Elements of Natural History in Sidereus Nuncius
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Jesuits and the Galileo Affair Author(S): Nicholas Overgaard Source: Prandium - the Journal of Historical Studies, Vol
Early Modern Catholic Defense of Copernicanism: The Jesuits and the Galileo Affair Author(s): Nicholas Overgaard Source: Prandium - The Journal of Historical Studies, Vol. 2, No. 1 (Spring, 2013), pp. 29-36 Published by: The Department of Historical Studies, University of Toronto Mississauga Stable URL: http://jps.library.utoronto.ca/index.php/prandium/article/view/19654 Prandium: The Journal of Historical Studies Vol. 2, No. 1, (2013) Early Modern Catholic Defense of Copernicanism: The Jesuits and the Galileo Affair Nicholas Overgaard “Obedience should be blind and prompt,” Ignatius of Loyola reminded his Jesuit brothers a decade after their founding in 1540.1 By the turn of the seventeenth century, the incumbent Superior General Claudio Aquaviva had reiterated Loyola’s expectation of “blind obedience,” with specific regard to Jesuit support for the Catholic Church during the Galileo Affair.2 Interpreting the relationship between the Jesuits and Copernicans like Galileo Galilei through the frame of “blind obedience” reaffirms the conservative image of the Catholic Church – to which the Jesuits owed such obedience – as committed to its medieval traditions. In opposition to this perspective, I will argue that the Jesuits involved in the Galileo Affair3 represent the progressive ideas of the Church in the early seventeenth century. To prove this, I will argue that although the Jesuits rejected the epistemological claims of Copernicanism, they found it beneficial in its practical applications. The desire to solidify their status as the intellectual elites of the Church caused the Jesuits to reject Copernicanism in public. However, they promoted an intellectual environment in which Copernican studies – particularly those of Galileo – could develop with minimal opposition, theological or otherwise. -
Galileo and Bellarmine
The Inspiration of Astronomical Phenomena VI ASP Conference Series, Vol. 441 Enrico Maria Corsini, ed. c 2011 Astronomical Society of the Pacific Galileo and Bellarmine George V. Coyne, S.J. Vatican Observatory, Vatican City State Abstract. This paper aims to delineate two of the many tensions which bring to light the contrasting views of Galileo Galilei and of Cardinal Robert Bellarmine with respect to the Copernican-Ptolemaic controversies of the 16th and 17th centuries: their respective positions on Aristotle’s natural philosophy and on the interpretation of Sa- cred Scripture. Galileo’s telescopic observations, reported in his Sidereus Nuncius, were bringing about the collapse of Aristotle’s natural philosophy and he taught that there was no science in Scripture. 1. Introduction This paper investigates the tensions between two of the principal protagonists in the controversies involved in the birth of modern science, Galileo Galilei and Cardinal Robert Bellarmine, and how they were resolved or not in a spirit of accommodation. Bellarmine’s fellow Jesuits at the Roman College confirmed Galileo’s Earth-shaking observations, reported in his Sidereus Nuncius. Aristotle’s physics was crumbling. Would Aristotelian philosophy, which was at the service of theology, also collapse? Controversies over the nature of sunspots and of comets seemed to hold implications for the very foundations of Christian belief. Some Churchmen saw the threat and faced it with an astute view into the future; others, though pioneers as scientists, could not face the larger implications of the scientific revolution to which they with Galileo con- tributed. Much of what occurred can be attributed to the strong personalities of the individual antagonists and Bellarmine will prove to be one of the most important of those personages. -
Article De Fond, Réalisation
ARTICLE DE FOND, RÉA LISATION QUATOR PLANETIS CIRCUM IOVIS : MEDICEA SIDERA Pierre Le Fur (MPSI, Institut Supérieur d'Électronique et du Numérique Toulon, formateur académique en astronomie –Nice) Résumé : Suivons les traces de Galilée en étudiant ses observations sur les quatre satellites médicéens de Jupiter telles qu’elles furent décrites dans le "sidereus nuncius". Nous montrerons qu’à partir de ces relevés on peut retrouver certaines lois ignorées du savant Toscan. Enfin nous proposerons la construction d’un "Jovilab" qualitatif, sorte de tables d’éphémérides de positions de ces quatre satellites. Si, en l’an de grâce 2009, nous souhaitons fêter quasi impossible à déterminer, aurait été dignement l’Année Mondiale de l’Astronomie, immédiate par simple différence entre l’heure la lecture de " sidereus nuncius ", œuvre solaire locale et cette "heure universelle jo- étincelante de Galileo Galilei, s’impose à nous. vienne"; cela aurait constitué une deuxième Elle constitue l’allumette déclenchant l’incendie révolution, moins intellectuelle mais économi- qui embrasa la physique aristotélicienne et ses quement et militairement exceptionnelle. partisans religieux. Les observations récoltées par Galilée pendant Cette œuvre peut être facilement consultée sur les années qui suivirent la publication de le site de l’Université de Strasbourg à "sidereus nuncius " lui permettront d’obtenir un l’adresse [10]. La force et la simplicité de cet outil de prévisions de la position de ces ouvrage apparaît d’emblée, même si l’on ignore satellites : le Jovilab. tout du latin… Les gravures intégrées au texte Je vous propose de suivre les traces de Galilée ; nous suggèrent autant le contenu des d’examiner ses observations médicéennes ; de découvertes décrites par Galilée que le génie de montrer comment on peut retrouver certaines son interprétation. -
