Sunrise, Sunset, and Shadows

Total Page:16

File Type:pdf, Size:1020Kb

Sunrise, Sunset, and Shadows Activities inspired by children’s literature Sunrise, Sunset, and Shadows By Christine Anne Royce ecember brings the winter solstice, the day with tions on Earth receives. In addition to the amount of sun- the shortest amount of sunlight for the northern light being extreme, the book highlights one of the results Dhemisphere. Students can notice the pattern of of that phenomenon, which is that this area also has great days getting darker earlier across the United States up to temperature extremes throughout the year. this point and then notice as the amount of sunlight starts to increase in the following months. Through making ob- servations and collecting data about sunrise and sunset, Curricular Connections students can begin to develop an understanding of the Within the first activity and through the reading of Sun Earth’s place in relationship to the Sun. Up, Sun Down, students “collect data that can be used to make comparisons” and “use [these] observations to This Month’s Trade Books describe patterns in the natural world in order to answer scientific questions” (NGSS Lead States 2013, p. 14). Sun Up, Sun Down Through both activities, students make their own obser- By Gail Gibbons vations of shadows and the amount of daylight through ISBN: 978-0-15-282782-3 using available media and previously collected data. Then Voyager Books students are able to “[m]ake observations at different 32 pages times of year to relate the amount of daylight to the time of Grades K–4 year” (NGSS Lead States 2013, p. 14). Older students are able to take information about the Synopsis time of sunrise, sunset, and amount of daylight Fairbanks, Alaska, receives to “[r]epresent data in graphical displays to This book provides an overview of many different ideas reveal patterns” (NGSS Lead States 2013, p. 49). The abil- related to the Sun, ranging from the apparent movement ity to display available data in a graphical representation of the Sun in the sky as the day goes from dawn to dusk and research data for their own location allows students to to how shadows are formed to how sunlight helps living analyze and interpret data, thus allowing them to visualize things on Earth. the relationships associated with the amount of daylight in Arctic Lights, Arctic Nights a location and the season or time of the year, and in the case By Debbie S. Miller of Fairbanks, Alaska, the impact on the average tempera- Illustrated by Jon Van Zyle ture. In the explain phase, helping students to connect the ISBN: 978-0-8027-9636-3 amount of daylight with the position of the Earth in its orbit Walker and Company around the Sun will aid students in better understanding 32 pages the observable patterns. Finally, by using the Alaska loca- Grades 3–5 tion, their own location, and a location closer to the equator, students are able to see how latitude affects the amount of Synopsis daylight received and the resultant pattern. ■ Different animals are featured in this story as Fairbanks, Christine Anne Royce ([email protected]) is a profes- Alaska, is used to provide the basis for examining the sor at Shippensburg University in Shippensburg, Penn- drastic variations in the amount of sunlight different loca- sylvania. 16 Science and Children Materials Grades K–2: My Shadow From • Sun Up, Sun Down • student data sheet (see NSTA Connection) the Sun • flashlight per pair of students • small solid object (e.g., stack of blocks, candle, Purpose soda can) • sidewalk chalk Students investigate how the location of a light source af- • compass to locate south fects shadows. Students will track their own shadow at dif- ferent points in the day to make observations. Engage Ask the students if they have ever seen their shadow when they were outside on a sunny day and to describe what they have seen. Many comments will focus on how the shadow seems to get bigger or smaller at points, or that it “follows” the student. Have the students watch the “What causes a shadow” video up to the 2:46 point (see Internet Resources). Ask the students to think about what the characters stated: that the Sun causes a shadow when someone is outside. Explore Read Sun Up, Sun Down to the students and stop at the appropriate pages to ask questions. • The page where the girl is out of bed and pointing K–5 – Integration of Knowledge and Ideas). at the floor: Has anyone seen patterns on your floor Allowing students to manipulate the flashlight to rep- made by the Sun like that? What are these patterns resent the Sun will help them understand that the location called? of the Sun in the sky is the reason for the different lengths • The pages where