<<

monocytogenes growthlimitsandstressresistance mechanisms StijnvanderVeen Promotoren Prof.Dr.T.Abee PersoonlijkHoogleraar,LeerstoelgroepLevensmiddelenmicrobiologie WageningenUniversiteit Prof.Dr.W.M.deVos HoogleraarMicrobiologie WageningenUniversiteit CoPromotor Dr.Ir.M.H.J.WellsBennik ProjectManagerHealth&Safety NIZOfoodresearchB.V. Promotiecommissie Prof.Dr.J.Wells WageningenUniversiteit Prof.Dr.O.P.Kuipers RijksuniversiteitGroningen Prof.Dr.S.A.Brul UniversiteitvanAmsterdam Prof.Dr.C.Hill UniversityCollegeCork,Ireland DitonderzoekisuitgevoerdbinnendeonderzoekschoolVLAG

Listeria monocytogenes growthlimitsandstressresistance mechanisms StijnvanderVeen Proefschrift terverkrijgingvandegraadvandoctor opgezagvanderectormagnificus vanWageningenUniversiteit, Prof.Dr.M.J.Kropff, inhetopenbaarteverdedigen opdinsdag9december2008 desnamiddagstevieruurindeAula

StijnvanderVeen . Listeria monocytogenes growthlimitsandstress resistancemechanisms. PhDthesis.WageningenUniversity,Wageningen,TheNetherlands(2008). WithsummaryinDutch. ISBN: 9789085852629

Tewetenwatmenweet entewetenwatmennietweet, datiskennis

Confucius

Content Abstract ...... 9 1.Generalintroductionandoutlineofthethesis ...... 11 2.Thegrowthlimitsofalargenumberof Listeria monocytogenes strains atcombinationsofstressesshowserotypeandnichespecifictraits ...... 41 3.Diversityassessmentofheatresistanceof Listeria monocytogenes strainsinacontinuousflowheatingsystem...... 63 4.Theheatshockresponseof Listeria monocytogenes comprisesgenes involvedinheatshock,celldivision,cellwallsynthesis,andtheSOS response...... 77 5.Genomewidescreenfor Listeria monocytogenes genesimportantfor growthathightemperatures...... 103 6.The Listeria monocytogenes regulatorMogRcontrols expressionof clpB andaffectsstressresistance...... 117 7.TheSOSresponseof Listeria monocytogenes isinvolvedinstress resistanceandmutagenesis ...... 133 8.Generaldiscussionandconclusions...... 153 Samenvatting...... 165 Nawoord...... 169 ListofPublications ...... 171 CurriculumVitae...... 173 VLAGgraduateschoolactivities...... 175

Abstract The foodborne Listeria monocytogenes is a Grampositive facultative anaerobicrod,whichisthecausativeagentof.Duetotheseverityofthedisease and the fact that its incidence is increasing in numerous European countries, L. monocytogenes is of great public health concern. This bacterium shows relatively high resistance to environmental insults compared with many other nonsporeforming food borne . It is able to grow at low pH, at high salt concentrations, and low temperatures.Thepossibilitythatthispathogen(cross) contaminates food products is a majorconcernforthefoodindustry.Therefore,itisimportanttoinvestigatethediversityin growthpotentialandstressresistance(mechanisms)of L. monocytogenes strainsatboththe serotypeaswellasthepopulationlevel,duringexposuretocommonlyusedpreservation conditions.Severalapproachesaredescribedinthisthesis,includingcomparisonofstress resistanceandgrowthlimitsofalargecollection of natural isolates, screening a mutant library for stress sensitive mutants, and transcription profiling of stress responses. The function of various stress response genes and mechanisms including the socalled SOS responsearedescribedindetail. TheSOSresponsein L. monocytogenes appearstobeimportantforstressresistance and for the induction of mutations, resulting in L. monocytogenes variants. The SOS regulon of L. monocytogenes was shown to consist of 29 genes encoding proteins with functionsinerrorproneDNAsynthesisandDNArepair.Italsoincludesthebileextrusion system BilE, which is known to affect properties of L. monocytogenes by conferringresistancetobile.TheSOSresponsemaythereforecontributetothegeneration andpersistenceof L. monocytogenes variantsinfoodprocessingenvironmentsandinthe humanhost. This thesis provides novel insights in the natural diversity of L. monocytogenes strains, and it has been revealed that specific groups of strains (serotypes) can be more persistent in specific niches such as food processing environments and retail establishments. Functional assessment of specific transcriptional regulators revealed an overlapintargetgenesandaddedtofurtherunderstandingoftheactivationandfunctionof thecomplexstressresponsenetworkinthishumanpathogen.

9

1. General introduction and outline of the thesis StijnvanderVeen,TjakkoAbee,MarjonH.J.WellsBennik Abstract The foodborne pathogen Listeria monocytogenes is a Grampositive facultative anaerobicrod,whichisthecausativeagentoflisteriosis.Duetotheseverityofthedisease, thehighmortalityrate,andthefactthatitsincidenceisincreasinginnumerousEuropean countries, L. monocytogenes is of great concern to public health. This bacterium shows relativelyhighresistancetoenvironmentalinsultscomparedwithmanyothernonspore formingfoodbornepathogens.ItisabletogrowatawidepHrange(frompH4.5topH9), athighsaltconcentrations(upto13%),andatawidetemperaturerange(0.4to46ºC)and itisabletosurvivemoreextremeacidconditions,saltconcentrations,andtemperaturesfor extended periods of time. The ability of L. monocytogenes to proliferate under adverse conditionsandsurviveenvironmentalinsultsresultsfromvariousmechanismsthatallow forrapidresponsesandadaptationtochangingenvironments.Duetoconsumer’sdemands forlessheavilypreservedfoodsandmoreconveniencefoods,processingconditionsinthe food industry are becoming milder. L. monocytogenes is able to adapt to such milder conditions,makingitofmajorconcerntothefood industry. To adequately inactivate L. monocytogenes and/ortopreventgrowthduringstorage,moreknowledgeisrequiredabout thestressresponsemechanismsofthisbacteriumthat determine resistance to stress and about(genetic)diversitybetweendifferentstrainsandserotypes.Thischaptergivesashort historyonthefoodbornepathogen L. monocytogenes ,showsanoverviewofthecurrent knowledgeonthemostimportantstressresponses,andprovidesanoutlineofthisthesis.

11

History Thefirstreportsof“listiric”gobackasfaras1891whenthepresenceof Grampositiverodswasdescribedintissuesectionsofdeceasedpatients.In1926E.G.D. Murrayetal.(110)wasthefirsttodescribethisbacteriumasanonsporeformingGram positiverodthatinfectsoftheblood,resultingindiseasesinrabbitsandguinea pigs.Thisstrainwasthereforenamed Bacterium monocytogenes .Notably,aderivativeof thisstrain(EGDe,afterMurray’sinitials)laterbecamethefirst L. monocytogenes strainto be completely sequenced (58).The first confirmed reported case of L. monocytogenes in humanwasmadein1929byNyfeldt(62).In1940itspresentnamewasgivenbyPirie(62). Afteraperiodinwhichonlysporadiccasesoflisteriosiswerereported,mostlyinvolving workersthathadbeenincontactwithdiseasedanimals,interestin L. monocytogenes grew rapidlyinthe1980safterreportsofseveralfoodborneoutbreaks.Inoneoftheseoutbreaks pasteurised was identified as the vehicle, raising the question whether L.

L. monocytogenes 4a L. monocytogenes 4c

L. monocytogenes 4e L. monocytogenes 4d L. monocytogenes 4b

L. monocytogenes 7 L. monocytogenes 1/2b L. monocytogenes 3b Common ancestor L. monocytogenes 1/2a L. monocytogenes 3c

L. monocytogenes 1/2c L. monocytogenes 3a

Fig.1.Evolutionaryschemeofthe L. monocytogenes lineagesandserovarsbasedontheantigenic propertiesandthepresenceandabsenceofgenes(derivedfrom(43)).

12

monocytogenes was capable of surviving a pasteurisation step (53). The strain ScottA, which was isolated during this outbreak, is still the most researched strain in thermal inactivation studies. Due to the work on pathogenicity following these outbreaks, L. monocytogenes isnowregardedasoneoftheinvasivemodelstrainsinpathogenresearch (25).

L. monocytogenes ispartofthe Listeria genustogetherwithfiveotherspecies:the pathogenicspecies L. ivanovii andthenonpathogenicspecies L. seeligeri ,L. welshimeri , L. innocua ,and L. grayi (128).Thespecies L. monocytogenes contains13differentserotypes, whicharedividedoverthreelineagesaccordingtothepresenceofspecificmarkergenes (Fig. 1): lineage I contains the serotypes 1/2a, 1/2c, 3a, and 3c, lineage II contains the serotypes1/2b,3b,7,4b,4d,and4e,lineageIIIcontainstheserotypes4aand4c(43).The serotype4abstrainswerenotdesignatedtoalineagein thisstudy.Of the 13identified serotypes, serotypes 1/2a, 1/2b, 1/2c, and 4b account for over 95% of the isolates from foodsandpatients(42).Themajorityofthefoodisolatesareofserotype1/2aand1/2b(72, 161),whichmightberelatedtothegrowthcapabilitiesofthesestrainsatlowtemperature (7ºC)incombinationwithotherstresses(Chapter2).Themajorityoftheclinicalisolates areofserotype4bandallmajoroutbreaksoffoodbornelisteriosisarecausedbystrains fromthisserotype(12). Foodbornepathogen

L. monocytogenes isthecausativeagentoflisteriosis,whichisoftenmanifestedas , , , intrauterine infections, spontaneous abortion, and gastroenteritis(147).Theaffectedpopulationconsistmainlyofelderly,pregnantwomen (andtheirunbornchildren),infants,andimmunocompromizedpersons(75).Thenumber of listeriosis cases is relatively low compared with other foodborne pathogens, but the mortalityrateisextremelyhigh(Table1).Theincidenceoflisteriosisisincreasinginmany countriesoftheEuropeanUnion(33).InTheNetherlandstheincidencein2006was3.9per millionandthemortalityratewas28%(40).Estimationsinthetransmissionoflisteriosis showed that 99 % of the cases are caused by contaminated food products (105). L. monocytogenes is ubiquitously present in the rural environments and contaminates raw materials used in the foodindustry. The ability of this bacterium to tolerate high concentrationsofsalt(upto13%),awidepHrange(pH4.5topH9),andthecapabilityto multiplyatrefrigerationconditionsposeaseriousrisktofoodsafety(Chapter2and(79)).

13

Table1.OutbreaksofListeriosiswithknownfoodvehicles. Food Country Deaths Year Cases Serotype Reference Vehicle (State) (%) 1978 Vegetables(raw) Australia 12 0(0) Unknown (117) 1979 Rawvegetablesor 1979 USA(MA) 20 3(15.0) 4b (71) Rawseafood(finfish 1980 NewZealand 22 6(27.3) 1b (95) andmollusks) Miscellaneous 1981 England 11 5(45.5) 1/2a (125) Products 1981 Vegetables(raw) Canada 41 17(41.5) 4b (127) 1983 Pasteurizedfluidmilk USA(MA) 32 14(43.8) 4b (53) 1983 VacherinMontd'Or Switzerland 122 31(25.4) 4b (13) 1987 cheese Mexicanstylecheese 1985 USA(CA) 142 48(33.8) 4b (97) (rawmilk) Unpasteurizedmilk, 1986 Austria 28 5(17.9) Unknown (3) organicvegetables 1986 Icecream,salami,brie 4b,1/2b, USA(PA) 36 16(44.4) (131) 1987 cheese 1/2a 1986 Raweggs USA(CA) 2 Unknown 4b (130) 1987 1987 Butter USA(CA) 11 Unknown Unknown (125) 1987 Pâtéandmeatspreads England 355 94(26.5) 4b (102) 1989 1989 SemisoftCheese Denmark 23 0(0) 4b (77) 1990 (blue) 1990 Pâtéandmeatspreads Australia 11 6(54.5) 1/2a (125) Tasmania, 1991 Smokedmussels 4 0(0) 1/2a (107) Australia 1992 Smokedmussels NewZealand 4 0(0) 1/2 (9) 1992 tongueinjelly France 280 63(22.5) 4b (76) 1993 Rillettes France 38 11(28.9) 4b (61) 1994 SmokedSeafood Sweden 9 2(22.2) 4b (45) 1995 (finfishandmollusks) SoftRipenedCheese, 1995 France 33 4(20.0) 4b (60,76) >50%moisture

14

Table1.Continued. Food Country Deaths Year Cases Serotype Reference Vehicle (State) (%) Not Frozenvegetables USA(TX) 7 Unknown 4b (136) specified Ponl'Eveque 1997 France 14 0(0) 4b (125) cheese 1998 Butter Finland 25 6(24.0) 3a (99) 1999 1998 Hotdogs,deli USA(22states) 101 21(20.8) 4b (103) 1999 meats USA(CT,MD, 1999 Pâté 11 unknown 1/2a (14) NY) 1999 Pigstonguein France 26 7(26.9) Unknown (41) 2000 aspic 2000 Deliturkeymeat USA(10states) 29 7(24.1) unknown (15) Homemade 2000 Mexicanstyle USA(NC) 12 5(41.7) unknown (16) 2001 cheese(rawmilk) 2002 Deliturkeymeat USA(9states) 54 8 4b (59) 2003 Sandwiches UK 5 0(0) 1/2 (32) 2005 Tommecheese Switzerland 10 3(30.0) 1/2a (8) 2006 softcheese,salads CzechRepublic 75 12(16.7) 1/2b (148) 2008 and Not Frankfurtermeat USA(24states) 108 14(13.0) 4b (104) specified 2007 USA Pasteurizedmilk ? 4(?) Unknown 2008 (Massachusetts) 2008 Delimeat Canada ? 19(?) Unknown Foodborne outbreaks of L. monocytogenes have been associated with many different categories of food products (Table 1), including dairy products, seafood, vegetablesandmeatproducts(49).Inparticular,foodproductsthatdonotrequirefurther cookingbeforeconsumptionorthosewithanextendedshelflifeatrefrigerationconditions are a serious risk for L. monocytogenes contamination and outgrowth (89). Because the infectivedoseof L. monocytogenes forhumansisnotknown,azerotolerancepolicywasin effectforthesetypesofproducts.However,inJanuary2006,regulation2073/2005(48)has been implemented in the European Union, providing new microbiological criteria for readytoeat(RTE)foodproducts,providingtheyarenotintendedforinfantsandspecial medicalpurposes.InRTEfoodproductsthatdonotsupportgrowthof L. monocytogenes ,a maximumconcentrationof100cfu/gisallowed.Thecriteriafortheseproductsare:pH≤

15

4.4,ora w≤0.92(approximately13%NaCl),orpH≤5.0andaw≤0.94(+/10%NaCl). Due to consumer’s demands for less heavily preserved foods and more RTE and convenience foods, processing conditions in the food industry are becoming milder. To maintainbacteriocidalconditionsinfoodprocessing,combinationsofmildprocessingsteps (hurdles) arebeingused (94). These hurdlescan include combinations of heating, cold shock,acidification,brining,andhighhydrostaticpressure(HHP)treatments.Exposureto sublethal stresses might result in adaptation of L. monocytogenes to similar subsequent stresses or crossprotection to other stresses (1, 70). To design optimal mild processing conditionsthatresultinadequateinactivationofpathogenslike L. monocytogenes ,insight inthediversityofthisbacteriuminrelationtostressresistanceisrequired.Furthermore, moreknowledgeonthestressresponseandadaptationmechanismsofthisorganismandthe diversityofthesemechanismsin L. monocytogenes populationsneedstobeobtained.This knowledgecanbeusedtopredicttheoptimalsequenceofstressexposurestopreventcross protection between different stresses, and to decide what level of exposure to certain inhibitorycompoundsortreatmentsisrequiredforeffectiveinactivation. Diversity Currently, the genomes of two L. monocytogenes strains have been completely sequencedandannotated.ThesestrainsareEGDe,whichisaserotype1/2astrain(58),and F2365, which is of serotype 4b (116). In addition, the genome sequences of two other strains,whichareofserotype1/2a(F6854)and4b(H7858),havenearlybeencompleted (116).Recently,18 L. monocytogenes genomeshavebeensequencedtonearcompletionby theBroadInstitute(www.broad.mit.edu/seq/msc/ )andannotationforsomeofthegenomes isinprogress.Thesegenomesareofstrainsbelongingtoserotype1/2a,1/2b,1/2c,4a,and 4bandincludetwoofthemostwidelystudiesstrainsworldwide(10403SandLO28).All ofthesequencedgenomesarecircularwithapproximately89%codingsequences(65).The fullysequencedgenomesshowedhighsyntenyingenetic organization and gene content (65,116).Inversionsorshiftingoflargegeneticelementswerenotobserved,probablydue tothelowoccurrenceofISelements(11).However,geneticdifferencesbetweenstrains andserotypeswereobserved,indicatingthatdespitethelowgeneticvariationphenotypic traitscanstillbedifferent.Adirectcomparisonoffoursequencedstrainsshowed51,97, 69,and61strainspecificgenesforF2362,F6854,H7858,andEGDe,respectively.Most differences between strains consisted of phage insertions (116). Furthermore, this study revealedthat83geneswererestrictedtoserotype1/2astrainsand51genestoserotype4b strains.Insomecases,geneticdifferencesbetweenstrainsandserotypesshowedarelation toresistancetoheat(160),acid(28),orbilesalts(7,142),topathogenicpotential(154),or tomotility(63).Adirectcomparisonbetweenthepathogenicspecies L. monocytogenes and

16

Outside host

mRNA prfA

Motility GroEL PrfA Class I HrcA MogR Virulence GmaR Class III Motility PrfA CtsR MogR SigB SOS RsbW SigB Class II LexA

Inside host protein aggregates mRNA prfA GroEL Class I

PrfA HrcA Motility MogR Virulence Class III CtsR PrfA RsbW RsbV SigB SigB SOS Class II LexA

Fig. 2. Activation of specific virulence and stress mechanisms by the environment of host organisms. Outside the host, the motility genes are expressed (black arrows) resulting in the production of flagella, while the virulence genes and stress response genes are generally not activated (white arrows). Inside the host, the virulence genes and stress response genes are activated(blackarrows),whilethemotilitygenesarerepressed(whitearrow).Fordetailsonthe activationandrepressionmechanismsofthespecificresponses,seetext.

