Attempted Azidation of Carbohydrate Secondary Alcohols Using Arylsulfonyl Azides

Total Page:16

File Type:pdf, Size:1020Kb

Attempted Azidation of Carbohydrate Secondary Alcohols Using Arylsulfonyl Azides Attempted Azidation of Carbohydrate Secondary Alcohols Using Arylsulfonyl Azides by Morgan Mayieka Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in the Chemistry Program YOUNGSTOWN STATE UNIVERSITY August 2020 Attempted Azidation Of Carbohydrate Secondary Alcohols Using Arylsulfonyl Azides Morgan Ongaga Mayieka I hereby release this thesis to the public. I understand this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this dissertation as needed for scholarly research. Signature: ____________________________________________________________ Morgan Ongaga Mayieka, Student Date Approvals: ____________________________________________________________ Dr. Peter Norris, Thesis Advisor Date ____________________________________________________________ Dr. John A. Jackson, Committee Member Date ____________________________________________________________ Dr. Nina Stourman, Committee Member Date ____________________________________________________________ Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Thesis Abstract This thesis deals with an attempted “one-pot”azidation of carbohydrate secondary alcohols using arylsulfonyl azides. It also deals with the investigation of the reaction mechanism through which the attempted azidation process takes place. The results showed that the attempted azidation did not occur. Instead, the reactions led to the isolation of different sulfonate ester intermediates. A combination of steric (and stereoelectronic) problems were suspected to be the probable cause shutting down the substitution pathway. iii Acknowledgements I would like to, most sincerely, thank Dr. Peter Norris for not only being my research advisor but also my mentor. Thank you for being so patient with me and making me realize my potential both in research and course work. I would also like to thank Dr. John Jackson for making me a better person in synthesis of organic compounds and for being in my thesis committee. I also thank Dr. Sherri Lovelace for the advice and encouragement. I am also indebted to thank Dr. Chris Arnsten for the wonderful insight on Spartan Molecular Modeling, Dr. Matthias Zeller for the X-ray crystal data, Dr. Caleb Tatebe for helping me draw crystal structures and Ray Hoff for teaching me how to use the NMR instrumentation. I am grateful to the YSU chemistry department and the YSU graduate school for giving me a wonderful opportunity and financial support in my studies. I thank the entire YSU chemistry faculty especially Dr. Nina Stourman for being in my thesis committee and Dr. Douglas Genna for the knowledge he imparted in me. I am grateful to my colleagues in the Norris research group; Moffat, Angela, Haron and Salam, for making my graduate experience enjoyable. I would also like to thank my family and friends for being so supportive throughout this course. Lastly, I would like to thank God for the gift of life and for seeing me through this entire process. iv Table of Contents Title Page...........…………………………………………………………………………. i Signature Page…………………………………………………………………………… ii Abstract.………………….…..…………………………………………………………. iii Acknowledgements……………………………………………………………………... iv Table of Contents…..……………………………………………………………………. v List of Figures………………………………………………………………………....... vii List of Tables……………………………………………………………………………. ix List of Schemes……………………………………………………………………..……. x List of Equations…………………………………………………………………………. x Introduction Azides…………………………………………………………………………………….. 1 Synthesis of Organic Azides…….……………………………………………………….. 3 Statement of Problem……...………………………………………………………...…… 8 Results and Discussion……………………………………………………………..