the girl and the cat are running of the shadows. The story helps students understand that in summer and winter: Look at the shadows in the a shadow occurs when an object gets between the Sun and pictures and the position of the Sun. Where are the cat the surface of the Earth. and the girl located in relationship to the Sun and the shadow? (They are between the Sun and the shadow.) Explain • The pages where the girl and the cat are standing Using the student data sheet, ask the students to illustrate with their back to the Sun: What happens to the girl’s each shadow length when the flashlight is held near the shadow when the Sun is directly overhead? edge of the table, directly above the object, and in between • The pages where Sun is almost set and girl’s shadow the table and directly overhead. Have the students explain is much longer: What happens to the length of the how each illustration they drew from their investigation is girl’s shadow when the Sun is setting or closer to the similar to the girl’s shadow in the book (CC ELA: Read- horizon? ing Standards for Informational Texts K–5 – Integration of Knowledge and Ideas). After reading the book, ask pairs of students to inves- tigate how shadows are created using a flashlight to repre- sent the Sun and a small object. Ask them to create shad- Elaborate ows that represent the types of shadows the young girl saw in the story. Specifically, ask them to recreate the scenes Using classroom volunteers or parents to help, take the where the girl’s shadow is very long (Sun low in the sky students outside to an area on a playground where they at the end of the book), shorter (when the girl is running), can use sidewalk chalk. Students will work in pairs and and nonexistent (when the Sun was directly overhead) this activity will be repeated three times during the school (CC ELA: Reading Standards for Informational Texts day—first thing in the morning, midday when the Sun is at December 2015 17 directly at the Sun. Record the time in the shadow. Repeat for the different partner and then repeat at the remaining two points in a day. If traced cor- rectly, students will be able to see the length of the shadow vary based on the time of the day and also the movement of the shadow due to the apparent movement of the Sun in the sky from east to west. If the students are facing south, east is at their left, meaning the first shadow will be to their right and will move behind them and to their left through- out the day. Students should record how their shadow changed during the day after making observations. Evaluate Through questions during the short video introduction and the reading of the text, you will be able to develop initial understanding of what students know and think about shadows as well as their understanding of how the its highest point, and once at the very end of the day. Ask shadow changes based on the position of the Sun in the them to work with their partner and take turns outlining sky. Students are also asked to illustrate their understand- their own shadows. Select one direction for the students ing of shadow length based on light source position using to face, such as south, and have them stand there while their data sheets. Finally, in the elaborate section, students their partner identifies their shadow. Using the sidewalk are asked to use the evidence from their own shadow to chalk, the partner should trace the shadow on the ground explain their observations about the movement of the and then also note where the Sun in the sky is in relation shadow over time. to the shadow. Remind students they should never look Connecting to the Next Generation Science Standards (NGSS Lead States 2013): 1-ESS1 Earth’s Place in the Universe www.nextgenscience.org/1ess1-earth-place-universe Science and Engineering Practice Connections to Classroom Activity Students: Planning and Carrying Out • manipulate a flashlight to create shadows of different lengths similar to Investigations the ones in the story. • trace their partner’s shadow to determine how their shadows change throughout the day. Disciplinary Core Idea ESS1.A The Universe and Its Stars • trace their partner’s shadow to determine how their shadows change Patterns of the motion of the Sun, throughout the day. Moon, and stars in the sky can be • observe that their shadow gets shorter as they move toward noon and observed, described, and predicted then longer again. (1-ESS1-1). Crosscutting Concept Patterns • observe that their shadow gets shorter as they move toward noon and then longer again. • observe that when facing south, their shadow moves from their right to their left throughout the day representing the apparent movement of the sun from east to west.