17

thenonpathogenicspecies L. innocua revealedthatthemostimportantdifferencebetween these species was the insertion of a pathogenicity island (LIPI1) (147) in the L. monocytogenes genome between the genes prs and ldh (58, 67). This island encodes proteinsthatareresponsiblefortheabilityof L. monocytogenes tosurviveandmultiplyin hostcellsandinducecelltocellspread. Stressresponseandadaptation have evolved various strategies and networks to survive and adapt to changingconditionsencounteredintheenvironment,e.g.duringfoodprocessingandinside host organisms. Strategies used by L. monocytogenes to survive adverse conditions are transcriptional regulation and activation of stress genes, inducing genetic diversity that resultinstressresistantsubpopulations,andformationof.Bacteriacontainvarious signal transduction mechanisms to sense and respond to stress by modulation of gene expression. L. monocytogenes contains15putativetwocomponentsystemsofwhichboth thesensorhistidinekinaseandthecognateresponseregulatorhavebeenidentified,andone orphan response regulator (DegU) (155, 156). Two component systems have been identifiedwithrolesinstressresistance(Chapter5and(10,137)),formation(120), virulence(4),andmotility(52,156).Motilitydepends on the orphan response regulator DegU, which activates transcription of the motility genes in a temperaturedependent manner through activationof gmaR (64,135).At37ºCandabove,MogRrepressesthe motilitygenes,whileat30ºCandbelowMogRisantagonizedbyGmaR. Furthermore, specific responses can be induced during exposure to stresses. Following the completion of the genome sequence of L. monocytogenes , several groups conducted wholegenome transcription profiling studies. These studies generated more insightinthespecificityoftheseresponsesafterstressexposure(Chapter4and(66,73,74, 119,132)). L. monocytogenes contains two specific heatshock responses, namely, the HrcA regulated class I response, and the CtsR regulated class III response. These heatshock responsesaretranscriptionallyactivatedduringexposuretoelevatedtemperaturesorother stresseslikecoldshock,highsaltconcentrations,andacidshock(Chapter4and(44,98)). The heatshock response genes encode molecular chaperones and proteases that protect cells from aggregation of damaged and misfolded proteins. Chaperones are able to reactivateproteinaggregates(19,92,150)andproteasescleanuptheseproteinaggregates whenreactivationfails(112).Maintenanceofproteinqualityisessentialduringexposureto stressconditions(96). L. monocytogenes contains another important stress response mechanism, namely theclassIIstressresponse,whichiscontrolledbythealternativesigmafactorSigB.This

18

stressresponsemechanismisactivatedduringexposuretomanydifferentstressesandin virulence(Chapter4and(5,50,153)).TheclassIIstressresponsecontainsgenesencoding decarboxylases for acid resistance (51, 152), osmolyte transporters for salt and low temperatureresistance(140,151),reductasesforoxidativestressresistance(Chapter4and (66)),andchaperoninsandproteasesforheatandHHPresistance(Chapter4and(152)). TheSOSresponseof L. monocytogenes encodesalternativeDNApolymerasesand DNArepairproteins(Chapter7)andisregulatedbyRecAandLexA.ItisinvolvedinDNA repairorrestartingofstalledreplicationforks(29,31).Formanybacteriaitwasshownthat theSOSresponsewasactivatedduringexposuretodifferentstressesthatresultinDNA damageorreplicationforkstalling(24,38,39,141).TheSOSresponseisalsoinvolvedin inductionofgeneticvariationinmanybacteria,including L. monocytogenes (Chapter7and (54, 144)), which could result in the generation of mutants with increased resistance to stress. L. monocytogenes contains a specific temperaturedependent response that is importantforcolonizingthehostenvironment.Thisvirulenceresponseisregulatedbythe PrfAactivator(18,93).Thesecondarystructureoftheuntranslatedregionof prfA mRNA prevents translation at temperatures below 37 ºC (78), while at 37 ºC and above prfA mRNAistranslatedandthevirulenceresponseisactivated.Besidesthevirulenceresponse, severalother(stress)responsesareactivatedorrepressedbythespecificconditionsofthe host environment (Fig. 2). Previous studies showed a partial overlap between the PrfA regulatedvirulenceresponseandtheclassIIstressresponse(74,106),indicatingthatthis class of stress genes performs a role in colonization and growth inside host organisms. Furthermore,theclassIandclassIIIheatshockresponse,theclassIIstressresponse,and the SOS response are activated during intracellular growth of murine cells (21).Theseresultsdemonstratedthatspecificstressresponsemechanismsareimportantfor growth and survival during exposure to stressful environments outside and inside host organisms. ClassIheatshockresponse TheclassIheatshockgenesencodemolecularchaperonesandinclude dnaK , dnaJ , grpE , groES , and groEL . Their products form the two chaperonin systems KJE (DnaK, DnaJ,andGrpE)andGroESL(37,133).Thesegenesaretranscribedfromtwolocationson the L. monocytogenes chromosome(Fig.3).TheclassIheatshockgenesareregulatedby theautoregulatoryHrcArepressor,whichbindstotheCIRCE(ControllingInvertedRepeat of Chaperone Expression (162)) operator sequence (TTAGCACTCN9GAGTGCTAA), locatedinthepromoterregionofthisclassofgenes(129).Inboth subtilis (108) and Chlamydia trachomatis (157)thebindingaffinityofHrcAtotheCIRCEoperatorwas dependentonthepresenceoftheclassIheatshockproteinGroEL.GroELincreasesthe

19

σσσA σσσB σσσB σσσA hrcA grpE dnaK dnaJ

CtsR? CIRCE CIRCE KJE

Denatured no stress stress protein HrcA GroEL GroES GroESL

σσσA Refolded groES groEL protein

CIRCE

Fig.3.RegulationandtitrationmodelfortheactivationoftheclassIheatshockgenes.Activation results in the induction of the KJE and GroESL chaperonin systems that refold denatured proteins.Fordetails,seetext. bindingaffinityofHrcAtotheCIRCEoperator,resultinginrepressionoftheclassIheat shockgenes.ActivationoftheclassIheatshockgenescouldthereforebedescribedbya GroELtitrationmodel(Fig.3)(115).Highertemperaturesresultinincreasednumbersof denatured proteins, which engages the GroESL chaperonin system in refolding of these proteins, thereby depleting the GroEL pool. Since the class I heatshock response of L. monocytogenes isinduceduponheatshock(Chapter4),theabovedescribedtemperature dependenttitrationmodelmightbesimilarin L. monocytogenes .TheclassIchaperones have been shown to be involved in protection of L. monocytogenes to various stresses. Exposuretohighsaltconcentrationsresultedininduction ofDnaK (44). Furthermore, a dnaK mutantof L. monocytogenes showedreducedgrowthattemperaturesabove39ºCand increasedacidsensitivitycomparedwiththewildtypestrain(68).Expressionof groESL wasinducedaftergrowthatlowtemperatures(98)andafterexposuretoethanol,acid,or bilesaltscomparedwithgrowthat37ºC(56).Both dnaK and groESL showedincreased expressioninmouse(56). Recent evidence indicates that the class I heatshock response is also partially regulatedbytheclassIIstressresponseregulatorSigB(73).The hrcA grpE dnaK containsaSigBpromoteroverlappingtheSigApromoter,andasecondSigBpromoteris located upstream of the dnaK coding region (Fig. 3). This indicates that dnaK could be inducedbystressconditionsthatresultin sigB activationwhilethe hrcA dnaK operonis stillrepressedbyHrcA.For Staphylococcus itwasshownthatthe hrcA dnaK operonwas

20

also under control of CtsR, showing regulatory interactions between the two classes of heatshockgenes(20).Interestingly,the hrcA dnaK operonof L. monocytogenes containsa perfect CtsR binding site repeat on the lagging strand in front of the promoter 119 bp upstream of the ATG startcodon (unpublished results). Whether binding of CtsR to this repeataffectsexpressionofthe hrcA dnaK operonremainstobeestablished. ClassIIIheatshockresponse The class III heatshock response consists of molecular chaperones and ATP dependentClpproteases,includingClpB,ClpC,ClpE,andtwoClpPATPases(112).Their functionsandthegeneticstructuresoftheirencodinggenesareshowninFigure4.The class III heatshock genes are regulated by an autoregulatory dimeric CtsR (class three stressgenerepressor)repressor,whichbindstoaheptanucleotiderepeat(A/GGTCAAA NANA/GGTCAAA)inthepromoterregionofthesegenes(3436,90,112).Inprevious

σσσA σσσB ctsRmcsA mcsB clpC

CtsR P McsB McsA CtsR P no stress ClpC P stress McsB CtsR McsB ClpCP McsA Denatured Peptide P McsA protein P fragments ClpB ClpEP

Unfolded protein Peptide fragments σσσA σσσA σσσB σσσA clpB clpE clpP

CtsR CtsR CtsR

Fig. 4. Regulation and titration model for the activation of the class III heatshock genes. Activation results in the induction of chaperonin systems or proteases that refold or degrade denaturedproteins.Fordetails,seetext.

21

research the temperaturedependent regulatory mechanism has been described for B. subtilis (88). A similar mechanism is believed to be present in L. monocytogenes and involves all products of the ctsR mcsA mcsB-clpC operon and ClpP. CtsR of L. monocytogenes isthoughttoformaternarycomplexwithMscAand McsB, encodinga putative kinase, which prevents binding of CtsR with the operator sequence. McsA activatesMcsB,whichinturnphosphorylatesMcsA,McsBandCtsR,andtargetsCtsRfor degradation.DegradationofCtsRdependentsontheactivityoftheClpCPprotease(91). Furthermore,thekinaseactivityofMcsBisinhibitedbyClpC.SimilartotheclassIheat shockresponse,atitrationmodelcanbeusedtodescribetheactivationoftheclassIIIheat shockresponse,whichdependsonClpC(Fig.4).Duringexposuretohighertemperatures elevatedconcentrationsofunfoldedordamagedproteinsresultinthereliefofthekinase McsBfromClpCinhibition,therebytargetingCtsRfordegradationandinitiatingtheheat shock response of the class III genes. Upon administering a heat shock, all L. monocytogenes class III heatshock genes that are mentioned above show increased expression (Chapter 4). Noteworthy is that L. monocytogenes ScottA cultures contain a subpopulation of about six cells per 10 4 in which the class III heatshock genes are constitutivelyinducedduetomutationsin ctsR thatrenderthisrepressorinactive(81).This subpopulationofcellsgrowsslowerthanthewildtypecells,butshowsincreasedfitness uponexposuretostresseslikeheat,HHP,highsaltconcentrations,acid,andH 2O2(80,82, 112).The ctsR mutationsarelikelyreversibleandaretheresultofstrandslippageovera repeatencodingfourconsecutiveglycines(82).TheClpATPasesareveryimportantfor bothstresssurvivalandvirulence.The clpC mutantshowsreducedcapabilitiestoinfect hepatocytesintheliverandepithelialcellsofinfectedmice(114).Growthisrestrictedin macrophages and at stress conditions (42 ºC or 2% NaCl) in the clpC mutant (124). Furthermore,suggestionsforcrosstalkbetweenClpCandthecentralvirulenceregulator PrfAhavebeenmade(121)andithasbeenshownthatClpCisinvolvedinthecorrect expression of the virulence factors InlA, InlB, and ActA (114). ClpE is required for prolonged survival at 42 ºC (113). Furthermore, ClpE is involved in virulence and cell division, since the clpE clpC double mutant was avirulent in a mouse model and cell divisionwasaffected(113).ClpBisachaperoninthatisinvolvedinreactivationofprotein aggregatesincollaborationwiththeKJEsystem(92).ClpBistightlyregulatedbyboththe CtsRandMogR(mo tilitygenerepressor(63,134,135))repressors.Itplaysanimportant rolein L. monocytogenes heatandHHPresistance(Chapter6)andinvirulence,sincethe clpB mutantshowedreducedvirulenceinamousemodel(19).While clpB isan important gene in the heatshock response, it was also induced during growth at low temperatures(98).ClpPisimportantforstressresistanceandvirulence(57).A clpP mutant showed impaired virulence in a mouse infection model, which was partly the result of

22

reducedexpressionofthevirulencefactorlisteriolysinO(LLO).Furthermore,thismutant showedreducedgrowthat42ºCorinthepresenceof12%NaCl. PreviousstudiesshowedapartialoverlapbetweentheclassIIIheatshockresponse andtheclassIIstressresponse.Geneexpressionandproteinstudiesonthe sigB mutant showedthatClpPandClpCareSigBactivated(23,152).Recently,aSigBpromoterwas identifiedinfrontof clpP andinthe ctsR clpC operonupstreamof mcsA (Fig.4)(74).This indicates that clpC couldbeinducedduringconditionsinwhichSigBis activated while CtsRrepressionisstillfunctional. ClassIIstressresponse TheclassIIstressgenesencodeagroupofproteinsthatplayrolesintheresponseto various stress conditions (5, 6, 50, 153). The class II stress genes are regulated by the autoregulatory alternative sigma factor SigB, which recognizes alternative –35 and –10 promoter sequences (GTTTN13–17 GGGWAT) (84). SigB is cotranscribed with seven regulatorygenesfromtwo,whichareinvolvedinposttranslationalregulationof SigB (Fig. 5) (22, 66, 69). The rbsR rbsS rbsT rbsU operon is transcribed from a SigA promoterandthe rbsV rbsW sigB rbsX operonistranscribedfromaSigBpromoter.Under conditions in which SigB activity is not required, SigB is antagonized by the antiSigB kinaseRsbW.RsbWphosphorylatestheantiantiSigBfactorRsbV,therebypreventingits antagonizing activity on RsbW. Under conditions in which SigB is required, RsbV is dephosphorylatedbythephosphataseRsbU,whichinturnbindstoRsbWtopreventSigB antagonizing activity. RsbU is allosterically activated by the kinase RsbT. RsbT phosphorylatesRsbS,therebypreventinganantagonizingeffectofRsbS.Toactivatethe RsbTantagonizingactivityofRsbS,RsbSisdephosphorylatedbythephosphataseRsbX. Finally, the RsbS antagonizing activity on RsbT is also modulated by RsbR. The autoregulatoryfunctionofthissystemdependsontheSigBactivatoractivityandtheRsbX repressingactivity(22,66,69).RsbX,whichiscotranscribedwithSigB,actsasafeedback signalbydephosphorylationofRsbSwhichinturnantagonizesRsbT,andtherebyprevents activation of RsbU. Finally, SigB is antagonized by RsbW. Furthermore, this SigB regulationmodulecontainstwoenergy(ATP)dependentphosphorylationsteps,whichare believedtofunctioninenergydependentregulationofSigB(22,66,69).ATPdepletionin forinstancethestationaryphasewillresultinaccumulation of unphosphorylated RsbV, whichantagonizestheSigBbindingactivityofRsbW,therebyactivatingtheSigBstress response. On the other hand, ATP depletion will also result in accumulation of unphosphorylated RsbS, which will antagonize the RsbT activator. This will inhibit dephosphorylation of RsbV by RsbU and could potentially result in SigB inhibition by RsbW.Inarecentwholegenomeexpressionprofiling study,SigBregulatedgenesin L. monocytogenes wereidentified(66).Intotal,theexpressionof216genesweredependent

23

σσσA σσσB rsbRrsbS rsbT rsbU rsbVrsbW sigB rsbX

σσσB P Class II RsbV SigB

RsbU ATP RsbW SigB RsbT RsbW RsbV RsbW P RsbV Stress RsbS resistance RsbT ATP RsbX RsbT RsbS RsbS

RsbS RsbR RsbR

Fig.5.RegulationmodelfortheactivationoftheclassIIstressgenes.AfterSigBinhibitionby the RsbW antagonist is lost, SigB activates the class II stress genes by binding their SigB dependentpromoter,resultinginstressresistance.Fordetails,seetext. onSigB,ofwhich105genesin76transcriptionunitswereupregulatedbySigBand111 genesin94transcriptionunitsweredownregulated.Thesegenescompriseapproximately 8%ofthe L. monocytogenes genome,showingtheimportanceoftheSigBresponse.Ofthe 76 positively controlled transcriptional units, 23 did not contain a consensus SigB promoter,whileonly13consensusSigBpromotersweredetectedinthe94downregulated transcriptionalunits.SigBdependentgenesincludesomeoftheclassIandclassIIIheat shock genes (23, 73, 74, 152), and many other genes involved in other resistance mechanisms.SigB,forinstance,regulatestheexpressionofgenesencodingforosmolyte transporters, including OpuC (55, 152), DtpT (66, 158), Gbu (17), and BetL (139). Osmolyte transporters are involved in protection against osmotic and cold stress by transporting osmo and cryoprotective compounds such as glycinebetaine, carnitine, ornithine, and small peptides (140, 151). SigB is also involved in acid tolerance by controllingtheexpressionofgenesthatencodetheGADdecarboxylasesystem(51,152).