…….. 9 Conclusion………………………………………………………………………………. 27 Experimental Synthesis of p-nitrobenzenesulfonyl azide (2)…………………………………………. 27 Synthesis of o-nitrobenzenesulfonyl azide (4)…………………………………………. 28 Reaction of diacetone glucose with o-nitrobenzenesulfonyl azide (4)…………..……. 29 3-O-Sulfonate ester intermediate (6) from o-nitrobenzenesulfonyl chloride (3)………. 30 3-O-Sulfonate ester intermediate (6) from o-nitrobenzenesulfonyl chloride (3)………. 32 v Side reaction product (8) from o-nitrobenzenesulfonyl chloride and nimethylamino- pyridine………………………………………………………………………………..... 33 3-O-Sulfonate Ester Intermediate (9) from p-nitrobenzenesulfonyl chloride…………... 34 1,2:5,6-di-o-isopropylidene-3-o-toluenesulfonyl-α-D-glucofuranose (11).…………….. 35 1,2:5,6-Di-O-isopropylidene-3-O-trifluoromethanesulfonyl-α-D-glucofuranose (12)..... 36 Attempted Synthesis of 1,2:5,6-Di-O-isopropylidene-3-azido-3-deoxy-α-D-allofuranose (7)……………………………………………………………………………………...... 37 3-Deoxy-1,2:5,6-di-o-isopropylidene-α-D-erythrohex-3-enofuranose (13) from the Tosylate (11)……………………………………………………………………………. 38 o-Nitrobenzenesulfonate ester (17)……………………………………………………... 39 Preparation of the azide anion…………………………………………………………... 40 References………………………………………………………………………………. 41 Appendix A NMR and IR spectra data.………………………………………………………….….... 43 vi List of Figures Figure 1 A general form of an organic azide……………………………………… 1 Figure 2 A β-glucosyl azide structure……………………… …………………….. 2 Figure 3 Zidovudine structure…….……………………………………………….. 2 Figure 4 Structures of DPPA, bis(p-nitrophenyl) phosphorazidate and bis(2,4- dichlorophenyl) phosphate……………………………………………….. 5 Figure 5 Triphenylphosphine structure………….………………………………… 6 Figure 6 The structures of p-nitrobenzenesulfonyl azide and o-nitrobenzenesulfonyl azide………………………………...……………………………………. 7 Figure 7 Diacetone D-glucose structure……………..…………………………….. 8 Figure 8 X-Ray crystal structure of 3-O-(2-nitrobenzenesulfonate) ester 6……... 13 Figure 9 Structure of the suspected side product due to the side reaction between DMAP and o-NBSCl…………………………………………………… 15 Figure 10 1H NMR spectrum of the attempted synthesis of 1,2:5,6-di- -3-azido-3-deoxy- α-D-allofuranose 7………….………………………. 19 Figure 11 1H NMR spectrum of 1,2:5,6-di-O-isopropylidene-3- O- trifluoromethanesulfonyl-α-D-glucofuranose 12……………………….. 19 Figure 12 1H NMR spectrum of 3-deoxy-1,2:5,6-di-o-isopropylidene-α-D- erythrohex-3-enofuranose 13…………………………………………… 19 Figure 13 Minimized structure of 3-O-(2-nitrobenzenesulfonate) ester 6………… 23 Figure 14 1H NMR spectrum of p-nitrobenzenesulfonyl azide 2………………….. 44 vii Figure 15 13C NMR spectrum of p-nitrobenzenesulfonyl azide 2……...………….. 45 Figure 16 1H NMR spectrum of o-nitrobenzenesulfonyl azide 4………………….. 46 Figure 17 13C NMR spectrum of o-nitrobenzenesulfonyl azide 4……...………….. 47 Figure 18 1H NMR spectrum of 3-O-Sulfonate ester intermediate 6……………… 48 Figure 19 13C NMR spectrum of 3-O-Sulfonate ester intermediate 6……….….… 49 Figure 20 1H NMR spectrum of attempted synthesis of 1,2:5,6-di-O-isopropylidene-3-azido-3-deoxy-α-D-allofuranose 7…….. 50 Figure 21 13C NMR spectrum of attempted synthesis of 1,2:5,6-di-O-isopropylidene-3-azido-3-deoxy-α-D-allofuranose 7…….. 51 Figure 22 1H NMR spectrum of side reaction product 8 …………………………. 52 Figure 23 13C NMR spectrum of side reaction product 8 …………………………. 53 Figure 24 1H NMR spectrum of 3-O-Sulfonate Ester Intermediate 9……………... 54 Figure 25 13C NMR spectrum of 3-O-Sulfonate Ester Intermediate 9……………... 55 Figure 26 1H NMR spectrum of 1,2:5,6-di-o- isopropylidene-3-o-toluenesulfonyl-α-D-glucofuranose 11……………. 56 Figure 27 13C NMR spectrum of 1,2:5,6-di-o- isopropylidene-3-o-toluenesulfonyl-α-D-glucofuranose 11……………. 57 Figure 28 1H NMR spectrum of 1,2:5,6-di-O- isopropylidene-3-O-trifluoromethanesulfonyl-α-D-glucofuranose 12….. 