C:\Data\WP\F\200\Catalogue Sections\Aaapreliminary Pages.Wpd
Jonathan A. Hill, Bookseller, Inc. 325 West End Avenue, Apt. 10B New York City, New York, 10023-8145 Tel: 646 827-0724 Fax: 212 496-9182 E-mail: [email protected] Catalogue 200 Proofs Science, Medicine, Natural History, Bibliography, & Much More Introduction & Selective Subject Index on Following Pages Introduction TWO HUNDRED CATALOGUES in thirty-three years: more than 35,000 books and manuscripts have been described in these catalogues. Thousands of other books, including many of the most important and unusual, never found their way into my catalogues, having been quickly sold before their descriptions could appear in print. In the last fifteen years, since my Catalogue 100 appeared, many truly exceptional books passed through my hands. Of these, I would like to mention three. The first, sold in 2003 was a copy of the first edition in Latin of the Columbus Letter of 1493. This is now in a private collection. In 2004, I was offered a book which I scarcely dreamed of owning: the Narratio Prima of Rheticus, printed in 1540. Presenting the first announcement of the heliocentric system of Copernicus, this copy in now in the Linda Hall Library in Kansas City, Missouri. Both of the books were sold before they could appear in my catalogues. Finally, the third book is an absolutely miraculous uncut copy in the original limp board wallet binding of Galileo’s Sidereus Nuncius of 1610. Appearing in my Catalogue 178, this copy was acquired by the Library of Congress. This is the first and, probably the last, “personal” catalogue I will prepare. -
The Origins of the Ptolemaic Tradition and Its Adoption and Replacement in Colonial America
The Origins of the Ptolemaic Tradition and its Adoption and Replacement in Colonial America Master Thesis By Ben Baumann 11592583 June 2018 University of Amsterdam Graduate School of Humanities Master’s Program in Classics and Ancient Civilizations: Ancient Studies First Supervisor: Dr. Jan Willem van Henten Second Supervisor: Dr. Fred Spier Baumann 1 I. Introduction The mapping of the universe and the attempt to understand the cosmos through scholarly investigation has been a constant endeavor of the human race since ancient times. This investigation is known as cosmography. In this thesis, I will analyze how early Colonial American scholars made sense of ancient Greek understandings of cosmography. In particular, I will focus on the way these Greek ideas shaped American thinking not only about the cosmos itself, but also about the way cosmographic understanding became intertwined with views about God and theology. When they first arrived in North America, Colonial Americans generally had a cosmography that was based on the Ptolemaic tradition. But, once they became established in the new world, and especially after the founding of Harvard University, a cosmographic revolution taking place in Europe would begin to resonate in the so-called New World. Thus, some Colonial American scholars willingly engaged in contemplation of the new outlook and proved receptive to the ideas of Nicolas Copernicus. Not surprisingly, in a land where scientific and religious thought overlapped so extensively, this caused heated scholarly debate over the topic and even resulted in student protests at Harvard University. The record of these debates can be traced back to the 17th-century writings of Colonial America, such as several astronomical almanacs, that since have been preserved as vitally significant artifacts of intellectual life in the colonies. -
University of California, San Diego
UNIVERSITY OF CALIFORNIA, SAN DIEGO THE SCIENCE OF THE STARS IN DANZIG FROM RHETICUS TO HEVELIUS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Derek Jensen Committee in charge: Professor Robert S. Westman, Chair Professor Luce Giard Professor John Marino Professor Naomi Oreskes Professor Donald Rutherford 2006 The dissertation of Derek Jensen is approved, and it is acceptable in quality and form for publication on microfilm: _________________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ Chair University of California, San Diego 2006 iii FOR SARA iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication ................................................................................................................. iv Table of Contents ...................................................................................................... v List of Figures ........................................................................................................... vi Acknowledgments..................................................................................................... vii Vita, Publications and Fields of Study...................................................................... x A Note on Dating -