24

Thissystemconsistsofaglutamate/GABAantiporterfor transportation and a glutamate decarboxylase,whichconsumesaintracellularprotonbyconvertingglutamateintoGABA (26,27).OthergenesthatareregulatedbySigBinclude those encoding three universal stressproteins(Usp)of L. monocytogenes ,thegeneralstressproteinCtc,(Chapter4and (66)),andinaddition,somereductasesinvolvedinoxidativestress(Chapter4and(66)). PreviousresearchfurthermoreshowedthatSigBplaysanimportantroleinvirulence(85, 111,153).ThisroleistwofoldasSigBcanactivatestressresistancemechanismsinvolved in bile resistance and also control the expression of virulence genes directly. The SigB controlledbileresistancesystemsareBilE(138)andBsh(142),whichareinvolvedinbile exclusion and bile hydrolysis, respectively. The virulence genes that contain SigB dependentpromotersencodethemajorvirulenceregulatorPrfA,whichisdirectlyregulated bySigBinagrowthphasedependentmanner(85,111),andinternalins(87,100,101). SOSresponse TheSOSresponseencodesDNArepairproteinsandalternativeDNApolymerases (29,122).TheSOSresponseisregulatedbytheautoregulatory LexA repressor and the RecAactivator(Fig.6)(46).TheLexArepressorinhibitstranscriptionoftheSOSresponse genes by binding to an inverted repeat in the promoter region of these genes. The L. monocytogenes LexA consensus binding sequence is AATAAGAACATATGTTCGTTT

dinB uvrA addA recA lexA

LexA LexA LexA LexA LexA DNAbreakor nucleotide AddA RecA excisionrepair LexA UvrA Helicase Translesion nuclease DNAsynthesis Excinuclease DinB Cleaved LexA Errorpronepolymerase SOS

Activated RecA LexA nucleofilaments

Fig.6.RegulationandactivitymodelfortheSOSresponse. DNA damage or replication fork stallingresultsinactivationofRecAbyssDNA.ActivatedRecAstimulatescleavageoftheLexA repressor, resulting in induction of the SOS response genes. The SOS response encodes alternativeDNApolymerases,excinucleases,andhelicasesthatrepairdamagedDNAandstalled replicationforks.Fordetails,seetext.

25

(Chapter 7). The SOS response is generally activated by processes that result in accumulationofsinglestrandedDNA(ssDNA).RecA,whichispresentatbasiclevels,will bindtothesessDNAfilaments,resultinginanucleoproteincomplexthatactivatesRecAby inducing structural changes. These activated RecAssDNA complexes then stimulate autocleavageoftheLexArepressor,resultingininductionoftheSOSresponse(2,126). This response is activated by stresses that induce accumulation of ssDNA after DNA damage,e.g.UVexposureormitomycinCexposure(30,86),orreplicationforkstalling, e.g.heatshockorciprofloxacinexposure(Chapter4and(24)).Interestingly,lowpHand highsaltconcentrationsalsoresultedinstructuralchangesinLexAandRecA,respectively, whichcouldinducetheSOSresponse(38,39,141).The L. monocytogenes SOSresponse consists of 29 putative genes, which are transcribed from 16 operons (Chapter 7). Two alternativeDNApolymerasesarepartoftheSOSresponseof L. monocytogenes ,namely PolIV(DinB)andPolV(UmuDC)(Chapter4).ThesealternativeDNApolymeraseswere first discovered in Escherichia coli , and their presence has in the meantime been establishedinmanyotherbacteria(118).DinBandUmuDCareerrorpronelesionbypass polymerases without proofreading activity and are involved in introducing adaptive mutations (143145, 149). In addition to the alternative DNA polymerases, the SOS responseencodesseveralDNArepairsystems.ThisincludestheUvrABsystem,whichis anexcinucleasesystemthatrecognizesDNAlesionsandisresponsibleforrepairofmostof the DNA damage (47, 146), and the AddA helicase, which is involved DNA break processing (159). In L. monocytogenes this helicase is important for growth at elevated temperatures(Chapter5).Remarkably,theSigAandSigBcontrolledbileexclusionsystem BilEappearstobepartofthe L. monocytogenes SOSresponse(Chapter7).Giventherole of BilE in virulence, the SOS response may play a role in the pathogenicity of L. monocytogenes .Forsomebacteria,ithasbeenshownthatactivationoftheSOSresponse resultsininhibitionsofcelldivision,therebypreventingtransectionofthegenomeafter replicationforkstalling(83,109).ThiseffectofinterruptedZringformationinthevicinity ofthenucleoidiscalled“nucleoidocclusion”(123).In L. monocytogenes ,YneAprevents septumformationbyaccumulatingatthemidcell.Inthisthesis,wedemonstratethatthis mechanismisimportantforheatresistance(Chapter7). Outlineofthethesis Several genomicsbased approaches were used to study the diversity in stress resistanceandsurvivalstrategiesof L. monocytogenes duringfoodpreservationconditions. These results can be used by the food industry to develop new (mild) preservation techniques that are effective to inactivate L. monocytogenes or prevent growth of this

26

organism.Thediversitybetweendifferentstrainsandserotypesof L. monocytogenes with regard to stress resistance is addressed in Chapter 2 and 3. The stress responses of L. monocytogenes duringexposuretoelevatedtemperaturesisdescribedinChapter4and5. Lastly, specific characteristics of two important L. monocytogenes stress response mechanismsaredescribedinChapter6and7,namely,theregulationoftheclassIIIheat shockgene clpB bytheMogRrepressor,andthefunctionandregulonoftheSOSresponse in L. monocytogenes . InChapter2thegrowthlimitsof138 L. monocytogenes strainsfromdiverseorigin wereassessedusingcombinationsofdifferenttemperatures,lowpHconditions,highsalt concentrations,andtheadditionofthepreservativesodiumlactate.Theobservedgrowth limits showed serotype and nichespecific traits. The outcome of the growth limits experiments showed that the new European Union regulation 2073/2005 provide good criteriatopreventgrowthof L. monocytogenes inRTEfoodproductsandapotentialnew criterion was reported in this chapter. Furthermore, all strains were screened for the presenceofbiomarkersthatmightexplaintheobserveddifferenceingrowthlimits.Two potentialbiomarkerswereidentifiedforselected L. monocytogenes serotypes. Chapter3reportsonthediversityof L. monocytogenes strainswithrespecttoheat resistance.Theheatinactivationkineticsofthemostheatresistantstrainsandareference strain were determined in a continuous flow through heating system (microheater) that mimics an industrial heatexchanger. In a prescreen, the heatresistance of 48 L. monocytogenes strainswasassessedinabatchheatingprocess,showinglargevariationin heatresistance.Twoofthemostheatresistantstrains(1EandNV8)andareferencestrain (ScottA) were tested under conditions in the microheater. For the heat resistant strain 1E it was calculated that approximately 10.7 log 10 reduction is achieved during the minimal HTST pasteurization process of 15 s at 71.7 ºC in milk, while the calculatedinactivationofthereferencestrainScottAwasapproximately78log 10 underthe sameconditions.TheseresultsshowthatHTSTpasteurizationisinprinciplesufficientto inactivateheatresistant L. monocytogenes strains. In Chapter 4, the heatshock response of L. monocytogenes was investigated by comparingwholegenomeexpressionprofilesofcellsbeforeandafterheatshock.Genes belongingtotheclassIandclassIIIheatshockresponse,theclassIIstressresponse,and notably,theSOSresponsewereinduceduponheatshock.Furthermore,cellelongationand inhibition of cell division was observed, which could be correlated with differential expression levels of a number of genes that encode products with a role in cell wall synthesisorcelldivision. InChapter5,amutantlibrarywasscreenedformutants with reduced abilities to growatelevatedtemperatures.Thegeneticoriginofthevectorinsertionwasidentifiedin 28 different mutants and the morphology, growth characteristics, and heatresistance of

27

thesemutantstrainswithimpairedgrowthathightemperatureswerefurtherinvestigated. Several temperature sensitive mutants showed insertions in genes belonging to specific stress responses or in genes with a function in translation or cell wall synthesis and turnover. Some of the mutants indeed showed altered cell morphologies, including elongated cells, cells with reduced length, or sickleshaped cells. Also, most mutants showedincreasedsensitivitytoheatinactivation. Chapter 6 focuses specifically on the link between the motility gene repressor, MogR,andtheCtsRregulatedclassIIIheatshockgene, clpB .Inthischapter, clpB was identifiedasanewmemberoftheMogRregulon. ClpB expressionisregulatedbyboth MogRandCtsRrepressorsinatemperaturedependentmanner,showingtheimportanceof correcttemperaturedependentexpressionofthisgene.Furthermore,theroleofClpBand MogR in stress resistance was highlighted in heat and HHPinactivation experiments. TheseresultsshowedthatMogRisagenericrepressor,whichisinvolvedinbothmotility regulationandstressresistance. Chapter 7 describes an analysis of the SOS response of L. monocytogenes . SOS responsegeneswereidentifiedbyacombinationofmicroarrayexperimentsanditerative motif searches. Furthermore, a role for the SOS response in mutagenesis and stress resistance was shown. The SOS response gene yneA was found to play a role in cell elongationorinhibitionofcelldivision,resultinginincreasedheatresistance. In the final chapter, Chapter 8, the impact of diversity on stress resistance is discussed.Thefirstpartofthischapterfocusesonthediversityofstrainsandserotypes withrespecttostressresistanceinrelationtothepresenceofgeneticbiomarkers.Inthe secondpart,theroleofmutagenesismechanisms,suchastheSOSresponse,isdiscussedin relationtothegenerationofmutantswithincreasedstressresistanceandtheirimpacton foodsafety. References 1. Abee, T., and J. A. Wouters. 1999. Microbial stress response in minimal processing.IntJFoodMicrobiol 50: 6591. 2. Aertsen,A.,andC.W.Michiels. 2005.MrrinstigatestheSOSresponseafterhigh pressurestressin Escherichia coli .MolMicrobiol 58: 138191. 3. Allerberger,F.,andJ.P.Guggenbichler. 1989.ListeriosisinAustriareportofan outbreakin1986.ActaMicrobiolHung 36: 14952. 4. Autret, N., C. Raynaud, I. Dubail, P. Berche, and A. Charbit. 2003. Identificationofthe agr locusof Listeria monocytogenes :roleinbacterialvirulence. InfectImmun 71: 446371.

28

5. Becker,L.A.,M.S.Cetin,R.W.Hutkins,andA.K.Benson. 1998.Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes anditsroleinosmotolerance.JBacteriol 180: 454754. 6. Becker, L. A., S. N. Evans, R. W. Hutkins, and A. K. Benson. 2000. Role of sigma(B)inadaptationof Listeria monocytogenes togrowthatlowtemperature.J Bacteriol 182: 70837. 7. Begley,M.,R.D.Sleator,C.G.Gahan,andC.Hill.2005.Contributionofthree bileassociated loci, bsh , pva , and btlB , to gastrointestinal persistence and bile toleranceof Listeria monocytogenes .InfectImmun 73: 894904. 8. Bille,J.,D.S.Blanc,H.Schmid,K.Boubaker,A.Baumgartner,H.H.Siegrist, M. L. Tritten, R. Lienhard, D. Berner, R. Anderau, M. Treboux, J. M. Ducommun, R. Malinverni, D. Genne, P. H. Erard, and U. Waespi. 2006. Outbreak of human listeriosis associated with tomme cheese in northwest Switzerland,2005.EuroSurveill 11: 913. 9. Brett,M.S.,P.Short,andJ.McLauchlin. 1998.Asmalloutbreakoflisteriosis associatedwithsmokedmussels.IntJFoodMicrobiol 43: 2239. 10. Brondsted,L.,B.H.Kallipolitis,H.Ingmer,andS.Knochel. 2003. kdpE anda putativeRsbQhomologuecontributetogrowthof Listeria monocytogenes athigh osmolarityandlowtemperature.FEMSMicrobiolLett 219: 2339. 11. Buchrieser, C. 2007. Biodiversity of the species Listeria monocytogenes and the genus Listeria .MicrobesInfect 9: 114755. 12. Buchrieser, C., R. Brosch, B. Catimel, and J. Rocourt. 1993. Pulsedfield gel electrophoresis applied for comparing Listeria monocytogenes strains involved in outbreaks.CanJMicrobiol 39: 395401. 13. Bula, C. J., J. Bille, and M. P. Glauser. 1995. An epidemic of foodborne listeriosis in western Switzerland: description of 57 cases involving adults. Clin InfectDis 20: 6672. 14. Carter,M. 2000.Finalreport:Investigationofoutbreak99372(unpublisheddata). Baltimore,MD www.foodsafety.gov/~dms/lmr2rf.html . 15. CDC. 2000.MultistateoutbreakoflisteriosisUnitedStates,2000.MMWRMorb MortalWklyRep 49: 112930. 16. CDC. 2001. Outbreak of listeriosis associated with homemade Mexicanstyle cheeseNorth Carolina, October 2000January 2001. MMWR Morb Mortal Wkly Rep 50: 5602. 17. Cetin,M.S.,C.Zhang,R.W.Hutkins,andA.K.Benson. 2004.Regulationof transcription of compatible solute transporters by the general stress sigma factor, sigmaB,in Listeria monocytogenes .JBacteriol 186: 794802. 18. Chakraborty,T.,M.LeimeisterWachter,E.Domann,M.Hartl,W.Goebel,T. Nichterlein,andS.Notermans. 1992.Coordinateregulationofvirulencegenesin Listeria monocytogenes requirestheproductofthe prfA gene.JBacteriol 174: 568 74. 19. Chastanet,A.,I.Derre,S.Nair,andT.Msadek. 2004. clpB ,anovelmemberof the Listeria monocytogenes CtsRregulon,isinvolvedinvirulencebutnotingeneral stresstolerance.JBacteriol 186: 116574.

29

20. Chastanet,A.,J.Fert,andT.Msadek. 2003.Comparativegenomicsrevealnovel heat shock regulatory mechanisms in and other Gram positivebacteria.MolMicrobiol 47: 106173. 21. Chatterjee,S.S.,H.Hossain,S.Otten,C.Kuenne,K.Kuchmina,S.Machata, E. Domann, T. Chakraborty, and T. Hain. 2006. Intracellular gene expression profileof Listeria monocytogenes .InfectImmun 74: 132338. 22. Chaturongakul,S.,andK.J.Boor. 2004.RsbTandRsbVcontributetosigmaB dependentsurvivalunderenvironmental,energy,andintracellularstressconditions in Listeria monocytogenes .ApplEnvironMicrobiol 70: 534956. 23. Chaturongakul,S.,andK.J.Boor. 2006.SigmaBactivationunderenvironmental and energy stress conditions in Listeria monocytogenes . Appl Environ Microbiol 72: 5197203. 24. Cirz, R. T., M. B. Jones, N. A. Gingles, T. D. Minogue, B. Jarrahi, S. N. Peterson, and F. E. Romesberg. 2007.CompleteandSOSmediatedresponseof Staphylococcus aureus totheantibioticciprofloxacin.JBacteriol 189: 5319. 25. Cossart,P. 2007.Listeriology(19262007):theriseofamodelpathogen.Microbes Infect 9: 11436. 26. Cotter,P.D.,C.G.Gahan,andC.Hill. 2001.Aglutamatedecarboxylasesystem protects Listeria monocytogenes ingastricfluid.MolMicrobiol 40: 46575. 27. Cotter,P.D.,K.O'Reilly,andC.Hill. 2001.Roleoftheglutamatedecarboxylase acidresistancesysteminthesurvivalof Listeria monocytogenes LO28inlowpH foods.JFoodProt 64: 13628. 28. Cotter, P. D., S. Ryan, C. G. Gahan, and C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated withanabilitytogrowatlowpH.ApplEnvironMicrobiol 71: 28329. 29. Courcelle, J., and P. C. Hanawalt. 2003. RecAdependent recovery of arrested DNAreplicationforks.AnnuRevGenet 37: 61146. 30. Courcelle,J.,A.Khodursky,B.Peter,P.O.Brown,andP.C.Hanawalt. 2001. ComparativegeneexpressionprofilesfollowingUVexposureinwildtypeandSOS deficient Escherichia coli .Genetics 158: 4164. 31. Cox,M.M.,M.F.Goodman,K.N.Kreuzer,D.J.Sherratt,S.J.Sandler,and K.J.Marians. 2000.Theimportanceofrepairingstalledreplicationforks.Nature 404: 3741. 32. Dawson,S.J.,M.R.Evans,D.Willby,J.Bardwell,N.Chamberlain,andD.A. Lewis. 2006. Listeria outbreak associated with sandwich consumption from a hospitalretailshop,UnitedKingdom.EuroSurveill 11: 8991. 33. Denny,J.,andJ.McLauchlin. 2008.Human Listeria monocytogenes infectionsin EuropeanopportunityforimprovedEuropeansurveillance.EuroSurveill 13 . 34. Derre,I.,G.Rapoport,K.Devine,M.Rose,andT.Msadek. 1999.ClpE,anovel typeofHSP100ATPase,ispartoftheCtsRheatshockregulonof Bacillus subtilis . MolMicrobiol 32: 58193. 35. Derre, I., G. Rapoport, and T. Msadek. 2000. The CtsR regulator of stress responseisactiveasadimerandspecificallydegradedinvivoat37degreesC.Mol Microbiol 38: 33547.