58 Figure 29 13C NMR spectrum of 1,2:5,6-di-O- viii isopropylidene-3-O-trifluoromethanesulfonyl-α-D-glucofuranose 12….. 59 Figure 30 1H NMR spectrum of 3-deoxy-1,2:5,6-di-o-isopropylidene-α- D-erythrohex-3-enofuranose 13………………………………………… 60 Figure 31 13C NMR spectrum of 3-deoxy-1,2:5,6-di-o-isopropylidene-α- D-erythrohex-3-enofuranose 13………………………………………… 61 Figure 32 1H NMR spectrum of o-nitrobenzenesulfonate ester 17………………… 62 Figure 33 13C NMR spectrum of o-nitrobenzenesulfonate ester 17………………… 63 Figure 34 IR spectrum of ionic azide Scheme 7……………………………………. 64 Figure 35 IR spectrum showing the formation of an ionic azide…………………… 65 List of Tables Table 1 List of conditions varied for the synthesis of 3-O-(2- nitrobenzenesulfonate) ester from o-nitrobenzenesulfonyl chloride….... 14 Table 2 Duration of Spartan model energy minimization……………………….. 20 Table 3 Various angles within different sulfonate esters as calculated by the Spartan molecular modeling software………………………...………… 21 Table 4 Spartan models of o-nitrosulfonate ester 6 intermediate synthesized…… 22 Table 5 Spartan models of p-nitrosulfonate ester 9 intermediate synthesized…… 24 Table 6 Spartan models of O-(trifluoromethyl)sulfonate ester 12 intermediate synthesized…………………………………………...…… 25 ix List of Schemes Scheme 1 A classic nucleophilic substitution method of azidation…………...…...... 4 Scheme 2 The Mitsunobu method of azidation…………...…………………..…….. 5 Scheme 3 Attempted azide synthesis using p-ABSA………………..…...……….… 7 Scheme 4 Attempted azide synthesis using p-NBSA and o-NBSA………...…..…… 7 Scheme 5 Proposed azidation pathway……………………………………………… 8 Scheme 6 Attempted azidation using o-NBSA……………………………......…… 11 Scheme 7 A suggested reaction mechanism in the generation of the intermediate… 12 List of Equations Equation 1 The 1,3-dipolar cycloaddition reaction………………...…………...…..... 2 Equation 2 An alternative to DEAD in azide synthesis…………....…………..…….. 6 Equation 3 Synthesis of p-nitrobenzenesulfonyl
Recommended publications
  • Optimizing the Least Nucleophilic Anion. a New, Strong Methyl+ Reagent Daniel Stasko and Christopher A
    Published on Web 01/25/2002 Optimizing the Least Nucleophilic Anion. A New, Strong Methyl+ Reagent Daniel Stasko and Christopher A. Reed* Department of Chemistry, UniVersity of California, RiVerside, California 92521-0304 Received August 3, 2001 The ideal weakly coordinating counterion for reactive cations would be the least nucleophilic, least basic, most inert anion available. It should also be inexpensive, have useful spectroscopic handles, and confer good solubility and crystallizing properties on - its salts. Triflate anion, CF3SO3 , has served chemistry well in this regard but larger size, absence of lone pairs, and extreme chemical inertness have recently made carboranes1 or fluorinated tetraphe- nylborates the preferred choice for many applications.2 These anions have led to the solution of the silylium ion problem,3 enhanced Lewis acid catalysis by Li+ ion,4-6 new “strong-but-gentle” superacids,7 commercially viable olefin polymerization catalysts,8 new possibilities for electrolytes9,10 and ionic liquids,11 and the •+ 7 + 12 isolation of new reactive cations such as C60 , Bu3Sn , Cu- + 13 (CO)4 , etc. Figure 1. The 1-H-2,3,4,5,6-pentamethyl-7,8,9,10,11,12-hexahalo-CB11 - ) The perfluorinated tetraphenylborate anion is the preferred choice carborane anions, 1-H-CB11Me5X6 (X Cl, Br, I), used in this work. for price and solubility reasons but its salts frequently form liquid 29 Table 1. Selected Si Chemical Shifts (ppm) for i-Pr3SiY clathrates and fail to crystallize. The boron-phenyl bond is rather 29 easily cleaved by strong Brønsted14 or Lewis15 acids. Halogenated compd Si conditions carborane anions are much more inert than tetraphenylborates, their i-Pr3Si(1-H-CB11H5Br6) 100 C6D6 salts crystallize well, but they are more expensive and their salts i-Pr3Si(1-H-CB11H5Cl6) 103 C6D6 i-Pr Si(F -BPh )a 108 solid state less soluble.