Recommended publications
  • View and Print This Publication
    @ SOUTHWEST FOREST SERVICE Forest and R U. S.DEPARTMENT OF AGRICULTURE P.0. BOX 245, BERKELEY, CALIFORNIA 94701 Experime Computation of times of sunrise, sunset, and twilight in or near mountainous terrain Bill 6. Ryan Times of sunrise and sunset at specific mountain- ous locations often are important influences on for- estry operations. The change of heating of slopes and terrain at sunrise and sunset affects temperature, air density, and wind. The times of the changes in heat- ing are related to the times of reversal of slope and valley flows, surfacing of strong winds aloft, and the USDA Forest Service penetration inland of the sea breeze. The times when Research NO& PSW- 322 these meteorological reactions occur must be known 1977 if we are to predict fire behavior, smolce dispersion and trajectory, fallout patterns of airborne seeding and spraying, and prescribed burn results. ICnowledge of times of different levels of illumination, such as the beginning and ending of twilight, is necessary for scheduling operations or recreational endeavors that require natural light. The times of sunrise, sunset, and twilight at any particular location depend on such factors as latitude, longitude, time of year, elevation, and heights of the surrounding terrain. Use of the tables (such as The 1 Air Almanac1) to determine times is inconvenient Ryan, Bill C. because each table is applicable to only one location. 1977. Computation of times of sunrise, sunset, and hvilight in or near mountainous tersain. USDA Different tables are needed for each location and Forest Serv. Res. Note PSW-322, 4 p. Pacific corrections must then be made to the tables to ac- Southwest Forest and Range Exp.
    [Show full text]
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • DTA Scoring Form
    Daytime Astronomy SHADOWS Score Form Date ____/____/____ Student _______________________________________ Rater _________________ Problem I. (Page 3) Accuracy of results Draw a dot on this map to show where you think Tower C is. Tower C is in Eastern US Tower C is in North Eastern US Tower C is somewhere in between Pennsylvania and Maine Modeling/reasoning/observation How did you figure out where Tower C is? Matched shadow lengths of towers A and B/ pointed flashlight to Equator Tried different locations for tower C/ inferred location of tower C Matched length of shadow C/considered Latitude (distance from Equator) Matched angle of shadow C/ considered Longitude (East-West direction) Problem II. (Page 4) Accuracy of results How does the shadow of Tower A look at 10 AM and 3 PM?... Which direction is the shadow moving? 10 AM shadow points to NNW 10 AM shadow is shorter than noon shadow 3 PM shadow points to NE 3 PM shadow is longer than noon shadow Clockwise motion of shadows Modeling/reasoning/observation How did you figure out what the shadow of Tower A looks like at 10 AM and 3 PM? Earth rotation/ "Sun motion" Sunlight coming from East projects a shadow oriented to West Sunlight coming from West projects a shadow oriented to East Sunlight coming from above us projects a shadow oriented to North Sun shadows are longer in the morning than at noon Morning Sun shadows become shorter and shorter until its noon The shortest Sun shadow is at noon Sun shadows are longer in the afternoon than at noon Afternoon Sun shadows become longer and longer until it gets dark (Over, please) - 1 - 6/95 Problem III.