30

36. Derre,I.,G.Rapoport,andT.Msadek. 1999.CtsR,anovelregulatorofstressand heatshockresponse,controls clp andmolecularchaperonegeneexpressioningram positivebacteria.MolMicrobiol 31: 11731. 37. Diamant,S.,andP.Goloubinoff. 1998.TemperaturecontrolledactivityofDnaK DnaJGrpE chaperones: proteinfolding arrest and recovery during and after heat shockdependsonthesubstrateproteinandtheGrpE concentration. Biochemistry 37: 968894. 38. DiCapua, E., M. Cuillel, E. Hewat, M. Schnarr, P. A. Timmins, and R. W. Ruigrok. 1992. Activation of RecA protein. The open helix model for LexA cleavage.JMolBiol 226: 70719. 39. DiCapua, E., R. W. Ruigrok, and P. A. Timmins. 1990. Activation of RecA protein:thesaltinducedstructuraltransition.JStructBiol 104: 916. 40. Doorduyn,Y.,C.M.deJager,W.K.vanderZwaluw,W.J.B.Wannet,A.E. Heuvelink, A. van der Ende, L. Spanjaard, and Y. T. H. P. van Duynhoven. 2007. Intensieve surveillance van Listeria monocytogenes in Nederland, 2006. Infectieziektenbulletin 18: 308314. 41. Dorozynski,A. 2000.SevendieinFrench Listeria outbreak.Bmj 320: 601. 42. Doumith, M., C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin. 2004. Differentiationofthemajor Listeria monocytogenes serovarsbymultiplexPCR.J ClinMicrobiol 42: 381922. 43. Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, P. Martin,P.Cossart,P.Glaser,andC.Buchrieser. 2004.Newaspectsregarding evolution and virulence of Listeria monocytogenes revealed by comparative genomicsandDNAarrays.InfectImmun 72: 107283. 44. Duche, O., F. Tremoulet, P. Glaser, and J. Labadie. 2002. Salt stress proteins inducedinListeriamonocytogenes.ApplEnvironMicrobiol 68: 14918. 45. Ericsson,H.,A.Eklow,M.L.DanielssonTham,S.Loncarevic,L.O.Mentzing, I. Persson, H. Unnerstad, and W. Tham. 1997. An outbreak of listeriosis suspectedtohavebeencausedbyrainbowtrout.JClinMicrobiol 35: 29047. 46. Erill, I., S. Campoy, and J. Barbe. 2007. Aeons of distress: an evolutionary perspectiveonthebacterialSOSresponse.FEMSMicrobiolRev 31: 63756. 47. Eryilmaz,J.,S.Ceschini,J.Ryan,S.Geddes,T.R.Waters,andT.E.Barrett. 2006.StructuralinsightsintothecrypticDNAdependentATPaseactivityofUvrB. JMolBiol 357: 6272. 48. EuropeanUnion,T.E.P.a.t.C.o.t. 2005.RegulationEC/2073/2005.Official JournaloftheEuropeanUnion L338: 126. 49. Farber, J. M., and P. I. Peterkin. 1991. Listeria monocytogenes , a foodborne pathogen.MicrobiolRev 55: 476511. 50. Ferreira, A., C. P. O'Byrne, and K. J. Boor. 2001. Role of sigma(B) in heat, ethanol,acid,andoxidativestressresistanceandduringcarbonstarvationin Listeria monocytogenes .ApplEnvironMicrobiol 67: 44547. 51. Ferreira, A., D. Sue, C. P. O'Byrne, and K. J. Boor. 2003. Role of Listeria monocytogenes sigma(B)insurvivaloflethalacidicconditionsandintheacquired acidtoleranceresponse.ApplEnvironMicrobiol 69: 26928.

31

52. Flanary, P. L., R. D. Allen, L. Dons, and S. Kathariou. 1999. Insertional inactivation of the Listeria monocytogenes cheYA operon abolishes response to oxygengradientsandreducesthenumberofflagella.CanJMicrobiol 45: 64652. 53. Fleming,D.W.,S.L.Cochi,K.L.MacDonald,J.Brondum,P.S.Hayes,B.D. Plikaytis,M.B.Holmes,A.Audurier,C.V.Broome,andA.L.Reingold. 1985. Pasteurizedmilkasavehicleofinfectioninanoutbreakoflisteriosis.NEnglJMed 312: 4047. 54. Foster, P. L. 2005.Stressresponsesandgeneticvariationinbacteria. Mutat Res 569: 311. 55. Fraser,K.R.,D.Sue,M.Wiedmann,K.Boor,andC.P.O'Byrne. 2003.Roleof sigmaB in regulating the compatible solute uptake systems of Listeria monocytogenes : osmotic induction of opuC is sigmaB dependent. Appl Environ Microbiol 69: 201522. 56. Gahan, C. G., J. O'Mahony, and C. Hill. 2001.Characterizationofthe groESL operonin Listeria monocytogenes :utilizationoftworeportersystems(gfpandhly) forevaluatinginvivoexpression.InfectImmun 69: 392432. 57. Gaillot,O.,E.Pellegrini,S.Bregenholt,S.Nair,andP.Berche. 2000.TheClpP serineproteaseisessentialfortheintracellularparasitismandvirulenceof Listeria monocytogenes .MolMicrobiol 35: 128694. 58. Glaser,P.,L.Frangeul,C.Buchrieser,C.Rusniok,A.Amend,F.Baquero,P. Berche,H.Bloecker,P.Brandt,T.Chakraborty,A.Charbit,F.Chetouani,E. Couve, A. de Daruvar, P. Dehoux, E. Domann, G. DominguezBernal, E. Duchaud, L. Durant, O. Dussurget, K. D. Entian, H. Fsihi, F. Garciadel Portillo,P.Garrido,L.Gautier,W.Goebel,N.GomezLopez,T.Hain,J.Hauf, D.Jackson,L.M.Jones,U.Kaerst,J.Kreft,M.Kuhn,F.Kunst,G.Kurapkat, E.Madueno,A.Maitournam,J.M.Vicente,E.Ng,H.Nedjari,G.Nordsiek,S. Novella, B. de Pablos, J. C. PerezDiaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter,N.Simoes,A.Tierrez,J.A.VazquezBoland,H.Voss,J.Wehland, andP.Cossart. 2001.Comparativegenomicsof Listeria species.Science 294: 849 52. 59. Gottlieb,S.L.,E.C.Newbern,P.M.Griffin,L.M.Graves,R.M.Hoekstra,N. L.Baker,S.B.Hunter,K.G.Holt,F.Ramsey,M.Head,P.Levine,G.Johnson, D. SchoonmakerBopp, V. Reddy, L. Kornstein, M. Gerwel, J. Nsubuga, L. Edwards,S.Stonecipher,S.Hurd,D.Austin,M.A.Jefferson,S.D.Young,K. Hise,E.D.Chernak,andJ.Sobel. 2006.MultistateoutbreakofListeriosislinked toturkeydelimeatandsubsequentchangesinUSregulatorypolicy.ClinInfectDis 42: 2936. 60. Goulet, V., C. Jacquet, V. Vaillant, I. Rebiere, E. Mouret, C. Lorente, E. Maillot,F.Stainer,andJ.Rocourt. 1995.Listeriosisfromconsumptionofraw milkcheese.Lancet 345: 15812. 61. Goulet, V., J. Rocourt, I. Rebiere, C. Jacquet, C. Moyse, P. Dehaumont, G. Salvat,andP.Veit. 1998.Listeriosisoutbreakassociatedwiththeconsumptionof rillettesinFrancein1993.JInfectDis 177: 15560. 62. Gray, M. L., and A. H. Killinger. 1966. Listeria monocytogenes and listeric infections.BacteriolRev 30: 30982.

32

63. Grundling,A.,L.S.Burrack,H.G.Bouwer,andD.E.Higgins. 2004. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci U S A 101: 1231823. 64. Gueriri, I., C. Cyncynatus, S. Dubrac, A. T. Arana, O. Dussurget, and T. Msadek. 2008. The DegU orphan response regulator of Listeria monocytogenes autorepressesitsownsynthesisandisrequiredforbacterialmotility,virulenceand biofilmformation.Microbiology 154: 225164. 65. Hain,T.,S. S.Chatterjee,R.Ghai,C.T.Kuenne, A.Billion,C.Steinweg,E. Domann,U.Karst,L.Jansch,J.Wehland,W.Eisenreich,A.Bacher,B.Joseph, J.Schar,J.Kreft,J.Klumpp,M.J.Loessner,J.Dorscht,K.Neuhaus,T.M. Fuchs,S.Scherer,M.Doumith,C.Jacquet,P.Martin,P.Cossart,C.Rusniock, P.Glaser,C.Buchrieser,W.Goebel,andT.Chakraborty. 2007.Pathogenomics of Listeria spp.IntJMedMicrobiol 297: 54157. 66. Hain, T., H. Hossain, S. S. Chatterjee, S. Machata, U. Volk, S. Wagner, B. Brors,S.Haas,C.T.Kuenne,A.Billion,S.Otten,J.PaneFarre,S.Engelmann, and T. Chakraborty. 2008. Temporal transcriptomic analysis of the Listeria monocytogenes EGDesigmaBregulon.BMCMicrobiol 8: 20. 67. Hain, T., C. Steinweg, and T. Chakraborty. 2006. Comparative and functional genomicsof Listeria spp.JBiotechnol 126: 3751. 68. Hanawa, T., M. Fukuda, H. Kawakami, H. Hirano, S. Kamiya, and T. Yamamoto. 1999. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient with macrophages. Cell Stress Chaperones 4: 11828. 69. Helmann,J.D. 1999.Antisigmafactors.CurrOpinMicrobiol 2: 13541. 70. Hill,C.,P.D.Cotter,R.D.Sleator,andC.G.M.Gahan. 2002.Bacterialstress response in Listeria monocytogenes : jumping the hurdles imposed by minimal processing.InternationalDairyJournal 12: 273283. 71. Ho,J.L.,K.N.Shands,G.Friedland,P.Eckind,andD.W.Fraser. 1986.An outbreakoftype4b Listeria monocytogenes infectioninvolvingpatientsfromeight Bostonhospitals.ArchInternMed 146: 5204. 72. Hong,E.,M.Doumith,S.Duperrier,I.Giovannacci,A.Morvan,P.Glaser,C. Buchrieser, C. Jacquet, and P. Martin. 2007. Genetic diversity of Listeria monocytogenes recovered from infected persons and pork, seafood and dairy products on retail sale in France during 2000 and 2001. Int J Food Microbiol 114: 18794. 73. Hu,Y.,H.F.Oliver,S.Raengpradub,M.E.Palmer,R.H.Orsi,M.Wiedmann, andK.J.Boor. 2007.Transcriptomicandphenotypicanalysessuggestanetwork betweenthetranscriptionalregulatorsHrcAandsigmaBin Listeria monocytogenes . ApplEnvironMicrobiol 73: 798191. 74. Hu,Y.,S.Raengpradub,U.Schwab,C.Loss,R.H.Orsi,M.Wiedmann,andK. J. Boor. 2007. Phenotypic and transcriptomic analyses demonstrate interactions betweenthetranscriptionalregulatorsCtsRandSigmaBin Listeria monocytogenes . ApplEnvironMicrobiol 73: 796780.

33

75. ILSI. 2005. Achieving continuous improvement in reductions in foodborne listeriosisariskbasedapproach.JFoodProt 68: 193294. 76. Jacquet,C.,B.Catimel,R.Brosch,C.Buchrieser,P.Dehaumont,V.Goulet,A. Lepoutre, P. Veit, and J. Rocourt. 1995. Investigations related to the epidemic straininvolvedintheFrenchlisteriosisoutbreakin1992.ApplEnvironMicrobiol 61: 22426. 77. Jensen, A., W. Frederiksen, and P. GernerSmidt. 1994. Risk factors for listeriosisinDenmark,19891990.ScandJInfectDis 26: 1718. 78. Johansson, J., P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes .Cell 110: 55161. 79. Kallipolitis, B. H., and H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 204: 1115. 80. Karatzas, K. A., and M. H. Bennik. 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure.ApplEnvironMicrobiol 68: 31839. 81. Karatzas,K.A.,V.P.Valdramidis,andM.H.WellsBennik. 2005.Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundantpiezotolerantisolateswithinclonalpopulations.ApplEnvironMicrobiol 71: 83906. 82. Karatzas, K. A., J. A. Wouters, C. G. Gahan, C. Hill, T. Abee, and M. H. Bennik. 2003. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence.MolMicrobiol 49: 122738. 83. Kawai,Y.,S.Moriya,andN.Ogasawara. 2003.Identificationofaprotein,YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis .MolMicrobiol 47: 111322. 84. Kazmierczak,M.J.,S.C.Mithoe,K.J.Boor,andM.Wiedmann. 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185: 572234. 85. Kazmierczak, M. J., M. Wiedmann, and K. J. Boor. 2006. Contributions of Listeria monocytogenes sigmaB and PrfA to expression of virulence and stress responsegenesduringextraandintracellulargrowth.Microbiology 152: 182738. 86. Khil,P.P.,andR.D.CameriniOtero. 2002.Over1000genesareinvolvedinthe DNAdamageresponseof Escherichia coli .MolMicrobiol 44: 89105. 87. Kim, H., H. Marquis, and K. J. Boor. 2005. SigmaB contributes to Listeria monocytogenes invasionbycontrollingexpressionofinlAandinlB.Microbiology 151: 321522. 88. Kirstein,J.,D.Zuhlke,U.Gerth,K.Turgay,andM.Hecker. 2005.Atyrosine kinaseanditsactivatorcontroltheactivityoftheCtsRheatshockrepressorin B. subtilis .EmboJ 24: 343545. 89. Koutsoumanis,K.,andA.S.Angelidis. 2007.Probabilisticmodelingapproachfor evaluatingthe compliance of readytoeatfoodswith new European Union safety criteriafor Listeria monocytogenes .ApplEnvironMicrobiol 73: 49965004.

34

90. Kruger, E., and M. Hecker. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR ,encodesanegativeregulatorofitsownoperonandotherclassIIIheat shockgenes.JBacteriol 180: 66818. 91. Kruger,E.,D.Zuhlke,E.Witt,H.Ludwig,andM.Hecker. 2001.Clpmediated proteolysisinGrampositivebacteriaisautoregulatedbythestabilityofarepressor. EmboJ 20: 85263. 92. Lee,S.,M.E.Sowa,Y.H.Watanabe,P.B.Sigler,W.Chiu,M.Yoshida,andF. T.Tsai. 2003.ThestructureofClpB:amolecularchaperonethatrescuesproteins fromanaggregatedstate.Cell 115: 22940. 93. LeimeisterWachter, M., C. Haffner, E. Domann, W. Goebel, and T. Chakraborty. 1990.Identificationofagenethatpositivelyregulatesexpressionof listeriolysin,themajorvirulencefactorof Listeria monocytogenes .ProcNatlAcad SciUSA 87: 833640. 94. Leistner, L. 2000.Basicaspectsoffoodpreservationbyhurdle technology. Int J FoodMicrobiol 55: 1816. 95. Lennon,D.,B.Lewis,C.Mantell,D.Becroft,B.Dove,K.Farmer,S.Tonkin,N. Yeates,R.Stamp,andK.Mickleson. 1984.Epidemicperinatallisteriosis.Pediatr InfectDis 3: 304. 96. Liberek,K.,A.Lewandowska,andS.Zietkiewicz. 2008.Chaperonesincontrolof proteindisaggregation.EmboJ 27: 32835. 97. Linnan,M.J.,L.Mascola,X.D.Lou,V.Goulet,S.May,C.Salminen,D.W. Hird,M.L.Yonekura,P.Hayes,R.Weaver,andetal. 1988.Epidemiclisteriosis associatedwithMexicanstylecheese.NEnglJMed319: 8238. 98. Liu,S.,J.E.Graham,L.Bigelow,P.D.Morse,2nd,andB.J.Wilkinson. 2002. IdentificationofListeriamonocytogenesgenesexpressedinresponsetogrowthat lowtemperature.ApplEnvironMicrobiol 68: 1697705. 99. Lyytikainen, O., T. Autio, R. Maijala, P. Ruutu, T. HonkanenBuzalski, M. Miettinen,M.Hatakka,J.Mikkola,V.J.Anttila,T.Johansson,L.Rantala,T. Aalto,H.Korkeala,andA.Siitonen. 2000.Anoutbreakof Listeria monocytogenes serotype3ainfectionsfrombutterinFinland.JInfectDis 181: 183841. 100. McGann, P., R. Ivanek, M. Wiedmann, and K. J. Boor. 2007. Temperature dependentexpressionof Listeria monocytogenes internalinandinternalinlikegenes suggests functional diversity of these proteins among the listeriae. Appl Environ Microbiol 73: 280614. 101. McGann,P.,M.Wiedmann,andK.J.Boor. 2007.Thealternativesigmafactor sigmaBandthevirulencegeneregulatorPrfAbothregulatetranscriptionof Listeria monocytogenes internalins.ApplEnvironMicrobiol 73: 291930. 102. McLauchlin, J., S. M. Hall, S. K. Velani, and R. J. Gilbert. 1991. Human listeriosisandpate:apossibleassociation.Bmj 303: 7735. 103. Mead, P. S. 1999. Multistate outbreak of listeriosis traced to processed meats, August 1998March 1999. (Record; Foodborne and Diarrheal Disease Branch, DBMD,NCID,CDC) May27: 23. 104. Mead,P.S.,E.F.Dunne,L.Graves,M.Wiedmann,M.Patrick,S.Hunter,E. Salehi, F. Mostashari, A. Craig, P. Mshar, T. Bannerman, B. D. Sauders, P. Hayes, W. Dewitt, P. Sparling, P. Griffin, D. Morse, L. Slutsker, and B.