    [Show full text]
  • Safe Handling of Sodium Azide (SAZ)
    Safe Handling of Sodium Azide (SAZ) 1,2 Sodium azide (SAZ, CAS# 26628-22-8) is a white crystalline solid [molecular formula of (NaN3)] used in organic synthesis and also as a well-known preservative at low concentrations in molecular biology reagents. Azide chemistry3,4 offers an effective means to synthesize a range of nitrogen-containing compounds with a wide variety of functional groups. But SAZ poses some significant risks. It is highly toxic and can react to form potentially explosive compounds. Azide reagents and intermediates react with some metals5, strong acids, and certain chlorinated solvents6 and this needs to be considered when using SAZ or when developing routes that involve azide-containing intermediates. Health Hazards & Physical Hazards of SAZ Hazard Statements Fatal if swallowed or in contact with skin. Very toxic to aquatic life with long lasting effects. Health Hazards: SAZ is highly toxic when ingested orally or absorbed through the skin. Azides form strong complexes with hemoglobin, and consequently block oxygen transport in the blood. They are more harmful to the heart and the brain than to other organs, because the heart and the brain use a lot of oxygen. Symptoms of exposure include headache, dizziness, nausea and vomiting, rapid breathing and heart rate, and skin burns and blisters (direct skin contact) and in the case of serious overexposure, convulsions and death. It will also react with acids to form hydrazoic acid (HN3). Unlike sodium azide, which is a crystalline solid, hydrazoic acid is a low-boiling, volatile, liquid. Hydrazoic acid is also highly toxic and its volatility makes it more readily inhaled causing lung irritation and potentially bronchitis and lung edema.
    [Show full text]
  • Soluble Guanylate Cyclase B1-Subunit Expression Is Increased in Mononuclear Cells from Patients with Erectile Dysfunction
    International Journal of Impotence Research (2006) 18, 432–437 & 2006 Nature Publishing Group All rights reserved 0955-9930/06 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Soluble guanylate cyclase b1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction PJ Mateos-Ca´ceres1, J Garcia-Cardoso2, L Lapuente1, JJ Zamorano-Leo´n1, D Sacrista´n1, TP de Prada1, J Calahorra2, C Macaya1, R Vela-Navarrete2 and AJ Lo´pez-Farre´1 1Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clı´nico San Carlos, Madrid, Spain and 2Urology Department, Fundacio´n Jime´nez Diaz, Madrid, Spain The aim was to determine in circulating mononuclear cells from patients with erectile dysfunction (ED), the level of expression of endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC) b1-subunit and phosphodiesterase type-V (PDE-V). Peripheral mononuclear cells from nine patients with ED of vascular origin and nine patients with ED of neurological origin were obtained. Fourteen age-matched volunteers with normal erectile function were used as control. Reduction in eNOS protein was observed in the mononuclear cells from patients with ED of vascular origin but not in those from neurological origin. Although sGC b1-subunit expression was increased in mononuclear cells from patients with ED, the sGC activity was reduced. However, only the patients with ED of vascular origin showed an increased expression of PDE-V. This work shows for the first time that, independently of the aetiology of ED, the expression of sGC b1-subunit was increased in circulating mononuclear cells; however, the expression of both eNOS and PDE-V was only modified in the circulating mononuclear cells from patients with ED of vascular origin.