Sources: Galileo's Correspondence
Sources: Galileo’s Correspondence Notes on the Translations The following collection of letters is the result of a selection made by the author from the correspondence of Galileo published by Antonio Favaro in his Le opere di Galileo Galilei,theEdizione Nazionale (EN), the second edition of which was published in 1968. These letters have been selected for their relevance to the inves- tigation of Galileo’s practical activities.1 The information they contain, moreover, often refers to subjects that are completely absent in Galileo’s publications. All of the letters selected are quoted in the work. The passages of the letters, which are quoted in the work, are set in italics here. Given the particular relevance of these letters, they have been translated into English for the first time by the author. This will provide the international reader with the opportunity to achieve a deeper comprehension of the work on the basis of the sources. The translation in itself, however, does not aim to produce a text that is easily read by a modern reader. The aim is to present an understandable English text that remains as close as possible to the original. The hope is that the evident disadvantage of having, for example, long and involute sentences using obsolete words is compensated by the fact that this sort of translation reduces to a minimum the integration of the interpretation of the translator into the English text. 1Another series of letters selected from Galileo’s correspondence and relevant to Galileo’s practical activities and, in particular, as a bell caster is published appended to Valleriani (2008). -
The University of North Carolina at Asheville “A
The University of North Carolina at Asheville “A Great Event, and Even Greater for its Consequences:” Re-examining the Metanarrative of the Galileo Affair A Senior Thesis Submitted to the Faculty of the Department of History in Candidacy for the Degree of Bachelor of Arts in History by William Voit Asheville, North Carolina 21 November, 2003 2 “I urge theologians, scientists, and historians, motivated by a spirit of sincere collaboration, to deepen an examination of the Galileo case, and in a loyal recognition of errors, from whatsoever side they come, put an end to the mistrust to which this affair still gives rise in many minds.” 1 On November 10, 1979, Pope John Paul II spoke these words to the Pontifical Academy of Sciences. 2 In this address, he attempted to mend wounds opened 350 years before by the famous trial of Galileo Galilei, an incident that has come to be known as the Galileo Affair. Galileo’s life and his conflict with the Roman Catholic Church are often cited as the prime example in the metanarrative, or important historical theme, of the “science versus faith” conflict in modern civilization. However, in the attempt to force Galileo into this framework, the personal religious statements of the eminent scientist are often ignored. In order to gain a complete understanding of Galileo’s role in the metanarratives of the early modern age, one must first examine the historiographical data about Galileo, and then follow the development of his relationship with the Church throughout his life. 3 By examining the religious statements of Galileo and his interaction with the Church, one will discover that the Galileo Affair speaks less about the conflict between faith and science, and more about the conflict within a faith, a conflict over scriptural interpretation. -
Shown Above Are Galileo's Sketches of the Moon, Pleiades, and Moons of Jupiter
2/3/2020 MyOpenMath Assessment Sidereus Nuncius Wikipedia permalink/921426383 Shown above are Galileo's sketches of the Moon, Pleiades, and moons of Jupiter. Sidereus Nuncius (usually Sidereal Messenger, also Starry Messenger or Sidereal Message) is a short astronomical treatise (or pamphlet) published in New Latin by Galileo Galilei on March 13, 1610.[1] It was the first published scientific work based on observations made through a telescope , and it contains the results of Galileo's early observations of the imperfect and mountainous Moon , the hundreds of stars that were unable to be seen in either the Milky Way or certain constellations https://www.myopenmath.com/assessment/showtest.php 2/6 2/3/2020 MyOpenMath Assessment with the naked eye, and the Medicean Stars (later Galilean moons) that appeared to be circling Jupiter .[2] [3] The Latin word nuncius was typically used during this time period to denote messenger; however, it was also (though less frequently) rendered as message. Though the title Sidereus Nuncius is usually translated into English as Sidereal Messenger, many of Galileo's early drafts of the book and later related writings indicate that the intended purpose of the book was "simply to report the news about recent developments in astronomy, not to pass himself off solemnly as an ambassador from heaven."[4] Therefore, the correct English translation of the title is Sidereal Message (or often, Starry Message). Telescope: The first telescopes appeared in the Netherlands in 1608 when Middelburg spectacle- maker Hans Lippershey tried to obtain a patent on one.[6] By 1609 Galileo had heard about it and built his own improved version. -
Maurice Finocchiaro Discusses the Lessons and the Cultural Repercussions of Galileo’S Telescopic Discoveries.” Physics World, Vol