35

Swaminathan. 2006.Nationwideoutbreakoflisteriosisduetocontaminatedmeat. EpidemiolInfect 134: 74451. 105. Mead,P.S.,L.Slutsker,V.Dietz,L.F.McCaig,J.S.Bresee,C.Shapiro,P.M. Griffin,andR.V.Tauxe. 1999.FoodrelatedillnessanddeathintheUnitedStates. EmergInfectDis 5: 60725. 106. Milohanic,E.,P.Glaser,J.Y.Coppee,L.Frangeul, Y. Vega, J. A. Vazquez Boland,F.Kunst,P.Cossart,andC.Buchrieser. 2003.Transcriptomeanalysisof Listeria monocytogenes identifies three groups of genes differently regulated by PrfA.MolMicrobiol 47: 161325. 107. Misrachi,A.,A.J.Watson,andD.Coleman. 1991. Listeria insmokedmusselsin Tasmania.CommunicableDiseasesIntelligence 15: 427. 108. Mogk, A., G. Homuth, C. Scholz, L. Kim, F. X. Schmid, and W. Schumann. 1997.TheGroEchaperoninmachineisamajormodulatoroftheCIRCEheatshock regulonof Bacillus subtilis .EmboJ 16: 457990. 109. Mukherjee, A., C. Cao, and J. Lutkenhaus. 1998. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli . Proc Natl AcadSciUSA 95: 288590. 110. Murray,E.G.D.,R.A.Webb,andH.B.R.Swann. 1926.Adiseaseofrabbits characterizedbyalargemononuclearleucocytosiscausedbyahithertoundescribed bacillus Bacterium monocytogenes (n.sp.),.J.Pathol.Bacteriol. 29: 407439. 111. Nadon, C. A., B. M. Bowen, M. Wiedmann, and K. J. Boor. 2002. Sigma B contributes to PrfAmediated virulence in Listeria monocytogenes . Infect Immun 70: 394852. 112. Nair,S.,I.Derre,T.Msadek,O.Gaillot,andP.Berche. 2000.CtsRcontrolsclass IIIheatshockgeneexpressioninthehumanpathogen Listeria monocytogenes .Mol Microbiol 35: 80011. 113. Nair,S.,C.Frehel,L.Nguyen,V.Escuyer,andP.Berche. 1999.ClpE,anovel memberoftheHSP100family,isinvolvedincelldivisionandvirulenceof Listeria monocytogenes .MolMicrobiol 31: 18596. 114. Nair, S., E. Milohanic, and P. Berche. 2000. ClpC ATPase is required for cell adhesionandinvasionof Listeria monocytogenes .InfectImmun 68: 70618. 115. Narberhaus, F. 1999. Negative regulation of bacterial heat shock genes. Mol Microbiol 31: 18. 116. Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay,D.A.Rasko,S.V.Angiuoli,S.R.Gill,I.T.Paulsen,J.Peterson,O. White, W. C. Nelson, W. Nierman, M. J. Beanan, L. M. Brinkac, S. C. Daugherty,R.J.Dodson,A.S.Durkin,R.Madupu,D.H.Haft,J.Selengut,S. VanAken,H.Khouri,N.Fedorova,H.Forberger,B.Tran,S.Kathariou,L.D. Wonderling, G. A. Uhlich, D. O. Bayles, J. B. Luchansky, and C. M. Fraser. 2004.Wholegenomecomparisonsofserotype4band1/2astrainsofthefoodborne pathogen Listeria monocytogenes reveal new insights into the core genome componentsofthisspecies.NucleicAcidsRes 32: 238695. 117. Niels le Souef, P., and B. N. Walters. 1981. Neonatal listeriosis: a summer outbreak.MedJAust 2: 18891.

36

118. Nohmi,T. 2006.EnvironmentalstressandlesionbypassDNApolymerases.Annu RevMicrobiol 60: 23153. 119. Raengpradub,S.,M.Wiedmann,andK.J.Boor. 2008.Comparativeanalysisof the sigma Bdependent stress responses in Listeria monocytogenes and strains exposed to selected stress conditions. Appl Environ Microbiol 74: 15871. 120. Rieu,A.,S.Weidmann,D.Garmyn,P.Piveteau,andJ.Guzzo. 2007.Agrsystem of Listeria monocytogenes EGDe: role in adherence and differential expression pattern.ApplEnvironMicrobiol 73: 612533. 121. Ripio, M. T., J. A. VazquezBoland, Y. Vega, S. Nair, and P. Berche. 1998. EvidenceforexpressionalcrosstalkbetweenthecentralvirulenceregulatorPrfAand thestressresponsemediatorClpCin Listeria monocytogenes .FEMSMicrobiolLett 158: 4550. 122. RobbinsManke, J. L., Z. Z. Zdraveski, M. Marinus, and J. M. Essigmann. 2005. Analysis of global gene expression and doublestrandbreak formation in DNAadeninemethyltransferaseandmismatchrepairdeficient Escherichia coli .J Bacteriol 187: 702737. 123. Rothfield, L., A. Taghbalout, and Y. L. Shih. 2005.Spatialcontrolofbacterial divisionsiteplacement.NatRevMicrobiol 3: 95968. 124. Rouquette,C.,C.deChastellier,S.Nair,andP.Berche. 1998.TheClpCATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the of macrophages. Mol Microbiol 27: 123545. 125. Ryser,E.T. 1999.Foodbornelisteriosis.MarcellDekker,Inc,NewYork. 126. Schlacher,K.,M.M.Cox,R.Woodgate,andM.F.Goodman. 2006.RecAacts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442: 8837. 127. Schlech,W.F.,3rd,P.M.Lavigne,R.A.Bortolussi,A.C.Allen,E.V.Haldane, A.J.Wort,A.W.Hightower,S.E.Johnson,S.H.King,E.S.Nicholls,andC. V.Broome. 1983.Epidemiclisteriosisevidencefortransmissionbyfood.NEnglJ Med 308: 2036. 128. Schmid,M.W.,E.Y.Ng,R.Lampidis,M.Emmerth,M.Walcher,J.Kreft,W. Goebel,M.Wagner,andK.H.Schleifer. 2005.Evolutionaryhistoryofthegenus Listeria anditsvirulencegenes.SystApplMicrobiol 28: 118. 129. Schulz,A.,andW.Schumann. 1996. hrcA ,thefirstgeneofthe Bacillus subtilis dnaK operonencodesanegativeregulatorofclassIheatshockgenes.JBacteriol 178: 108893. 130. Schwartz,B.,C.A.Ciesielski,C.V.Broome,S.Gaventa,G.R.Brown,B.G. Gellin,A.W.Hightower,andL.Mascola. 1988.Associationofsporadiclisteriosis withconsumptionofuncookedhotdogsandundercookedchicken.Lancet 2: 77982. 131. Schwartz,B.,D.Hexter,C.V.Broome,A.W.Hightower,R.B.Hirschhorn,J. D. Porter, P. S. Hayes, W. F. Bibb, B. Lorber, and D. G. Faris. 1989. Investigation of an outbreak of listeriosis: new hypotheses for the etiology of epidemic Listeria monocytogenes infections.JInfectDis 159: 6805.

37

132. Severino,P.,O.Dussurget,R.Z.Vencio,E.Dumas,P.Garrido,G.Padilla,P. Piveteau, J. P. Lemaitre, F. Kunst, P. Glaser, and C. Buchrieser. 2007. Comparative transcriptome analysis of Listeria monocytogenes strains of the two majorlineagesrevealsdifferencesinvirulence,cellwall,andstressresponse.Appl EnvironMicrobiol 73: 607888. 133. Sharma,S.,K.Chakraborty,B.K.Muller,N.Astola,Y.C.Tang,D.C.Lamb, M.HayerHartl,andF.U.Hartl. 2008.Monitoringproteinconformationalongthe pathwayofchaperoninassistedfolding.Cell 133: 14253. 134. Shen,A.,andD.E.Higgins. 2006.TheMogRtranscriptionalrepressorregulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes .PLoSPathog 2: e30. 135. Shen,A.,H.D.Kamp,A.Grundling,andD.E.Higgins. 2006.AbifunctionalO GlcNAc transferase governs flagellar motility through antirepression. Genes Dev 20: 328395. 136. Simpson, D. M. 1996. Microbiology and epidemiology in foodborne disease outbreaks:Thewhysandwhennots.J.FoodProt 59: 9395. 137. Sleator, R. D., and C. Hill. 2005. A novel role for the LisRK twocomponent regulatorysysteminlisterialosmotolerance.ClinMicrobiolInfect 11: 599601. 138. Sleator,R.D.,H.H.WemekampKamphuis,C.G.Gahan,T.Abee,andC.Hill. 2005.APrfAregulatedbileexclusionsystem(BilE)isanovelvirulencefactorin Listeria monocytogenes .MolMicrobiol 55: 118395. 139. Sleator, R. D., J. M. Wood, and C. Hill. 2003. Transcriptional regulation and posttranslationalactivityofthebetainetransporterBetLin Listeria monocytogenes arecontrolledbyenvironmentalsalinity.JBacteriol 185: 71404. 140. Sleator,R.D.,J.Wouters,C.G.Gahan,T.Abee,andC.Hill. 2001.Analysisof the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potentialof Listeria monocytogenes .ApplEnvironMicrobiol 67: 26928. 141. Sousa, F. J., L. M. Lima, A. B. Pacheco, C. L. Oliveira, I. Torriani, D. F. Almeida,D.Foguel,J.L.Silva,andR.MohanaBorges. 2006.Tetramerizationof theLexArepressorinsolution:implicationsforgeneregulationofthe E.coli SOS systematacidicpH.JMolBiol 359: 105974. 142. Sue, D., K. J. Boor, and M. Wiedmann. 2003. Sigma(B)dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes . Microbiology 149: 324756. 143. Tang, M., I. Bruck, R. Eritja, J. Turner, E. G. Frank, R. Woodgate, M. O'Donnell, and M. F. Goodman. 1998. Biochemical basis of SOSinduced mutagenesisin Escherichia coli :reconstitutionofinvitrolesionbypassdependent ontheUmuD'2CmutageniccomplexandRecAprotein.ProcNatlAcadSciUSA 95: 975560. 144. Tang,M.,P.Pham,X.Shen,J.S.Taylor,M.O'Donnell,R.Woodgate,andM. F.Goodman. 2000.Rolesof E. coli DNApolymerasesIVandVinlesiontargeted anduntargetedSOSmutagenesis.Nature 404: 10148.

38

145. Tang, M., X. Shen, E. G. Frank, M. O'Donnell, R. Woodgate, and M. F. Goodman. 1999.UmuD'(2)CisanerrorproneDNApolymerase, Escherichia coli polV.ProcNatlAcadSciUSA 96: 891924. 146. Truglio, J. J., E. Karakas, B. Rhau, H. Wang, M. J. DellaVecchia, B. Van Houten,andC.Kisker. 2006.StructuralbasisforDNArecognitionandprocessing byUvrB.NatStructMolBiol 13: 3604. 147. VazquezBoland, J. A., M. Kuhn, P. Berche, T. Chakraborty,G.Dominguez Bernal,W.Goebel,B.GonzalezZorn,J.Wehland,andJ.Kreft. 2001. Listeria pathogenesisandmolecularvirulencedeterminants.ClinMicrobiolRev 14: 584640. 148. Vit, M., R. Olejnik, J. Dlhy, R. Karpiskova, J. Castkova, V. Prikazsky, M. Prikazska, C. Benes, and P. Petras. 2007. Outbreak of listeriosis in the Czech Republic,late2006preliminaryreport.EuroSurveill 12: E0702081. 149. Wagner,J.,P.Gruz,S.R.Kim,M.Yamada,K.Matsui,R.P.Fuchs,andT. Nohmi. 1999.The dinB geneencodesanovel E. coli DNApolymerase,DNApol IV,involvedinmutagenesis.MolCell 4: 2816. 150. Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf,E.U.WeberBan,D.A.Dougan,F.T.Tsai,A.Mogk,andB.Bukau. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocationthroughthecentralporeofClpB.Cell 119: 65365. 151. WemekampKamphuis, H. H., R. D. Sleator, J. A. Wouters, C. Hill, and T. Abee. 2004. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures.ApplEnvironMicrobiol 70: 29128. 152. WemekampKamphuis, H. H., J. A. Wouters, P. P. de Leeuw, T. Hain, T. Chakraborty,andT.Abee. 2004.IdentificationofsigmafactorsigmaBcontrolled genesandtheirimpactonacidstress,highhydrostaticpressure,andfreezesurvival in Listeria monocytogenes EGDe.ApplEnvironMicrobiol 70: 345766. 153. Wiedmann,M.,T.J.Arvik,R.J.Hurley,andK.J.Boor. 1998.Generalstress transcriptionfactorsigmaBanditsroleinacidtoleranceandvirulenceof Listeria monocytogenes .JBacteriol 180: 36506. 154. Wiedmann,M.,J.L.Bruce,C.Keating,A.E.Johnson,P.L.McDonough,and C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. InfectImmun 65: 270716. 155. Williams, T., S. Bauer, D. Beier, and M. Kuhn. 2005. Construction and characterization of Listeria monocytogenes mutantswithinframedeletionsinthe responseregulatorgenesidentifiedinthegenomesequence.InfectImmun 73: 3152 9. 156. Williams, T., B. Joseph, D. Beier, W. Goebel, and M. Kuhn. 2005. Response regulator DegU of Listeria monocytogenes regulates the expression of flagella specificgenes.FEMSMicrobiolLett 252: 28798. 157. Wilson,A.C.,C.C.Wu,J.R.Yates,3rd,andM.Tan. 2005.ChlamydialGroEL autoregulatesitsownexpressionthroughdirectinteractionswiththeHrcArepressor protein.JBacteriol 187: 753542.

39

158. Wouters, J. A., T. Hain, A. Darji, E. Hufner, H. WemekampKamphuis, T. Chakraborty, and T. Abee. 2005. Identification and characterization of Di and tripeptide transporter DtpT of Listeria monocytogenes EGDe. Appl Environ Microbiol 71: 57718. 159. Yeeles,J.T.,andM.S.Dillingham. 2007.AdualnucleasemechanismforDNA breakprocessingbyAddABtypehelicasenucleases.JMolBiol 371: 6678. 160. Zhang, C., J. Nietfeldt, M. Zhang, and A. K. Benson. 2005. Functional consequences of genome evolution in Listeria monocytogenes : the lmo0423 and lmo0422genesencodesigmaCandLstR,alineageIIspecificheatshocksystem.J Bacteriol 187: 724353. 161. Zhang, Y., E. Yeh, G. Hall, J. Cripe, A. A. Bhagwat, and J. Meng. 2007. Characterization of Listeria monocytogenes isolated from retail foods. Int J Food Microbiol 113: 4753. 162. Zuber,U.,andW.Schumann. 1994.CIRCE,anovelheatshockelementinvolved inregulationofheatshockoperondnaKof Bacillus subtilis .JBacteriol 176: 1359 63.

40

2. The growth limits of a large number of Listeria monocytogenes strains at combinationsofstressesshowserotypeand nichespecifictraits StijnvanderVeen,RoyMoezelaar,TjakkoAbee,MarjonH.J.Wells Bennik PublishedinJournalofAppliedMicrobiology(2008), 105: 12461258 Abstract Aims: The aim of this study was to associate the growth limits of Listeria monocytogenes duringexposuretocombinedstresseswithspecificserotypesororiginsof isolation,andidentifypotentialgeneticmarkers.MethodsandResults:Thegrowthof138 strains was assessed at different temperatures using combinations of low pH, sodium lactate, and high salt concentrations in Brain Heart Infusion (BHI) broth. None of the strainswasabletogrowatpH≤4.4,a w≤0.92,orpH≤5.0combinedwitha w≤0.94.In addition,noneofthestrainsgrewatpH≤5.2andNaLac≥2%.At30ºC,theserotype4b strainsshowedthehighesttolerancetolowpHandhighNaClconcentrationsatbothpH neutral(pH7.4)andmildacidicconditions(pH5.5).At7ºC,theserotype1/2bstrains showed the highest tolerance to high NaCl concentrations at both pH 7.4 and pH 5.5. Serotype1/2bmeatisolatesshowedthehighesttolerancetolowpHinthepresenceof2% sodiumlactateat7ºC.ORF2110and gadD1T1 wereidentifiedaspotentialbiomarkersfor phenotypicdifferences.Conclusions:Differencesingrowthlimitswereidentifiedbetween specific L. monocytogenes strainsandserotypes,whichcouldinsomecasesbeassociated with specific genetic markers. Significance and Impact of Study: Our data confirm the growthlimitsof L. monocytogenes assetoutbytheEuropeanUnionforreadytoeatfoods, andprovidesanadditionalcriterion.Theassociationof L. monocytogenes serotypeswith certain stress responses might explain the abundance of certain serotypes in retail foods whileothersarecommoninclinicalcases.