    [Show full text]
  • Synthesis and Consecutive Reactions of Α-Azido Ketones: a Review
    Molecules 2015, 20, 14699-14745; doi:10.3390/molecules200814699 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis and Consecutive Reactions of α-Azido Ketones: A Review Sadia Faiz 1,†, Ameer Fawad Zahoor 1,*, Nasir Rasool 1,†, Muhammad Yousaf 1,†, Asim Mansha 1,†, Muhammad Zia-Ul-Haq 2,† and Hawa Z. E. Jaafar 3,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan, E-Mails: [email protected] (S.F.); [email protected] (N.R.); [email protected] (M.Y.); [email protected] (A.M.) 2 Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore-54600, Pakistan; E-Mail: [email protected] 3 Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang-43400, Selangor, Malaysia † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.F.Z.); [email protected] (H.Z.E.J.); Tel.: +92-333-6729186 (A.F.Z.); Fax: +92-41-9201032 (A.F.Z.). Academic Editors: Richard A. Bunce, Philippe Belmont and Wim Dehaen Received: 20 April 2015 / Accepted: 3 June 2015 / Published: 13 August 2015 Abstract: This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones. Keywords: α-azido ketones; synthetic applications; heterocycles; click reactions; drugs; azides 1. Introduction α-Azido ketones are very versatile and valuable synthetic intermediates, known for their wide variety of applications, such as in amine, imine, oxazole, pyrazole, triazole, pyrimidine, pyrazine, and amide alkaloid formation, etc.
    [Show full text]
  • Nitric Oxide Activates Guanylate Cyclase and Increases Guanosine 3':5'
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 8, pp. 3203-3207, August 1977 Biochemistry Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations (nitro compounds/adenosine 3':5'-cyclic monophosphate/sodium nitroprusside/sodium azide/nitrogen oxides) WILLIAM P. ARNOLD, CHANDRA K. MITTAL, SHOJI KATSUKI, AND FERID MURAD Division of Clinical Pharmacology, Departments of Medicine, Pharmacology, and Anesthesiology, University of Virginia, Charlottesville, Virginia 22903 Communicated by Alfred Gilman, May 16, 1977 ABSTRACT Nitric oxide gas (NO) increased guanylate cy- tigation of this activation. NO activated all crude and partially clase [GTP pyrophosphate-yase (cyclizing), EC 4.6.1.21 activity purified guanylate cyclase preparations examined. It also in- in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue creased cyclic GMP but not adenosine 3':5'-cyclic monophos- preparations examined. The extent of activation was variable phate (cyclic AMP) levels in incubations of minces from various among different tissue preparations and was greatest (19- to rat tissues. 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and MATERIALS AND METHODS cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal Male Sprague-Dawley rats weighing 150-250 g were decapi- muscle, adrenal, and epididymal fat. Activation was also ob- tated. Tissues were rapidly removed, placed in cold 0.-25 M served with partially purified preparations of guanylate cyclase. sucrose/10 mM Tris-HCl buffer (pH 7.6), and homogenized Activation of rat liver supernatant preparations was augmented in nine volumes of this solution by using a glass homogenizer slightly with reducing agents, decreased with some oxidizing and Teflon pestle at 2-4°.
