Compact Omnidirectional Millimeter-Wave Antenna Array Using Substrate Integrated Waveguide Technique and Efficient Modeling Approach
Total Page:16
File Type:pdf, Size:1020Kb
Compact Omnidirectional Millimeter-Wave Antenna Array Using Substrate Integrated Waveguide Technique and Efficient Modeling Approach By Yuanzhi Liu A thesis presented to the Ottawa-Carleton Institute for Electrical and Computer Engineering in partial fulfillment to the thesis requirement for degree of MASTER OF APPLIED SCIENCE in ELECTRICAL AND COMPUTER ENGINEERING University of Ottawa Ottawa, Ontario, Canada March 2021 © Yuanzhi Liu, Ottawa, Canada, 2021 Abstract In this work, an innovative approach for effective modeling of substrate integrated waveguide (SIW) devices is firstly proposed. Next, a novel substrate integrated waveguide power splitter is proposed to feed antenna array elements in series. This feed network inherently provides uniform output power to eight quadrupole antennas. More importantly, it led to a compact configuration since the feed network can be integrated inside the elements without increasing the overall array size. Its design procedure is also presented. Then, a series feed network was used to feed a novel compact omnidirectional antenna array. Targeting the 5G 26 GHz mm-wave frequency band, simulated results showed that the proposed array exhibits a broad impedance bandwidth of 4.15 GHz and a high gain of 13.6 dBi, which agree well with measured results. Its attractive features indicate that the proposed antenna array is well suitable for millimeter-wave wireless communication systems. Keywords: modeling, substrate integrated waveguide, power splitter, antenna array, series, quadrupole, omnidirectional, 5G, high gain, millimeter-wave. ii Acknowledgements First of all, I have to thank my parents, who always trust and support me. Thank you both for giving me strength to chase my dreams. My grandparents, girlfriend, and brother also deserve my wholehearted thanks. I would like to express my deepest appreciation to Dr. Mustapha C.E. Yagoub and Dr. Derek McNamara. They both are very knowledgeable, kind, experienced, and patient professors. Dr. Yagoub, as my supervisor, is always trying his best to provide me with opportunities, which are valuable and helpful to build my future career. His guidance, encouragements, and insightful feedback pushed me to sharpen my thinking and improve the work. Dr. McNamara is an expert in applied and computational electromagnetics. I can gain a lot from every discussion with him. His help and suggestions through out my research brought my work to a higher level. I would like to also extend my sincere thanks to Dr. Aldo Petosa, to the coordinator of our laboratory Mr. Alain Hénaff, and to my friends Mr. Mohammed Nassor and Mr. Mohammad Faridani for their helpful discussions and insightful suggestions. Beside people who helped me with this work, from the bottom of my heart I am deeply indebted to all of them, including professors of my undergraduate university and my friends from China and Canada, who have always been supportive and kind to me. iii Contents Abstract ........................................................................................................................................................ ii Acknowledgements .................................................................................................................................... iii Contents ...................................................................................................................................................... iv List of Tables ............................................................................................................................................. vii List of Figures ........................................................................................................................................... viii List of Symbols ........................................................................................................................................... xi List of Acronyms ....................................................................................................................................... xii Chapter 1. Introduction .............................................................................................................................. 1 1.1 Background and Motivation ....................................................................................................... 1 1.1.1 Importance of antennas ................................................................................................... 1 1.1.2 Millimeter-wave systems ................................................................................................ 1 1.1.3 Directional and omnidirectional antennas ...................................................................... 1 1.2 Research objectives ...................................................................................................................... 2 1.3 Bottlenecks.................................................................................................................................... 2 1.4 Research contributions ................................................................................................................ 3 1.5 Thesis Outline............................................................................................................................... 4 1.6 List of publications ...................................................................................................................... 4 Chapter 2. Antenna Fundamentals and Adopted Techniques ................................................................ 6 2.1 Antenna basics ............................................................................................................................. 6 2.1.1 Radiation patterns ........................................................................................................... 6 2.1.2 Directivity and gain ........................................................................................................ 7 2.1.3 Bandwidth ...................................................................................................................... 7 2.1.4 Polarization ..................................................................................................................... 8 2.2 Dipole antennas ............................................................................................................................ 8 2.2.1 Analysis of the infinitesimal dipole ................................................................................ 8 2.2.2 Analysis of the finite-length dipole .............................................................................. 11 2.3 Substrate integrated waveguide technique .............................................................................. 13 2.4 Conclusion .................................................................................................................................. 14 Chapter 3. Surrogate Model of SIW ....................................................................................................... 15 3.1 Modeling SIW in HFSS ............................................................................................................. 15 iv 3.2 SIW design approaches ............................................................................................................. 18 3.2.1 Rectangular waveguide ................................................................................................ 18 3.2.2 Rectangular waveguide in planar form ......................................................................... 19 3.3 Surrogate model ......................................................................................................................... 21 3.3.1 Physical width and length of the surrogate model ........................................................ 21 3.3.2 Surrogate model modeling examples and verification ................................................. 22 3.4 Complete procedure of designing SIW devices ....................................................................... 25 3.4.1 Calculating width and length ........................................................................................ 26 3.4.2 Microstrip-to-SIW transition ........................................................................................ 26 3.4.3 Guide wavelength ......................................................................................................... 27 3.4.4 Design procedure .......................................................................................................... 27 3.5 Error analysis ............................................................................................................................. 28 3.6 Conclusion .................................................................................................................................. 31 Chapter 4. Printed Quadrupole Antenna ............................................................................................... 32 4.1 Conventional Printed Dipole Antenna ..................................................................................... 32 4.2 Omnidirectional Printed Quadrupole Antenna ...................................................................... 33 4.3 Printed Quadrupole Antenna Array ........................................................................................ 35 4.3.1 An ideal 1 × 8 array ...................................................................................................... 35 4.3.2