41

Introduction Thepathogen Listeria monocytogenes hasbeenassociatedwithmanyfoodrelated outbreaksworldwide.Itisthecausativeagentoflisteriosis,whichisestimatedtobethe causeof28%ofalldeathsfromdiseasesduetoknownfoodbornepathogensintheUnited States(32).Furthermore,thereportedincidenceoflisteriosiscasesisincreasinginmany Europeancountries(11,17,23).Theabilityof L. monocytogenes towithstandrelatively highconcentrationsof(organic)acidsandsalts,anditsabilitytogrowatrefrigeratedas well as mildheating temperatures leads to rising concerns for the perseverance of this pathogeninthefoodchain.Foodmanufacturers,particularlythoseproducingreadytoeat foods,havehadtoreevaluatetheirprocessesinordertomaintainsafefoodproducts(FDA, http://www.foodsafety.gov/~dms/lmr2toc.html ). Todate,13differentserotypesof L. monocytogenes havebeenidentified,ofwhich serotypes1/2a,1/2b,1/2cand4baccountforover95%ofthestrainsisolatedfromfoodand patients (12). All major outbreaks of foodborne listeriosis were caused by serotype 4b strains(5),whilethemajorityofthestrainsisolatedfromfoodsareofserotype1/2(15). Wholegenomeanalysesshowedhighsyntenybetweendifferent L. monocytogenes strains at both sequence and protein level (34). However, strainspecific and serotypespecific differenceshavebeenidentified.Previousresearch showed approximately 8% difference between a partially sequenced epidemic 4b strain and a completely sequenced non epidemic1/2astrain(13).Furthermore,inanotherstudy,fourcompletelysequencedstrains showed between 50 and 100 unique genes (34). The diversity that has been observed between L. monocytogenes strainsmaybetheresultofhorizontalgenetransfer,whichis probably required for adaptation to specific niches (19, 35). Some genetic differences between L. monocytogenes strainsshowedinfluenceontheirpathogenicpotentialorstress response(7,46,51). For L. monocytogenes ,largevariationinstresstolerancehasbeenobservedunder different conditions of salinity, acidity, and temperature in both culture broth and in different kind of food products. Previous studies were focused on modeling the growth limitsoftheorganismatacombinationoftemperature,pH,NaClconcentration,andlactic acidfortwostrains(39),oracocktailoffivestrains(42).Inotherstudiestheeffectof combination treatments with lactic acid and hot water on a fivestrain cocktail of L. monocytogenes (25),orthegrowthandcellwallpropertiesunderacidandsalineconditions of two strains of the pathogen were investigated (3). In these cases no link was made betweentheserotypeororiginofisolationandthestresstolerance.Alimitednumberof studies are available in which serotype or isolation differences were investigated. (29) investigatedtheinactivationkineticsofthreevirulentandthreeavirulentstrainsatvarious pHandsaltconcentrations.Theyshowedthatavirulentstrainsdisplayedaslightlyhigher

42

tolerancetoalkalithanvirulentstrains.Anotherstudyfocusedonthedifferencebetween clinicalandseafoodisolatesinacidandosmoticenvironments(43);fourclinicalisolates associatedwithseafoodandfourseafoodisolateswerecompared,butnocleardifference wasidentified.Intheaboveinvestigationsonlylimitednumbersofstrainswereused.In some studies, where more extensive numbers of strains were used, differences in stress tolerancewereapparent.(28)investigated25strainsofvariousserotypesandoriginsfor theirthermalandacidresistance.Theyshowedthatthegroupofserotype4bstrainshad lowerheatresistancethantheotherserotypes,andtheoutbreakrelatedstrainsofserotype 4b had lower acid death rates than the other serotype 4b strains. In another study, the serotypes 4b and 1/2a were compared for sensitivity to and for heat inactivationaftercoldstorage,using81strains(6).Thegroupofserotype4bstrainstended tobemoreheatresistantthanthegroupof1/2astrains.Sofar,thegrowthlimitsofalarge collectionof L. monocytogenes strainshavenotbeendetermined. According to a report from the ILSI Research Foundation (22) one of the most importantstrategiestoreducetheincidenceoffoodbornelisteriosisistopreventgrowthof L. monocytogenes tohighnumbersincontaminatedfoods.Thecurrentstudywasdesigned to determine the limits at which different L. monocytogenes strains fail to grow, using isolatesfromdifferentoriginsandwithdifferentserotypes.Informationaboutthesocalled growth/nogrowthinterfaceisveryusefulforthefoodindustryinordertodesignoptimized processes and product types that ensure the highest level of food safety. In the current study, 138 L. monocytogenes strains of diverse origins representing the most important serotypes were characterized for their growth limits using several industrially relevant stresses.Furthermore,anumberofgeneshavebeenidentifiedthatarelineageorserotype specificandplayaparticularroleingrowthorsurvivalduringstressexposure(9,50).To investigatetheinvolvementofthesegenesinparticularstressresponsesduringgrowthat combinationsofstresses,theirpresencewasverifiedinthese138strains. MaterialsandMethods

L. monocytogenes strains Atotalof138strainswithdiverseoriginsandgeneticbackgroundswereusedinthis study (Table S1, online manuscript). The collection contained human (epidemic and sporadiccases;n=42),meat(n=38),dairy(n=17),andfoodprocessingenvironment(n=23) isolatesandhadanabundantnumberoftheserotypes1/2a(n=32),1/2b(n=17),and4b (n=36).Strainswerestoredat80ºCinBrainHeartInfusion(BHI,Difco)brothcontaining 15%(v/v)sterileglycerol(BDH).

43

Determinationofthegrowthlimits ThetotalcollectionofstrainswasscreenedfordetectablegrowthinBHIbrothata combinationofhighsaltconcentrations,lowpH,anddifferenttemperatures.Specifically, thegrowth/nogrowthinterfacewasdeterminedathightemperatures(43.5ºCto47ºC; increments of 0.5 °C). In addition, growth was assessed at both 30 ºC and 7 ºC in combinationwiththestresses:1)lowpH(pH4.0topH5.4at30°CandpH4.2topH5.8 at7°C);2)lowpHwithsupplementationof2%(w/v)sodiumlactate(Fluka)(pH4.5to pH6.2atboth30°Cand7°C);3)highNaClconcentrations(Merck)atpH7.4(1.5mol·l 1 to2.2mol·l 1at30°Cand1.3mol·l 1to2.2mol·l 1at7°C);4)highNaClconcentrationsat pH5.5(1.3mol·l 1to2.0mol·l 1NaClat30°Cand1.0mol·l 1to2.0mol·l 1at7°C);5)low pHwithsupplementationof1.0mol·l 1NaCl(pH4.3topH5.8at30°CandpH4.5topH 5.9at7°C).ThepHincrementswere0.2to0.3and theNaClconcentrationincrements were 0.1 mol·l 1. The pH was set with 10 % HCl using a pH meter (713 pH Meter, Metrohm). Acidified conditions were buffered with 0.02 M potassium phosphate buffer

(KH 2PO 4/K 2HPO 4,Merck).Eachstrainwastestedinduplicatein96wellflatbottomtissue cultureplates(Greiner).Thewellswereinoculatedtoalevelofapproximately10 6CFU·ml 1inavolumeof250l,usinganinoculumfrom18hculturesgrownat30ºCinBHIbroth. Theplateswereincubatedathightemperatures(43.5ºCto47ºC)intheC24KCincubator (NewBrunswick)fortwodays,at30ºCintheBD400incubator(Binder)forthreeweeks andat7ºCinatemperaturecontrolledcoolingchamberforthreemonths.Theabsorbance wasregularlymeasuredusingtheEL808IUPC(BioTek)at630nmandcomparedwith twowellsservingasnegativecontrols. Dataanalysis Allstrainswereanalyzedinduplicateforeachtreatmentandtemperaturecondition. The reported values for the growth/no growth interface are the conditions at which no growth was detected. Cluster analysis on the complete dataset for all stresses was performed by a euclidic distance analysis using the ward method on the results, scaled betweenzeroandone,zerobeingthelowestreportedvalueandonethehighest.Statistical significantdifferencesbetweensubgroupsofthecollection(serotypeororiginofisolation) were identified by a twogroup pairwise fixed reallocation randomization test (10000 randomizations;p<0.05)(21),whichisfreelyavailableat(http://www.bioss.ac.uk/smart ). GenespecificPCRanalysis Tolinkpotentialdifferencesinstresstolerancetothegeneticmakeupofstrains,a gene specific PCR analysis was performed. These genes are known to have a variable presence in L. monocytogenes and are associated with specific phenotypes. We selected candidategenes,including LMOf2365_1900 ,encodingaputativeserineprotease, lmo0423 ,

44

encodingsigmafactorSigC, pli0067 ,encodingaputativeUVdamagerepairprotein,and lmo0447 and lmo0448 , encoding a decarboxylase system. The putative serine protease LMOf2365_1900,waspreviouslyidentifiedasanunknown extracellular protein, which wasspecificfortheserotypes4b,4d,and4e,andwasnamedORF2110(12).Thisgenewas selectedbecauseofitsputativefunctionthatmayresembletheserineproteaseHtrA,which hasbeenshowntobeimportantforgrowthatlowpH,hightemperatures,highosmolarity, and virulence (38, 47, 48). The ECF sigma factor SigC (lmo0423), is part of a lineage specific heat shock system (50), and is important for survival at elevated temperatures. Previous research showed diverse presence of a probe from a shotgun library in 50 L. monocytogenes strains,andwasidentifiedaspartofaUVdamagerepairprotein(7).We identifiedthisprobeasbeingpartofthe L. innocua genepli0067,whichislocatedonthe approximately82kb Listeria specificplasmid(18).Thisplasmidisalsopresentinsome L. monocytogenes strains (34). Gene pli0067 shows sequence similarity with the gene encodingthealternativeDNApolymeraseUmuD.Thisgeneisinducedduringheatshock due to activation of the SOSresponse possibly after replication fork stalling (41). Therefore, the presence of gene pli0067 might give a benefit for growth at higher temperatures,becausereplicationforkstallingatthesetemperaturesmightbereduceddue tothepresenceofanextraalternativeDNApolymerase.Ascandidatemarkergenesfor growthatlowpHweidentifiedtheglutamatedecarboxylasesystemencodedbythegenes gadD1 (lmo0447) and gadT1 (lmo0448). These genes were previously identified to be important for growth at low pH (9). Although the system appears to be serotype 1/2 specific,itisnotpresentinallserotype1/2strains(7,9). Strainsweregrownfor18hat30ºCinBHIbrothandpelletsof0.5mlculturewere obtainedbycentrifugation(2min,5000xg,20ºC;5417REppendorf).Thepelletswere suspendedin0.5mlMilliQandboiledfor10min.Thesuspensionswerecentrifugedand1 l of the supernatant was used as DNA template for the PCRreactions. The PCR was performedin35cyclesof15sat94ºC,30sat50ºC,and1minat72ºCusingthe2xTaq PCRmix(Invitrogen)and0.3Mprimers(TableS2,onlinemanuscript).Thepresenceof genes lmo1134 (positivecontrol)(30), ORF2110 , lmo0423 , lmo0447 , lmo0448 ,and pli0067 inthecompletewildtypecollectionwasverifiedusingprimerslmo1134fwdandlmo1134 rev,ORF2110fwdandORF2110rev,lmo0423fwdandlmo0423rev, lmo0447fwd and lmo0447rev, lmo0448fwd and lmo0448rev, and pli0067fwd and pli0067rev, respectively.

45

A 30ºC 60 40 % 20 0 4.4 4.6 4.9 pH 2%sodiumlactateat30ºC 60 40 % 20 0 5.2 5.5 5.7 6.0 pH 1.0MNaClat30ºC 80 60

% 40 20 0 4.7 4.9 5.2 pH

80 7ºC 60

% 40 20 0 4.6 4.9 5.1 5.4 5.6 pH 2%sodiumlactateat7ºC 80 60

% 40 20 0 5.2 5.5 5.7 pH 1.0MNaClat7ºC 60 40 % 20 0 4.9 5.2 5.4 5.6 pH

46

B 60 pH7.4at30ºC 40

% 20 0 1.9 2.0 2.1 2.2 NaCl[M]

pH5.5at30ºC 80 60

% 40 20 0 1.4 1.5 1.6 1.7 1.8 1.9 NaCl[M]

pH7.4at7ºC 60 40

% 20 0 1.9 2.0 2.1 2.2 NaCl[M]

pH5.5at7ºC 60 40 % 20 0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 NaCl[M] C

40

% 20

0 44 44.5 45 45.5 46 46.5 47 ºC

Fig.1.Thegrowthlimits(xaxis)of L. monocytogenes strains(yaxis)atdifferentconditions.A) The growth limits at low pH at 30 °C, and the shift of the growth limits at low pH in combinationswith2%sodiumlactate,with1.0MNaCl,andwithgrowthat7°C.B)Thegrowth limitsathighNaClconcentrationsatpH7.4at30°C,andtheshiftofthegrowthlimitsathigh NaClconcentrationsincombinationwithgrowthatpH5.5and7°C.C)Theminimuminhibitory temperatures.

47

RESULTS Growthlimits Eachstrainwastestedunderallconditionsinduplicate.Thevariationbetweenthe duplicatemeasurementswaslowanddidnotinfluencethefinalresultsofthegrowthlimits. Theaveragecoefficientofvariation(CV:standarddeviationdividedbymeanvalue)forthe absorbancemeasurementsofthedifferentstresseswere:1)0.084forhightemperatures;2) 0.023 for low pH at 30 ºC; 3) 0.030 for low pH at 7 ºC; 4) 0.025 for low pH with supplementationof2%sodiumlactateat30ºC;5)0.017forlowpHwithsupplementation of2%sodiumlactateat7ºC;6)0.061forhighNaClconcentrationsatpH7.4at30ºC;7) 0.036forhighNaClconcentrationsatpH7.4at7ºC;8)0.028forhighNaClconcentrations atpH5.5at30ºC;9)0.029forhighNaClconcentrationsatpH5.5at7ºC;10)0.022for low pH with supplementation of 1.0 mol·l 1NaClat30ºC;11)0.025forlowpHwith supplementation of 1.0 mol·l 1 NaCl at 7 ºC. The results of the growth limits for the completecollectionforallstressesarepresentedinFigure1anddescribedfurtherbelow. GrowthlimitsatlowpH At30°C,almostallstrainsfailedtoshowgrowthateitherpH4.4(32%)orpH4.6 (67%),whileonlyafewstrainsfailedtogrowathigherpH(Fig.1A).Incombinationwith thepreservativeNaCl(1mol·l 1),87%ofthestrainsshowedgrowthinhibitionatpH4.7. Theadditionof2%sodiumlactateshowedalargereffectthantheadditionof1mol·l 1 NaCl, since 61% of the strains failed to show growth at pH 5.2 or lower. At low temperature (7 °C), the growth limit shifted up to pH 4.9 for 75% of the strains. The additionof1mol·l 1ofNaClat7°Cdidnotshowalargeeffectonthegrowthlimitsatlow pH, since 70 % of the strains showed this limit still at pH 4.9. Also lowering the temperatureto7°Cinthepresenceof2%sodiumlactatedidnotresultinanadditional shiftofthegrowthlimitsatlowpH.Themajorityofthestrainsshowedgrowthinhibitionat pH5.5orlower(86%),butforasmallgroupofstrainsgrowthinhibitionwasstillshownat pH5.2orlower(12%)undertheseconditions. GrowthlimitsathighNaClconcentrations Athighsalineconditions,themajorityofthestrainsfailedtogrowbetween2.0and 2.2mol·l 1NaClatpH7.4at30°C(Fig1B).ByloweringthepHtopH5.5mostofthe strains did not show growth at 1.8 mol·l 1 NaCl (52 %) or 1.9 mol·l 1 NaCl (44 %). Loweringthetemperatureto7°Cshowedanegativeeffectonthegrowthlimitsathigh saline conditions at pH 7.4 (P=0.000), since more strains showed growth inhibition at slightlyhigherNaClconcentrations,at2.1to2.2mol·l 1NaClatthistemperature.At7°C

48

Fig.2.Clusterdendogramofthegrowthlimitsofthe138 L. monocytogenes strains.Thestrains wereclusteredafteraneuclidicdistanceanalysisusingthewardmethod.Ifknown,theserotypes andoriginofisolationareindicated.