    [Show full text]
  • Sky Watch Heard Most Weekdays on WFWM, FSU's Public Supported
    Night Highlights – Dec.2014 through Dec.2015 by Dr. Bob Doyle, Frostburg State Planetarium Dr. Doyle’s email is: [email protected]: His office phone number is (301) 687-7799 MOON – Earth’s companion both orbits Earth and rotates in 27.32 E. days so one side of moon always faces Earth (while other side is turned away from us). Moon’s cycle of lighted shapes (phases) lasts 29.53 E. days, as the phases also depend on direction of sun (appears to move 30 degrees eastward each month along zodiac). The moon is seen about 13 days growing in the evening from a slender crescent ( ) ) to Full, followed by an equal time shrinking (mainly seen in the a.m. sky) and then 3 days hidden in sun’s glare. Key Moon Phases (D) moon ½ full in evening (best for crater & mountain viewing ) & (O) full moon (see all lava plains) (Dec. ’14, 6 -O, 28 – D)) // (Jan. ’15, 4 - O, 26 - D), // (Feb. ’15, 3 – O, 25 - D) // (Mar. 5 – O, 27 – D) (Apr. 4 – O, 25 – D), // ( May 3 – O, 25 - D) // (Jun., 2- O, 27 – D)) // (Jul., 1 – O, 24 –D, 31 –O (Blue Moon)) (Aug., 22 – D, 29 – O) // (Sep., 20 – D, 27 – O (Harvest Moon)) // (Oct. 20 – D, 27 – O (Hunters’ Moon)) // (Nov., 19 – D, 25 – O) // (Dec., 18 – D, 25 – O (Long Night Moon)) (D = ½ full, O = full) THE 5 BRIGHT PLANETS (Mercury, Venus, Mars, Jupiter & Saturn): Uranus, Neptune are much dimmer. When high above horizon, planets appear as points of light that shine steadily.
    [Show full text]
  • The Blue Hours Dusk, Early September, Just Beneath the Arctic
    The Blue Hours Dusk, early September, just beneath the Arctic Circle, by a tideline glacier in East Greenland. The cusp of the seasons, the cusp of the globe, the cusp of the land, and the day’s cusp too: twilight, the blue hours. At this latitude, at this time of year, dusk lasts for two or three hours. We have returned from a long mountain day: pitched climbing up steep slabs and over snow slopes to a towered summit, from which height we could see the great inland ice-cap itself. Then down, late in the day, the darkness thickening around us, and the sun dropping fast behind the western peaks. So we sit together back at camp as the last light gathers on the water of the fjord, on icebergs, on the quartz seams in the white boulder-field above our tents. Twilight specifies the landscape in this way – but it also disperses it. Relations between objects are loosened, such that shape-shifts occur. Just before full night falls, and the aurora borealis begins, a powerful hallucination occurs. My tired eyes start to see every pale stone around our tent not as boulder but as bear, polar bear, pure bear, crouched for the spring. Across the Northern hemisphere, twilight is known as the trickster-time: breeder of delusion, feeder of fantasies, zone of becomings. In Greek, dusk is called lykophos, ‘wolf-light’. In Austria, too, it is Wolflicht. In French it is the phase entre chien et loup, ‘between dog and wolf’: the time when, as Chrystel Lebas has written, ‘it is nearly impossible to tell the difference between the howling sound coming from the two animals, when the domestic and familiar transform into the wild.’ I do not know the Greenlandic word for dusk, but perhaps it would translate as ‘bear-light’.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • The Golden Hour Refers to the Hour Before Sunset and After Sunrise
    TheThe GoldenGolden HourHour The Golden Hour refers to the hour before sunset and after sunrise. Photographers agree that some of the very best times of day to take photos are during these hours. During the Golden Hours, the atmosphere is often permeated with breathtaking light that adds ambiance and interest to any scene. There can be spectacular variations of colors and hues ranging from subtle to dramatic. Even simple subjects take on an added glow. During the Golden Hours, take photos when the opportunity presents itself because light changes quickly and then fades away. 07:14:09 a.m. 07:15:48 a.m. Photographed about 60 seconds after previous photo. The look of a scene can vary greatly when taken at different times of the day. Scene photographed midday Scene photographed early morning SampleSample GoldenGolden HourHour photosphotos Top Tips for taking photos during the Golden Hours Arrive on the scene early to take test shots and adjust camera settings. Set camera to matrix or center-weighted metering. Use small apertures for maximizing depth-of-field. Select the lowest possible ISO. Set white balance to daylight or sunny day. When lighting is low, use a tripod with either a timed shutter release (self-timer) or a shutter release cable or remote. Taking photos during the Golden Hours When photographing the sun Don't stare into the sun, or hold the camera lens towards it for a very long time. Meter for the sky but don't include the sun itself. Composition tips: The horizon line should be above or below the center of the scene.