    [Show full text]
  • Aldol Reactions: E-Enolates and Anti-Selectivity
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2005 Aldol Reactions: E-Enolates and Anti-Selectivity Matthew Grant Anderson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Organic Chemistry Commons Recommended Citation Anderson, Matthew Grant, "Aldol Reactions: E-Enolates and Anti-Selectivity" (2005). All Graduate Plan B and other Reports. 1312. https://digitalcommons.usu.edu/gradreports/1312 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ALDOL REACTIONS: E-ENOLATES AND ANTI-SELECTIVITY Prepared By: MATTHEW GRANT ANDERSON A non-thesis paper submitted in partial fulfillment of the requirement for a Plan B Degree of Masters of Science in Organic Chemistry UTAH STATE UNIVERSITY Logan, Utah 2005 Contents Page CONTENTS ...................................................................................... .i LIST OF TABLES, FIGURES AND SCHEMES ....................................... ii,iii ABSTRACT .................................................................................... iv CHAPTER I. ALDOL REACTIONS:E-ENOLATES AND ANTI SELECTIVITY ......... 1 CHAPTER II. SECTION 1. MODELS OF E-ENOLATE FORMATION ...... .... ....... ... 12 SECTION 2. PATERSON ENOLATE PAPER ..... .........................
    [Show full text]
  • Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications Through Ligand Exchange and Direct Conjugation
    Nanomaterials 2016, 6, 100; doi:nano6060100 S1 of S10 Supplementary Materials: Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications through Ligand Exchange and Direct Conjugation Tina Lam, Pramod K. Avti, Philippe Pouliot, Foued Maafi, Jean-Claude Tardif, Éric Rhéaume, Frédéric Lesage and Ashok Kakkar Experimental The following compounds were purchased and used as received; tetraethylene glycol, tetraethylene glycol monomethyl ether, p-toluene sulfonyl chloride (tosyl chloride), methane sulfonyl chloride (mesyl chloride), sodium hydroxide, lithium aluminium hydride (LiAlH4), 4- dimethylaminopyridine (DMAP), triethylamine, diethyl amine, sodium azide, tetrabutylammonium iodide, sodium ascorbate (Na Ascorbate), copper(II) sulphate hexahydrate, borane-THF, bis(triphenylphosphine) palladium(II) dichloride, 1-bromo-4-iodo benzene, disodium ethylenediamine tetraacetate (EDTA), iron(II) chloride tetrahydrate (FeCl2·4H2O), iron (III) chloride hexahydrate (FeCl3·6H2O), and oleic acid from Sigma Aldrich (St. Louis, MO, USA), triisopropylsilyl acetylene and trimethylsilyl acetylene from Oakwoods Chemicals (Estill, SC, USA), 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide from Chem Impex International (Wood Dale, IL, USA), and Iron standard # 13830 from Alfa Aesar (Haverhill, MA, USA). Polyvinylidene Fluoride (PVDF) Syringe filters of 17 mm diameter and pore size 0.45 μm were purchased from Sterlitech (Kent, WA, USA). The solvents triethylamine, diethylamine, tetrahydrofuran, acetic acid, acetic anhydride, acetone, chloroform, dichloromethane, benzene, methanol and toluene were purchased from Fisher scientific and ACP Chemicals and used as received. Solvents were obtained from drying columns and purged under N2 prior to use. Milli-Q Ultrapure water was doubly distilled by reverse osmosis though a Millipore RiOS8, followed by filtration through a Milli-Q Academic A10 filtration unit prior to use.