49

and pH 5.5, the growth limits at high NaCl concentrations remained 1.8 mol·l1 for the majorityofthestrains,butnostrainwasabletogrowat1.9mol·l 1NaClanymore. Growthlimitsathightemperatures All strains showed the growth limits between 44 °C and 47 °C (Fig. 1C). Most strainsfailedtogrowat45.0°C(42%)and45.5°C(26%).Seventeenotherstrainsshowed growthinhibitionat46.5°C.Oneserotype4bstrainisolatedfromahumaninanItalian clinic,AOPM7(8),wasabletogrowupto47°C. Clusteranalysis The growth limits for the individual strains are reported in Table S3 (online manuscript).Thecompletecollectionofstrainswasclusteredaccordingtothescaledresults ofthegrowthlimits.Theresultsofthisclusteranalysisarereflectedinadendrogram(Fig. 2). The dendrogram shows two main branches dividing the majority of the serotype 4b strainsfromtheotherstrains.Branch1contains42strainsofwhich26areofserotype4b (62%),twoofserotype1/2a,oneofserotype1/2b,andthreeofserotype1/2c.Branch2 contains96strains,amongwhich10areofserotype4b,30ofserotype1/2a,16ofserotype 1/2b,and4ofserotype1/2c.Themainidentifierinthedivisionofthesetwobranchesisthe growthlimitsatlowpHat30°C.Allstrainsfrombranch1showedthegrowthlimitsatpH 4.4,whileonlytwostrainsfrombranch2showedthelimitsatthispH. Serotypedifferences At30°C,thegroupofserotype4bstrainsshowedhigheracidtolerancethanthe serotype1/2astrains(P=0.000)and1/2bstrains(P=0.000)(Fig.3A).Intotal,75%ofthe serotype4bstrainsshowedgrowthinhibitionatpH4.4.Incontrast,thegroupofserotype 4b strains showed lower acid tolerance than the group of serotype 1/2a strains at 7 °C (P=0.018)(datanotshown).Nosignificantdifferencewasobservedbetweenthegroupof serotype 4b strains and the group of serotype 1/2b strains (P=0.125). More serotypes differenceswereobservedforacidtoleranceat7°Cincombinationwiththepreservatives sodiumchlorideandsodiumlactate.Inthepresenceof1mol·l 1NaClthegroupofserotype 4bstrainsshowedloweracidtolerancethanthegroupofserotype1/2astrains(P=0.042) and1/2bstrains(P=0.006)(datanotshown).Afteradditionof2%sodiumlactate,the groupofserotype1/2bstrainsshowedhigheracidtolerancethanthegroupofserotype1/2a strains(P=0.001)and4bstrains(P=0.000)(Fig3B). At30°C,thegroupofserotype4bstrainsshowedhighertolerancetohighsaline conditionsatpH7.4thanthegroupofserotype1/2a strains (P=0.000) and 1/2b strains (P=0.000),andonlystrainsfromserotype4bshowedthegrowthlimitsat2.2mol·l 1NaCl (Fig.3C).Also,thegroupofserotype4bstrainsshowedhighertolerancetohighsaline

50

A 30°C B 2%sodiumlactateat7°C

100 100

80 80

60 60 % % 40 40

20 20

0 0 4.4 4.6 4.9 pH 5.2 5.5 5.7 pH

C pH7.4at30°C D pH7.4at7°C

100 100

80 80

60 60 % % 40 40

20 20

0 0 1.9 2.0 2.1 2.2 NaCl[M] 1.9 2.0 2.1 2.2 NaCl[M]

E

100

80

60 % 40

20

0 44 44.5 45 45.5 46 46.5 47 ºC Fig. 3. Growth limits for the complete collection of L. monocytogenes strains and for the serotypes1/2a,1/2b,and4binBrainHearthInfusion(BHI)broth.A)Thepercentageofstrainsof the complete collection (light grey) or strains belonging to the serotypes 1/2a (black), 1/2b (white), and 4b (dark grey) that showed the growth limits at the reported pH in BHI broth adjustedwithHClat30ºC.B)Thepercentageofstrainsofthecompletecollection(lightgrey)or strainsbelongingtotheserotypes1/2a(black),1/2b(white),and4b(darkgrey)thatshowedthe growthlimitsatthereportedpHinBHIbrothadjustedwithHClat7ºCinthepresenceof2% sodium lactate. C) The percentage of strains of the complete collection (light grey) or strains belongingtotheserotypes1/2a(black),1/2b(white),and4b(darkgrey)thatshowedthegrowth limitsatthereportedNaClconcentrationinBHIbrothatpH7.4at30ºC.D)Thepercentageof strainsofthecompletecollection(lightgrey)orstrainsbelongingtotheserotypes1/2a(black), 1/2b(white),and4b(darkgrey)thatshowedthegrowthlimitsatthereportedNaClconcentration inBHIbrothatpH7.4at7ºC.E)Thepercentageofstrainsofthecompletecollection(lightgrey) orstrainsbelongingtotheserotypes1/2a(black),1/2b(white),and4b(darkgrey)thatshowed thegrowthlimitsatthereportedtemperatureinBHIbroth.

51

conditions at mildly acidic conditions (pH 5.5) than the group of serotype 1/2a strains (P=0.004)andthegroupofserotype1/2bstrains(P=0.017)(datanotshown).At7°C,the groupofserotype1/2bstrainsshowedhighertoleranceforhighsalineconditionsatpH7.4 than the group of serotype 1/2a strains (P=0.000) and the group of serotype 4b strains (P=0.003) (Fig. 3D). Also at pH 5.5, the group of serotype 1/2b strains showed higher toleranceforhighsalineconditionsthanthegroupofserotype1/2astrains(P=0.013)and thegroupofserotype4bstrains(P=0.002)(datanotshown). Thegroupofserotype4bstrainswereabletogrowatahighertemperaturethanthe groupof1/2bstrains(P=0.004)(Fig.3E).Nosignificantdifferencewasobservedbetween thegroupsofserotype4band1/2astrains(P=0.235)orbetweenthegroupsofserotype1/2a and1/2bstrains(P=0.105). Differencesbetweenstrainsisolatedfromdifferentorigins At30°C,thegroupofhumanisolatesshowedhigheracidtolerancethanthegroup ofdairyisolates(P=0.001),thegroupofmeatisolates(P=0.005),andthegroupoffood processingenvironmentisolates(P=0.001)(Fig4A).Inthepresenceof1mol·l 1NaCl,the group of meat isolates showed higher acid tolerance than the group of human isolates (P=0.013), the group of dairy isolates (P=0.003), and the group of food processing environmentisolates(P=0.000)(datanotshown).Inthepresenceof2%sodiumlactate,the group of dairy isolates showed lower acid tolerance than the group of human isolates (P=0.000), the group of meat isolates (P=0.001), and the group of food processing environmentisolates(P=0.027)(datanotshown).At7°Cinthepresenceof2%sodium lactate,thegroupofmeatisolatesshowedhigheracidtolerancethanthegroupofhuman isolates (P=0.005), and the group of dairy isolates (P=0.049) (Fig. 4B). The differences betweenthegroupofmeatisolatesandthegroupoffoodprocessingenvironmentisolates werenotsignificant(P=0.117). At 30 °C, the group of human isolates showed higher tolerance to high saline conditions at pH 7.4 than the group of meat isolates (P=0.003) and the group of food processingenvironmentisolates(P=0.020)(Fig.4C).Thedifferencesbetweenthegroupof humanisolatesandthegroupofdairyisolateswerenotsignificant(P=0.287).Incontrast, the group of human isolates showed lower tolerance to high saline conditions than the groupofdairyisolates(P=0.026)andthegroupof foodprocessingenvironmentisolates (P=0.033)atpH7.4at7°C(datanotshown).Thedifferencesbetweenthegroupofhuman isolatesandthegroupofmeatisolateswerenotsignificant(P=0.064). Thegroupofmeatisolatesshowedthegrowthlimitsatalowertemperaturethanthe group of dairy isolates (P=0.015) and the group of human isolates (P=0.002) (data not shown). The differences between the group of meat isolates and the group of the food processingenvironmentisolateswerenotsignificant(P=0.112).

52

A 30°C B 2%sodiumlactateat7°C

100 100

80 80

60 60 % % 40 40

20 20

0 0 4.4 4.6 4.9 pH 5.2 5.5 5.7 pH C pH7.4at30°C

80

60

% 40

20

0 1.9 2.0 2.1 2.2 NaCl[M]

Fig.4.Growthlimitsof L. monocytogenes strainsisolatedfromhumancases,meat,dairy,andthe foodprocessingenvironmentinBrainHearthInfusion(BHI)broth.A)Thepercentageofstrains isolated from human cases (light grey), meat (black), dairy (white), and the food processing environment(darkgrey)thatshowedthegrowthlimitsatthereportedpHinBHIbrothadjusted with HCl at 30 ºC. B) The percentage of strains isolated from human cases (light grey), meat (black),dairy(white),andthefoodprocessingenvironment(darkgrey)thatshowedthegrowth limitsatthereportedpHinBHIbrothadjustedwithHClat7ºCinthepresenceof2%sodium lactate.C)Thepercentageofstrainsisolatedfromhumancases(lightgrey),meat(black),dairy (white),andthefoodprocessingenvironment(darkgrey) that showed the growth limits at the reportedNaClconcentrationinBHIbrothatpH7.4at30ºC.

Canphenotypicdifferencesbelinkedtospecificgenepresence? Certaingenesmayplayaroleingrowthandsurvival during stress exposure and thesegenesmaynotbepresentinallstrainsorserotypes,inparticularacid/salttolerance (gadD1T1 ,and ORF2110 ),andheattolerance( sigC and pli0067 ). Onlystrainsofserotype4b,4d,and4eshowedapositivePCRproductusingthe ORF2110 specificprimers.Thegroupofserotype4bstrainsshowedthegrowthlimitsat highertemperatures(Fig.3E)andlowerpHandhighersaltconcentrationsat30°C(Fig. 3Aand3C)thanthegroupofserotype1/2astrainsandthegroupofserotype1/2bstrains. Therefore,theenhancedperformanceofserotype4bstrainsunderthesestressconditions maybeassociatedwiththepresenceof ORF2110 . ThePCRanalysisshowedapositiveproductforallserotype1/2a,1/2c,3a,and3c strainsusing sigC specificprimers,verifyingthelineagespecificity.Sincenosignificant difference was observed for the maximum growth temperature between the group of

53

serotype1/2astrainsandthegroupof1/2band4bstrains,thissystemmightnothavean explicitroleingrowthatelevatedtemperatures. ApositivePCRproductwasobservedin56strains(41%)usingthespecificprimers for pli0067 .Ofthesestrains,22wereofserotype1/2a,11ofserotype1/2b,twoofserotype 1/2c,andthreeofserotype4b.However,strainscontainingthisgenedidnotshowhigher maximumgrowthtemperatures,andanexplicitroleofgene pli0067 ingrowthatelevated temperaturescouldthereforenotbeestablished. Positive PCR products for the gadD1T1 specific primers were shown in nine serotype1/2astrains,13serotype1/2bstrains,andsixserotype1/2cstrains.Thegroupof serotype1/2strainscontainingthisdecarboxylasesystemshowedthegrowthlimitsinthe presenceof1mol·l 1NaClat7ºCatlowerpHthanthegroupofserotype1/2strainslacking thiscluster(P=0.000)orthegroupofserotype4b strains (P=0.000), while the group of serotype 1/2 strains that lack this system did not show a significant difference with the groupofserotype4bstrains(P=0.091)(Fig.5).

1.0MNaClat7ºC

100

80

60 % 40

20

0 4.9 5.2 5.4 pH Fig.5.GrowthlimitsatlowpHat7ºCinthepresenceof1.0MNaCl.Thepercentageofstrains ofthecompletecollection(lightgrey)orstrainsbelongingtoserotype1/2with(black)orwithout (white)thedecarboxylasesystem gadD1T1 ,andserotype4b(darkgrey)thatshowedthegrowth limitsatthereportedpHinBrainHearthInfusion(BHI)brothadjustedwithHCl.

Discussion Oneofthemostimportantstrategiestoreducetheincidenceoffoodbornelisteriosis ispreventionofgrowthof L. monocytogenes tohighnumbersincontaminatedfoods(22). Inthisstudy,thegrowthlimitsof L. monocytogenes forcombinationsoflowpHwithout andwithsodiumlactate,andhighsaltconcentrationsat30ºCand7ºCwereinvestigatedto identifydifferencesbetweenserotypesandisolatesfromspecificniches.Notably,thegroup ofserotype4bstrainsweremoretoleranttolowpHintheabsenceofsodiumlactateandto highsalineconditionsat30ºCthanthegroupofserotype 1/2a and 1/2b strains, which mightbeattributedtothepresenceofORF2110intheserotype4bstrains.At7ºC,the

54

groupofserotype1/2bstrainsweremoretoleranttohighsalineconditionsatbothneutral andmildacidicpHthanthegroupofserotype1/2aand4bstrains.Thehighesttoleranceto lowpHinthepresenceof2%sodiumlactateat7ºCwasobservedforserotype1/2bstrains isolatedfrommeatproducts.Theassessmentofvariouslineageorserotypespecificgenes with a known or anticipated role during stress exposure revealed a specific glutamate decarboxylasesystem( gadD1 and gadT1 )tobepresentinthegroupofserotype1/2strains withthehighesttolerancetolowpHinthepresenceof1mol·l1NaClat7ºC.Thegroupof serotype1/2strainsthatdidnotcontainthissystemandthegroupofserotype4bstrains displayed both lower tolerance to low pH under these conditions. These findings are importantforfoodpreservationsincestrainsthathaveadaptedtoselectivepressuresusedto controlthemmightbeencounteredinthefoodprocessingenvironment. Commonlyusedstrategiesinfoodpreservationare(combinationsof)loweringthe pHandtheadditionofpreservativeslikesodiumchlorideandsodiumlactate.Inparticular, theshelflifeofmanyreadytoeatmeatanddeliproductsdependsonthesepreservation strategies(2,24).Previousreportsshowedthat L. monocytogenes cangrowatpHlevelsas lowaspH4.3topH4.8(4,26,42),atconcentrationsashighas10to14%NaCl(14,31), andatvariouscombinationsoflowpHandhighNaClconcentrations(39)dependingonthe strain,themedium,thetemperature,thephysiologicalstateofcells,andtheinoculumsize. Throughoutthisstudyaninoculumsizeofapproximately10 6CFUml 1wasused,whichis much higher than the contamination levels that occur in food products. Some studies showedthathigherinoculumsizesresultedingrowthundermoreseverestressconditions duetoahigherprobabilitytoinitiategrowthundertheseconditions(27,37).Recently,it was shown that cultures exposed to inhibitory salt concentrations (5% NaCl) contain a population of growing and nongrowing cells (10). Under severe stress conditionsthatallowmarginalgrowth,aninitialsmallpopulationthatisabletogrowmight notreachthedetectionlimitswhenalowinoculationsizeisused.Takingthesephenomena into account, it is not inconceivable that the growth limits observed in this study overestimategrowthcapabilitiesof L. monocytogenes inpractice.Inthisstudy,noneofthe 138 strains investigated showed the growth limits at lower pH or higher NaCl concentrationsthanobservedinpreviousstudies,indicatingthatthegrowthlimitsforthese stressesareconservedwithinthe L. monocytogenes species.However,thepHofmanyfood products is higher than these growth limits (FDA, www.cfsan.fda.gov/~comm/lacf phs.html ).AlsothecombinationsoflowpHandhighNaClconcentrationsor2%sodium lactate, which is a commonly used concentration in readytoeat meat and deli products (16), do allow for growth of L. monocytogenes inmany of these products (24), thereby posing a potential hazard. In January 2006, new microbiological criteria for L. monocytogenes have been implemented in the European Union through regulation 2073/2005(40).Readytoeatfoodsthatdonotsupport growth of L. monocytogenes no

55

longerrequirezerotolerance,butallowamaximumconcentrationof100CFUg 1during theirshelflife.Thecriteriaforproductsthatdonotsupportgrowthof L. monocytogenes are pH≤4.4,a w≤0.92(+/13%NaCl),orpH≤5.0anda w≤0.94(+/10%NaCl).Noneof the L. monocytogenes strainsinourcollectionshowedgrowthlimitsatlowerpHorhigher NaCl concentrations at both 30 and 7 ºC, indicating that these parameters are a good standard.Furthermore,ourresultsshowthatacategoryofproductsusingsodiumlactateas a preservative could be added to the list of products that do not support growth of L. monocytogenes .Thecriteriafortheseproductsshouldbe:pH≤5.2andNaLac≥2%. Determination of the growth limits of strains belonging to different serotypes or strains isolated from specific niches and subsequent cluster analysis revealed significant differencestoexistbetweengroupsofstrains.Most of the serotype 4b strains branched separatelyfromtheserotype1/2aand1/2bstrains,eventhoughserotype4band1/2bareof thesamelineage(13).Asagroup,theserotype4bstrainsshowedthegrowthlimitsatlower pH,highersaltconcentrations,andatalowerpHinthepresenceof1mol·l 1NaClat30ºC than the group of serotype 1/2a and 1/2b strains. In addition, the group of serotype 4b strains displayed higher maximum growth temperatures than the group of serotype 1/2b strains.Serotype4bstrainsareabundantlyfoundin clinical isolates (5). Their relatively hightolerancetoacidandsaltmightcontributetotheirincidenceinhumaninfection,as thesearealsoimportanttraitsforvirulence(16,33,49). Incontrast,thegroupofserotype4bstrainswaslesstoleranttoacidinthepresence of 1 mol·l 1 NaCl at 7 ºC than the group of serotype 1/2a and 1/2b strains. The latter serotypes have predominantly been isolated from readytoeat food products (20, 52). Preservationconditionsappliedtothesetypeofproductslikelyaremorefavourabletothe serotype1/2strains.Onlyat7°C,thegroupofserotype1/2bstrainsgrewathigherNaCl concentrationsthanthegroupofserotype1/2aand4bstrainsbothatneutralpHandatpH 5.5.Thisparticularserotypeismostfrequentlyisolatedfromretailfoods(52)andhardand semihard(36).Thecapacityofserotype1/2bstrainstogrowatthehighestNaCl concentrationsat7°Catneutralandmildacidicconditionsmaycontributetotheirpresence inretailfoodsandonhardandsemihardcheeses.Themajorityoftheserotype1/2bstrains showedgrowthlimitsat7°CatNaClconcentrationssimilartothoseoftheserotype4b strainsat30°C.LowtemperaturesandhighNaClconcentrationscaninduceoverlapping salt and coldstressprotection mechanisms (1, 44, 45). Clearly, some L. monocytogenes strainsandserotypesarebetterabletoadapttotheseconditionsthanothers,andgrowthof adaptedstrainstohighnumberscouldoccurafterprolongedstorageforthisreason.The groupofserotype1/2bstrainsfurthermoredisplayedthegrowthlimitsatalowerpHinthe presenceof2%sodiumlactatethanthegroupofserotype1/2aand4bstrainsat7°C. Withinthegroupofserotype1/2bstrains,thestrainsisolatedfromsmokedmeatproducts wereabletogrowatthelowestpH.Sincesodiumlactateisacommonlyusedpreservative