MAURICE A. FINOCCHIARO: CURRICULUM VITAE CONTENTS: §0. Summary and Highlights; §1. Miscellaneous Details; §2. Teaching Experience; §3. Major Awards and Honors; §4. Publications: Books; §5. Publications: Articles, Chapters, and Discussions; §6. Publications: Book Reviews; §7. Publications: Proceedings, Abstracts, Translations, Reprints, Popular Media, etc.; §8. Major Lectures at Scholarly Meetings: Keynote, Invited, Funded, Honorarium, etc.; §9. Other Lectures at Scholarly Meetings; §10. Public Lectures; §11. Research Activities: Out-of-Town Libraries, Archives, and Universities; §12. Professional Service: Journal Editorial Boards; §13. Professional Service: Refereeing; §14. Professional Service: Miscellaneous; §15. Community Service §0. SUMMARY AND HIGHLIGHTS Address: Department of Philosophy; University of Nevada, Las Vegas; Box 455028; Las Vegas, NV 89154-5028. Education: B.S., 1964, Massachusetts Institute of Technology; Ph.D., 1969, University of California, Berkeley. Position: Distinguished Professor of Philosophy, Emeritus; University of Nevada, Las Vegas. Previous Positions: UNLV: Assistant Professor, 1970-74; Associate Professor, 1974-77; Full Professor, 1977-91; Distinguished Professor, 1991-2003; Department Chair, 1989-2000. Major Awards and Honors: 1976-77 National Science Foundation; one-year grant; project “Galileo and the Art of Reasoning.” 1983-84 National Endowment for the Humanities, one-year Fellowship for College Teachers; project “Gramsci and the History of Dialectical Thought.” 1987 Delivered the Fourth Evert Willem Beth Lecture, sponsored by the Evert Willem Beth Foundation, a committee of the Royal Netherlands Academy of Sciences, at the Universities of Amsterdam and of Groningen. 1991-92 American Council of Learned Societies; one-year fellowship; project “Democratic Elitism in Mosca and Gramsci.” 1992-95 NEH; 3-year grant; project “Galileo on the World Systems.” 1993 State of Nevada, Board of Regents’ Researcher Award. -
Copernicus and Tycho Brahe
THE NEWTONIAN REVOLUTION – Part One Philosophy 167: Science Before Newton’s Principia Class 2 16th Century Astronomy: Copernicus and Tycho Brahe September 9, 2014 TABLE OF CONTENTS I. The Copernican Revolution .................................................................................................................. 1 A. Ptolemaic Astronomy: e.g. Longitudes of Mars ................................................................... 1 B. A Problem Raised for Philosophy of Science ....................................................................... 2 C. Background: 13 Centuries of Ptolemaic Astronomy ............................................................. 4 D. 15th Century Planetary Astronomy: Regiomantanus ............................................................. 5 E. Nicolaus Copernicus: A Brief Biography .............................................................................. 6 F. Copernicus and Ibn al-Shāţir (d. 1375) ……………………………………………………. 7 G. The Many Different Copernican Revolutions ........................................................................ 9 H. Some Comments on Kuhn’s View of Science ……………………………………………... 10 II. De Revolutionibus Orbium Coelstium (1543) ..................................................................................... 11 A. From Basic Ptolemaic to Basic Copernican ........................................................................... 11 B. A New Result: Relative Orbital Radii ................................................................................... 12 C. Orbital -
Johannes Kepler
PORTRAIT I FAMOUS OPTICIAN Johannes Kepler The German mathematician and astronomer MAIN DATES Johannes Kepler is above all famous for discovering the eponymous laws governing planetary motion. Born 27 December 1571, Weil der Stadt (Germany) Combining Tycho Brahe’s meticulous observations 1601 Mathematicus imperialis, Prague and his own theoretical predictions, his astronomical 1609 First two Kepler laws tables were some of the most enduringly accurate 1611 Dioptricae publication ever established. They provided a firm footing for 1619 The Harmony of the World's third law Copernican theory in the face of the then universally Deceased 15 November 1630, Regensburg (Germany) acknowledged model of a geocentric universe. Despite A portrait of Johannes Kepler poor eyesight that prevented him from carrying out original experimental research, he became a major figure in the field of optics, overhauling all introduce him to the heliocentric theory put forward by its fundamental concepts and developing a sound Nicolaus Copernicus [1473-1543]. In a world dominated by mathematical approach that supported Galileo’s first the Church and the geocentric model devised by Claudius telescopic observations. Ptolemy [ca. AD 90 – ca. 168], which placed the Earth at the centre of the universe, this act was nothing short of unlaw- Riad HAIDAR, [email protected] ful. However, his teacher’s arguments were so compelling and the reasoning so seductive that Kepler soon became a convinced Copernican. As this new stance was obviously ohannes Kepler was born on 27 December 1571 to a incompatible with the role of a pastor, Kepler abandoned his family of modest means in the town of Weil der Stadt.