    [Show full text]
  • Supplementary Information
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Highly regioselective and sustainable solar click reaction: A new Post-synthetic modified triazole organic polymer as recyclable photocatalyst for regioselective azide-alkyne cycloaddition reaction Dolly Yadav,a Nem Singh,a Tae Wu Kim,b Jae Young Kim,a No-Joong Parka and Jin-Ook Baeg*a aArtificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea E-mail:[email protected] bCenter for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea. S. N. Contents Page no. 1. Experimental section S2-S3 2. Safety issues for handling azide compounds S3 3. Synthetic procedure S4-S18 4. Tables S1-S3 S19-S21 5. Figures S1-S12 S20-S28 6. Crystallographic data of 3bd- figure S12, table S4-S5 S29-S31 7. 1H, 13C and 19F NMR figure S13- S28 S32-S86 8. References S86 S1 Experimental Section 1.1 Materials All the reagents utilized in synthesis were purchased from commercial suppliers, unless or otherwise stated. Sodium Azide, disodium 4,4’-diaminostilbene disulfonate, sodium nitrite, 1,8- diazabicyclo[5,4,0]undec-7-ene, propargyl alcohol, propargyl bromide (80% in toluene), perylene tetracarboxylic anhydride were purchased from Sigma Aldrich Korea. 2,6-difluorobenzylbromide, 2,4-difluorobenzylbromide, 3,5-Dimethylbenzylbromide, 4-bromobenzylbromide, 4- fluorobenzylbromide propiolic acid and methyl propiolate were also purchased from Sigma Aldrich. The solvents DMF, DCM, acetone, ethyl acetate were purchase from Junsei Chemicals Company. Caution sodium azide is considered to be explosive, hence necessary precautions fume hood, safety glasses etc should be taken while carrying out the reaction.
    [Show full text]
  • Probing Ion Exchange in the Triflic Acid-Guanidinium Triflate System: a Solid- State Nuclear Magnetic Resonance Study
    Probing ion exchange in the triflic acid-guanidinium triflate system: a solid- state nuclear magnetic resonance study Citation: Zhu, Haijin, MacFarlane, Douglas and Forsyth, Maria 2014, Probing ion exchange in the triflic acid-guanidinium triflate system: a solid-state nuclear magnetic resonance study, Journal of Physical Chemistry C, vol. 118, no. 49, pp. 28520-28526. This is the accepted manuscript. ©2014, American Chemical Society This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/jp5101472 Downloaded from DRO: http://hdl.handle.net/10536/DRO/DU:30070195 DRO Deakin Research Online, Deakin University’s Research Repository Deakin University CRICOS Provider Code: 00113B Page 1 of 19 The Journal of Physical Chemistry 1 2 3 4 Probing Ion Exchange in the Triflic Acid - Guanidinium Triflate System: a 5 6 Solid-State NMR Study 7 8 9 Haijin Zhu,*,a Douglas MacFarlaneb and Maria Forsytha 10 11 a Institute for Frontier Materials and the ARC Centre of Excellence for Electromaterials 12 Science, Deakin University, Geelong, VIC 3216, Australia. E-mail: [email protected]; 13 Fax: 61 (03) 92446868; Tel: +61 (03) 52273696 14 15 b Department of Chemistry and the ARC Centre of Excellence for Electromaterials 16 Science, Monash University, Clayton, VIC 3800, Australia 17 18 19 * Corresponding author, Tel: 61 (03) 52273696; Fax: 61 (03) 92446868; Email: 20 [email protected] (H.
    [Show full text]
  • Chem 314 Preorganic Evaluation
    Organic Reaction Guide Beauchamp 1 Chem 316 / Beauchamp Reactions Review Sheet Name SN2 Reactions - special features: biomolecular kinetics Rate = kSN2[RX][Nu ], single step concerted reaction, E2 is a competing reaction o o o o relative order of reactivity: CH3X > 1 RX > 2 RX >> 3 RX (based on steric hinderance, no SN2 at 3 RX) allylic & benzylic RX are very reactive, adjacent pi bonds help stabilize transition state and lower TS energy (Ea) o complete substitution at Cα (3 RX) or Cβ (neopentyl pattern) almost completely inhibits SN2 reactions vinyl & phenyl are very unreactive, bonds are stronger and poor backside approach leaving group ability: OTs = I > Br > Cl in neutral or basic conditions (just like E2, SN1 adn E1), and neutral molecule leaving groups are good from protonated, cationic intermediates in acid conditions, + + + + -OH2 , -ORH , -OR2 , -NR3 , etc. we will consider all anions, ammonia, amines, thiols and sulfides to be strong nucleophiles (favors SN2 and E2 reactions) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and - + + - + - some are mainly bases (t-BuO K , Na H2N , Na H ) polar, aprotic solvents work best for SN2 reactions because nucleophiles are relatively unencombered for electron doantion (dimethyl sulofoxide = DMSO, dimethylformamide = DMF, acetonitrile = AN, acetone, etc.) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and we will consider neutral solvent molecules such as water, alcohols and acids to be weak nucleophiles (favors SN1 and E1) stereoselectivity: 100% inversion of configuration from backside atack regioselectivity: reacts at carbon with leaving group, completely unambiguous chemoselectivity: N/A The following list is designed to emphasize SN2 reactions.