    [Show full text]
  • Excerpts from Dusk of Dawn: an Essay Toward an Autobiography Of
    DUSK OF DAWN An Essay Toward an Autobiography of a Race Concept W. E. B. Du Bois Series Editor, Henry Louis Gates, Jr. Introduction by K. Anthony Appiah OXFORD UNIVERSITY PRESS Contents SERIES INTRODUCTION: THE BLACK LETTERS ON THE SIGN xi INTRODUCTION xxv APOLOGY xxxiii I. THEPLOT 1 II. A NEW ENGLAND BOY AND RECONSTRUCTION 4 III. EDUCATION IN THE LAST DECADES OF THE NINETEENTH CENTURY 13 IV. SCIENCE AND EMPIRE 26 V. THE CONCEPT OF RACE 49 VI. THE WHITE WORLD 68 VII. THE COLORED WORLD WITHIN 88 VIII. PROPAGANDA AND WORLD WAR 111 IX. REVOLUTION 134 INDEX 163 WILLIAM EDWARD BURGHARDT DUBOIS: A CHRONOLOGY 171 SELECTED BIBLIOGRAPHY 179 ix CHAPTER VII The Colored World Within Not only do white men but also colored men forget the facts of the Negro's dou­ ble environment. The Negro American has for his environment not only the white surrounding world, but also, and touching him usually much more nearly and compellingly, is the environment furnished by his own colored group. There are exceptions, of course, but this is the rule. The American Negro, therefore, is surrounded and conditioned by the concept which he has of white people and he is treated in accordance with the concept they have of him. On the other hand, so far as his own people are concerned, he is in direct contact with individuals and facts. He fits into this environment more or less willingly. It gives him a social world and mental peace. On the other hand and especially if in education and ambition and income he is above the average culture of his group, he is often resentful of its environilcg power; partly because he does not recognize its power and partly because he is determined to consider himself part of the white group from which, in fact, he is excluded.
    [Show full text]
  • Final Report Venus Exploration Targets Workshop May 19–21
    Final Report Venus Exploration Targets Workshop May 19–21, 2014, Lunar and Planetary Institute, Houston, TX Conveners: Virgil (Buck) Sharpton, Larry Esposito, Christophe Sotin Breakout Group Leads Science from the Surface Larry Esposito, Univ. Colorado Science from the Atmosphere Kevin McGouldrick, Univ. Colorado Science from Orbit Lori Glaze, GSFC Science Organizing Committee: Ben Bussey, Martha Gilmore, Lori Glaze, Robert Herrick, Stephanie Johnston, Christopher Lee, Kevin McGouldrick Vision: The intent of this “living” document is to identify scientifically important Venus targets, as the knowledge base for this planet progresses, and to develop a target database (i.e., scientific significance, priority, description, coordinates, etc.) that could serve as reference for future missions to Venus. This document will be posted in the VEXAG website (http://www.lpi.usra.edu/vexag/), and it will be revised after the completion of each Venus Exploration Targets Workshop. The point of contact for this document is the current VEXAG Chair listed at ABOUT US on the VEXAG website. Venus Exploration Targets Workshop Report 1 Contents Overview ....................................................................................................................................................... 2 1. Science on the Surface .............................................................................................................................. 3 2. Science within the Atmosphere ...............................................................................................................
