights An Automated Bolide Detection Pipeline for GOES GLM Jeffrey C. Smith,Robert L. Morris,Clemens Rumpf,Randolph Longenbaugh,Nina McCurdy,Christopher Henze,Jessie Dotson • GOES Geostationary Lightning Mappers can be used to detect bolides. • A Random Forest detection algorithm has been deployed on the NASA Advanced Supercomputing facility Pleiades supercomputer. • Bolide light curves are promptly published on a NASA hosted publicly accessible website, https://neo-bolide.ndc.nasa.gov. arXiv:2106.09189v1 [astro-ph.EP] 17 Jun 2021 An Automated Bolide Detection Pipeline for GOES GLM a,b < a,b b,c d Jeffrey C. Smith , , Robert L. Morris , Clemens Rumpf , Randolph Longenbaugh , b b b Nina McCurdy , Christopher Henze and Jessie Dotson aThe SETI Institute, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA bNASA Ames Research Center, Moffett Field, CA 94035, USA cSTC, NASA Research Park, Moffett Field, CA 94035, USA dSandia National Laboratories, Albuquerque, NM 87185, USA ARTICLEINFO ABSTRACT Keywords: The Geostationary Lightning Mapper (GLM) instrument onboard the GOES 16 and 17 satellites Bolide detection has been shown to be capable of detecting bolides (bright meteors) in Earth’s atmosphere. Due to GOES GLM its large, continuous field of view and immediate public data availability, GLM provides a unique Random forest classifier opportunity to detect a large variety of bolides, including those in the 0.1 to 3 m diameter range and complements current ground-based bolide detection systems, which are typically sensitive to smaller events. We present a machine learning-based bolide detection and light curve generation pipeline being developed at NASA Ames Research Center as part of NASA’s Asteroid Threat Assessment Project (ATAP).
    [Show full text]