    [Show full text]
  • (And In-Betweens) of Solubility Measurements of Solid Electrolytes*
    Pure Appl. Chem., Vol. 85, No. 11, pp. 2077–2087, 2013. http://dx.doi.org/10.1351/PAC-CON-12-11-06 © 2013 IUPAC, Publication date (Web): 20 May 2013 Some highs and lows (and in-betweens) of solubility measurements of solid electrolytes* Glenn Hefter Chemistry Department, Murdoch University, Murdoch, WA 6150, Australia Abstract: Recent solubility measurements of a variety of solid electrolytes in water and aque- ous solutions in the author’s laboratories are reviewed. The experimental challenge of per- forming such measurements with high accuracy is demonstrated using the solubility of solid sodium chloride in water at near-ambient temperatures as a paradigm. The special difficul- ties of measuring low solubilities are demonstrated using Pb(II) sulfate in various aqueous solutions and Pb(II) oxide in sodium hydroxide solutions, and the usefulness of such meas- urements for obtaining reliable information on homogeneous reactions in solution is briefly discussed. It is also shown, using the alkali metal triflate salts as examples, that determina- tion of the solubilities of even highly soluble salts can be problematic. Lastly, data for the sol- ubilities of a series of sodium carboxylate salts of industrial relevance are discussed and are used to illustrate why the theoretical prediction of solid electrolyte solubilities remains such a challenge. Keywords: aqueous solutions; carboxylate; electrolytes; lead(II); salts; sodium chloride; sol- ubility; triflate. INTRODUCTION The solubilities of substances in solvents are among the oldest of physicochemical measurements [1]. While they would not have been recognized as such at the time, these measurements certainly included the solubilities of solid electrolytes (“salts”) in water.
    [Show full text]
  • Sodium Azide [CAS No
    LABORATORY SAFETY GUIDELINE Sodium Azide [CAS No. 26628-22-8] All users of sodium azide and sodium azide solutions should review this document. Sodium azide is classified as a particularly hazardous substance under the OSHA Lab Standard due to its high acute toxicity, particularly by the dermal route, and is dangerously reactive when heated. Consequently, labs should have a written SOP. EH&S does not require acutely toxic materials to be locked up, but your lab should consider security and access controls wherever it is stored. Highly toxic through skin contact, inhalation, and ingestion. Acute central nervous system (CNS) and cardiovascular effects. Irritation to eyes, skin, and respiratory tract. Chronic exposure may result in liver and kidney damage. Repeated exposure may cause damage to the spleen. Very toxic to aquatic life PRECAUTIONS Before starting work: • Review manufacture’s Safety Data Sheet and additional chemical information at ehs.harvard.edu/safety-data- sheets-sds. • Ensure that a written experimental protocol including safety information is available. • Make sure you are familiar with general University emergency procedures in the EHS Emergency Response Guide. • Order the most dilute solutions available that will meet experimental needs. Order only what you need. • Identify the location of the nearest eyewash and shower and verify that they are accessible. Storage considerations: • Sodium azide can be stored with other acutely toxic materials in a dark, cool, dry location away from acids. • Close proximity to acids, acid vapor or heat generating processes should be avoided. Contact with acids produces highly toxic gas – hydrazoic acid. • Sodium azide should be stored separately from metals, acids, carbon disulfide, bromine, chromyl chloride, sulfuric acid, nitric acid, hydrazine, and dimethyl sulfate.
    [Show full text]