    [Show full text]
  • Exploring Solar Cycle Influences on Polar Plasma Convection
    Comparison of Terrestrial and Martian TEC at Dawn and Dusk during Solstices Angeline G. Burrell1 Beatriz Sanchez-Cano2, Mark Lester2, Russell Stoneback1, Olivier Witasse3, Marco Cartacci4 1Center for Space Sciences, University of Texas at Dallas 2Radio and Space Plasma Physics, University of Leicester 3European Space Agency, ESTEC – Scientific Support Office 4Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali 52nd ESLAB Symposium Outline • Motivation • Data and analysis – TEC sources – Data selection – Linear fitting • Results – Martian variations – Terrestrial variations – Similarities and differences • Conclusions Motivation • The Earth and Mars are arguably the most similar of the solar planets - They are both inner, rocky planets - They have similar axial tilts - They both have ionospheres that are formed primarily through EUV and X- ray radiation • Planetary differences can provide physical insights Total Electron Content (TEC) • The Global Positioning System • The Mars Advanced Radar for (GPS) measures TEC globally Subsurface and Ionosphere using a network of satellites and Sounding (MARSIS) measures ground receivers the TEC between the Martian • MIT Haystack provides calibrated surface and Mars Express TEC measurements • Mars Express has an inclination - Available from 1999 onward of 86.9˚ and a period of 7h, - Includes all open ground and allowing observations of all space-based sources locations and times - Specified with a 1˚ latitude by 1˚ • TEC is available for solar zenith longitude resolution with error estimates angles (SZA) greater than 75˚ Picardi and Sorge (2000), In: Proc. SPIE. Eighth International Rideout and Coster (2006) doi:10.1007/s10291-006-0029-5, 2006. Conference on Ground Penetrating Radar, vol. 4084, pp. 624–629.
    [Show full text]
  • Planit! User Guide
    ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES The Sun and the Moon Rise and Set The Rise and Set page shows the 1 time of the sunrise, sunset, moonrise, and moonset on a day as A sunrise always happens before a The azimuth of the Sun or the well as their azimuth. Moon is shown as thick color sunset on the same day. However, on lines on the map . some days, the moonset could take place before the moonrise within the Confused about which line same day. On those days, we might 3 means what? Just look at the show either the next day’s moonset or colors of the icons and lines. the previous day’s moonrise Within the app, everything depending on the current time. In any related to the Sun is in orange. case, the left one is always moonrise Everything related to the Moon and the right one is always moonset. is in blue. Sunrise: a lighter orange Sunset: a darker orange Moonrise: a lighter blue 2 Moonset: a darker blue 4 You may see a little superscript “+1” or “1-” to some of the moonrise or moonset times. The “+1” or “1-” sign means the event happens on the next day or the previous day, respectively. Perpetual Day and Perpetual Night This is a very short day ( If further north, there is no Sometimes there is no sunrise only 2 hours) in Iceland. sunrise or sunset. or sunset for a given day. It is called the perpetual day when the Sun never sets, or perpetual night when the Sun never rises.
    [Show full text]
  • Morphology and Dynamics of the Venus Atmosphere at the Cloud Top Level As Observed by the Venus Monitoring Camera
    Morphology and dynamics of the Venus atmosphere at the cloud top level as observed by the Venus Monitoring Camera Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Richard Moissl aus Grünstadt Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Dr. Horst-Uwe Keller eingereicht am: 24. April 2008 mündliche Prüfung (Disputation) am: 9. Juli 2008 ISBN 978-3-936586-86-2 Copernicus Publications, Katlenburg-Lindau Druck: Schaltungsdienst Lange, Berlin Printed in Germany Contents Summary 7 1 Introduction 9 1.1 Historical observations of Venus . .9 1.2 The atmosphere and climate of Venus . .9 1.2.1 Basic composition and structure of the Venus atmosphere . .9 1.2.2 The clouds of Venus . 11 1.2.3 Atmospheric dynamics at the cloud level . 12 1.3 Venus Express . 16 1.4 Goals and structure of the thesis . 19 2 The Venus Monitoring Camera experiment 21 2.1 Scientific objectives of the VMC in the context of this thesis . 21 2.1.1 UV Channel . 21 2.1.1.1 Morphology of the unknown UV absorber . 21 2.1.1.2 Atmospheric dynamics of the cloud tops . 21 2.1.2 The two IR channels . 22 2.1.2.1 Water vapor abundance and cloud opacity . 22 2.1.2.2 Surface and lower atmosphere .
    [Show full text]