56

for meat products, this may indicate that certain serotype 1/2b strains found in specific nichesmayhaveadaptedtotheirenvironmentand/orthattheenvironmenthasselectedfor thesevariants.Theseresultsshowthatselectionofstrainsforgrowthexperimentsunder differentstressconditionsisveryimportant.Serotype1/2strainsaregenerallyabletogrow atlowerpHandhighersaltconcentrationsat7ºCthantheserotype4bstrains.Inparticular, serotype 1/2b strains are able to grow at high salt concentrations and low pH in the presenceofsodiumlactateatthistemperature.Therefore,werecommendthatreadytoeat food manufacturers claiming their products do not support growth of L. monocytogenes showdataofchallengetestsperformedwithstrainsofthisserotype. The observed differences in growth limits between the serotype 1/2 strains and serotype4bstrainsmaybeduetothepresenceofgenes with a role in stress resistance specific for certain serotypes. Genetic screening of strains in our collection identified a putativeserineprotease(LMOf2365_1900orORF2110)thatwasfoundonlyinstrainsof serotype4b,4dand4e.ItsfunctionmayresemblethefunctionoftheserineproteaseHtrA, whichisimportantforgrowthatlowpH,highosmolarity,andhightemperatures(38,47, 48).ItisconceivablethattheproteinencodedbyORF2110notonlycontributestohigher acidandsalttoleranceat30ºCofthe4bstrainscomparedwiththe1/2aand1/2bstrains, but also to higher thermotolerance of the 4b strains compared with the 1/2b strains. However,itshouldbenotedthatitisnotpossibletodistinguishORF2110specifictraits fromgeneraldifferencesbetweenserotype4band1/2strains,sincenoneofthe1/2strains containsthisORF. In previous research a glutamate decarboxylase system ( gadD1 and gadT1 ) was identifiedwhichenhancedtheabilityof L. monocytogenes togrowatlowpH(9).Strains thatwerelackingthesegenesgenerallygrewmoreslowlyatpH5.1at37ºC.Thissystem wasdetectedinonly50%ofourserotype1/2strains.AtlowpHat30ºC,thegrowthlimits ofthegroupofserotype1/2strainscontainingthissystemweresimilartothegroupof serotype1/2strainslackingthissystem.However,inthepresenceof1mol·l 1NaClat7ºC, serotype1/2strainscontainingthissystemweremoretoleranttolowpHthanserotype1/2 strainslackingthissystem,orserotype4bstrainsinwhichthissystemwasabsent.From theseobservationswecanconcludethatthisdecarboxylasesystemplaysaroleinresistance to these combined stresses. Therefore, this decarboxylase system might be a suitable biomarkerfor L. monocytogenes strainsinfoodproductsinwhichpreservationdependson combinationsoflowpH,highNaClconcentrationsandlowtemperatures. In short, this study identified the growth/no growth interface for 138 L. monocytogenes strainsatcombinationsoflowpH,highsaltconcentrations,temperatures andadditionof2%sodiumlactate.Ourresultsindicatethatthepreservationconditionsof manyfoodproductsmaypermitgrowthofall L. monocytogenes strainsinourcollectionor specificserotypesorstrainsisolatedfromspecificniches.Thegroupofserotype4bstrains,

57

whicharemostcommonlyisolatedincasesofclinicallisteriosis,showedthehighestacid andsalttoleranceat30°C.Thiscouldpossiblybeexplainedbythepresenceoftheputative biomarkerORF2110inserotype4bstrains.Also,weidentifiedagroupofserotype1/2b strainsisolatedfromsmokedmeatproductsthatshowedthehighesttoleranceforlowpHin thepresenceof2%sodiumlactateat7°C.Sodiumlactateisacommonlyusedpreservative inthemeatindustry,andtheseresultsshowedthatsome L. monocytogenes serotypeshave likelyadaptedtospecificenvironmentalstresses.Furthermore,thisstudydemonstratedthat aspecificdecarboxylasesystemwaspresentinagroupofstrainswithhighertoleranceto lowpHinthepresenceof1mol·l 1NaClat7°C.Thegenesencodingthissystemmightbe suitablebiomarkersforthepresenceofspecific L. monocytogenes strainsinfoodproducts thatdependonthecombinationofthesestressesforpreservation.Ingeneral,weobserved the highest tolerance to stress conditions at nonchilled temperatures for the group of serotype4bstrains,whilethegroupofserotype1/2strainsshowedthehighesttoleranceto stressconditonsat7°C.Thismightbeassociatedwiththeabundanceoftheseparticular serotypesinclinicalisolatesandfoodisolates,respectively.Thecurrentfindingsincrease ourunderstandingofhowspecific L. monocytogenes strainsandserotypeshaveevolvedto become resident strains and/or selected for in specific niches like the food processing environmentorretailestablishments. Acknowledgements We acknowledge Rene van der Heijden for performing the cluster analysis. We wouldliketothankProf.M.W.Griffiths,Dr.C.Gahan,Dr.L.Cocolin,Prof.L.Seganti, Dr.P.Piveteau,Prof.M.JakobsenandProf.L.Britoforthekindgiftof L. monocytogenes strains. References 1. Bayles,D.O.,andB.J.Wilkinson. 2000.Osmoprotectantsandcryoprotectantsfor Listeria monocytogenes .LettApplMicrobiol 30: 237. 2. Beales, N. 2004. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in FoodScienceandFoodSafety 3: 120. 3. Bereksi,N.,F.Gavini,T.Benezech,andC.Faille. 2002.Growth,morphologyand surface properties of Listeria monocytogenes ScottAandLO28undersalineand acidenvironments.JApplMicrobiol 92: 55665. 4. Boziaris, I. S., and G. J. Nychas. 2006.Effectofongrowthboundariesof Listeria monocytogenesScottA,atvarioustemperatures,pHandwateractivities. FoodMicrobiol 23: 77984.

58

5. Buchrieser, C., R. Brosch, B. Catimel, and J. Rocourt. 1993. Pulsedfield gel electrophoresis applied for comparing Listeria monocytogenes strains involved in outbreaks.CanJMicrobiol 39: 395401. 6. Buncic,S.,S.M.Avery,J.Rocourt,andM.Dimitrijevic. 2001.Canfoodrelated environmentalfactorsinducedifferentbehaviourintwokeyserovars,4band1/2a, of Listeria monocytogenes ?IntJFoodMicrobiol 65: 20112. 7. Call,D.R.,M.K.Borucki,andT.E.Besser. 2003.Mixedgenomemicroarrays revealmultipleserotypeandlineagespecificdifferencesamongstrainsof Listeria monocytogenes .JClinMicrobiol 41: 6329. 8. Cocolin, L., K. Rantsiou, L. Iacumin, C. Cantoni, and G. Comi. 2002. Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecularmethods.ApplEnvironMicrobiol 68: 627382. 9. Cotter, P. D., S. Ryan, C. G. Gahan, and C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated withanabilitytogrowatlowpH.ApplEnvironMicrobiol 71: 28329. 10. denBesten,H.M.,C.J.Ingham,J.E.vanHylckamaVlieg,M.M.Beerthuyzen, M. H. Zwietering, and T. Abee. 2007. Quantitative analysis of population heterogeneityoftheadaptivesaltstressresponse and growth capacity of Bacillus cereusATCC14579.ApplEnvironMicrobiol 73: 4797804. 11. Doorduyn,Y.,C.M.deJager,W.K.vanderZwaluw,W.J.Wannet,A.van der Ende, L. Spanjaard, and Y. T. van Duynhoven. 2006. First results of the active surveillance of Listeria monocytogenes infectionsintheNetherlandsreveal higherthanexpectedincidence.EuroSurveill 11: E0604204. 12. Doumith, M., C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin. 2004. Differentiationofthemajor Listeria monocytogenes serovarsbymultiplexPCR.J ClinMicrobiol 42: 381922. 13. Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, P. Martin,P.Cossart,P.Glaser,andC.Buchrieser. 2004.Newaspectsregarding evolution and virulence of Listeria monocytogenes revealed by comparative genomicsandDNAarrays.InfectImmun 72: 107283. 14. Farber, J. M., F. Coates, and E. Daley. 1992. Minimum water activity requirements for the growth of Listeria monocytogenes . Lett Appl Microbiol 15: 1035. 15. Farber, J. M., and P. I. Peterkin. 1991. Listeria monocytogenes , a foodborne pathogen.MicrobiolRev 55: 476511. 16. Garner,M.R.,K.E.James,M.C.Callahan,M.Wiedmann,andK.J.Boor. 2006. Exposure to salt and organic acids increases the ability of Listeria monocytogenes to invade Caco2 cells but decreases its ability to survive gastric stress.ApplEnvironMicrobiol 72: 538495. 17. Gillespie, I. A., J. McLauchlin, K. A. Grant, C. L. Little, V. Mithani, C. Penman, C. Lane, and M. Regan. 2006. Changing pattern of human listeriosis, EnglandandWales,20012004.EmergInfectDis 12: 13616. 18. Glaser,P.,L.Frangeul,C.Buchrieser,C.Rusniok,A.Amend,F.Baquero,P. Berche,H.Bloecker,P.Brandt,T.Chakraborty,A.Charbit,F.Chetouani,E. Couve, A. de Daruvar, P. Dehoux, E. Domann, G. DominguezBernal, E.

59

Duchaud, L. Durant, O. Dussurget, K. D. Entian, H. Fsihi, F. Garciadel Portillo,P.Garrido,L.Gautier,W.Goebel,N.GomezLopez,T.Hain,J.Hauf, D.Jackson,L.M.Jones,U.Kaerst,J.Kreft,M.Kuhn,F.Kunst,G.Kurapkat, E.Madueno,A.Maitournam,J.M.Vicente,E.Ng,H.Nedjari,G.Nordsiek,S. Novella, B. de Pablos, J. C. PerezDiaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter,N.Simoes,A.Tierrez,J.A.VazquezBoland,H.Voss,J.Wehland, andP.Cossart. 2001.Comparativegenomicsof Listeria species.Science 294: 849 52. 19. Hain, T., C. Steinweg, and T. Chakraborty. 2006. Comparative and functional genomicsof Listeria spp.JBiotechnol 126: 3751. 20. Hong,E.,M.Doumith,S.Duperrier,I.Giovannacci,A.Morvan,P.Glaser,C. Buchrieser, C. Jacquet, and P. Martin. 2007. Genetic diversity of Listeria monocytogenes recovered from infected persons and pork, seafood and dairy products on retail sale in France during 2000 and 2001. Int J Food Microbiol 114: 18794. 21. Horgan,G.W.,andJ.Rouault 2000,postingdate.Introductiontorandomization tests.BiomathematicsandStatisticsScotland.[Online.] 22. ILSI. 2005. Achieving continuous improvement in reductions in foodborne listeriosisariskbasedapproach.JFoodProt 68: 193294. 23. Koch, J., and K. Stark. 2006. Significant increase of listeriosis in Germany epidemiologicalpatterns20012005.EuroSurveill 11: 858. 24. Koutsoumanis,K.,andA.S.Angelidis. 2007.Probabilisticmodelingapproachfor evaluatingthe compliance of readytoeatfoodswith new European Union safety criteriafor Listeria monocytogenes .ApplEnvironMicrobiol 73: 49965004. 25. Koutsoumanis,K.P.,L.V.Ashton,I.Geornaras,K.E.Belk,J.A.Scanga,P.A. Kendall, G. C. Smith, and J. N. Sofos. 2004. Effect of single orsequential hot water and lactic acid decontamination treatments on the survival and growth of Listeria monocytogenes andspoilagemicrofloraduringaerobicstorageoffreshbeef at4,10,and25degreesC.JFoodProt 67: 270311. 26. Koutsoumanis,K.P.,andJ.N.Sofos. 2004.Comparativeacidstressresponseof Listeria monocytogenes , Escherichia coli O157:H7 and Typhimurium afterhabituationatdifferentpHconditions.LettApplMicrobiol 38: 3216. 27. Koutsoumanis, K. P., and J. N. Sofos. 2005. Effect of inoculum size on the combinedtemperature,pHandawlimitsforgrowthofListeriamonocytogenes.IntJ FoodMicrobiol 104: 8391. 28. Lianou, A., J. D. Stopforth, Y. Yoon, M. Wiedmann, and J. N. Sofos. 2006. Growth and stress resistance variation in culture broth among Listeria monocytogenes strainsofvariousserotypesandorigins.JFoodProt 69: 26407. 29. Liu,D.,M.L.Lawrence,A.J.Ainsworth,andF.W.Austin. 2005.Comparative assessmentofacid,alkaliandsalttolerancein Listeria monocytogenes virulentand avirulentstrains.FEMSMicrobiolLett 243: 3738. 30. Liu,D.,M.L.Lawrence,L.Gorski,R.E.Mandrell,A.J.Ainsworth,andF.W. Austin. 2006. Listeria monocytogenes serotype 4b strains belonging to lineages I andIIIpossessdistinctmolecularfeatures.JClinMicrobiol 44: 2147.

60

31. McClure,P.J.,T.A.Roberts,andP.O.Oguru. 1989.Comparisonoftheeffects ofsodiumchloride,pHandtemperatureonthegrowthof Listeria monocytogenes on gradientplatesandinliquidmedium.LettApplMicrobiol 9: 959. 32. Mead,P.S.,L.Slutsker,V.Dietz,L.F.McCaig,J.S.Bresee,C.Shapiro,P.M. Griffin,andR.V.Tauxe. 1999.FoodrelatedillnessanddeathintheUnitedStates. EmergInfectDis 5: 60725. 33. Merrell,D.S.,andA.Camilli. 2002.Acidtoleranceofgastrointestinalpathogens. CurrOpinMicrobiol 5: 515. 34. Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay,D.A.Rasko,S.V.Angiuoli,S.R.Gill,I.T.Paulsen,J.Peterson,O. White, W. C. Nelson, W. Nierman, M. J. Beanan, L. M. Brinkac, S. C. Daugherty,R.J.Dodson,A.S.Durkin,R.Madupu,D.H.Haft,J.Selengut,S. VanAken,H.Khouri,N.Fedorova,H.Forberger,B.Tran,S.Kathariou,L.D. Wonderling, G. A. Uhlich, D. O. Bayles, J. B. Luchansky, and C. M. Fraser. 2004.Wholegenomecomparisonsofserotype4band1/2astrainsofthefoodborne pathogen Listeria monocytogenes reveal new insights into the core genome componentsofthisspecies.NucleicAcidsRes 32: 238695. 35. Nightingale, K. K., K. Lyles, M. Ayodele, P. Jalan, R. Nielsen, and M. Wiedmann. 2006. Novel method to identify sourceassociated phylogenetic clusteringshowsthat Listeria monocytogenes includesnicheadaptedclonalgroups withdistinctecologicalpreferences.JClinMicrobiol 44: 374251. 36. Pak, S. I., U. Spahr, T. Jemmi, and M. D. Salman. 2002. Risk factors for L. monocytogenes contamination of dairy products in Switzerland, 19901999. Prev VetMed 53: 5565. 37. Pascual,C.,T.P.Robinson,M.J.Ocio,O.O.Aboaba,andB.M.Mackey. 2001. The effect of inoculum size and sublethal injury on the ability of Listeria monocytogenestoinitiategrowthundersuboptimalconditions.LettApplMicrobiol 33: 35761. 38. Stack,H.M.,R.D.Sleator,M.Bowers,C.Hill,andC.G.Gahan. 2005.Rolefor HtrA in stress induction and virulence potential in Listeria monocytogenes . Appl EnvironMicrobiol 71: 42417. 39. Tienungoon,S.,D.A.Ratkowsky,T.A.McMeekin,andT.Ross. 2000.Growth limitsof Listeria monocytogenes asafunctionoftemperature,pH,NaCl,andlactic acid.ApplEnvironMicrobiol 66: 497987. 40. Union,T.E.P.a.t.C.o.t.E. 2005.RegulationEC/2073/2005.OfficialJournalof theEuropeanUnion L338: 126. 41. vanderVeen,S.,T.Hain,J.A.Wouters,H.Hossain,W.M.deVos,T.Abee,T. Chakraborty,andM.H.WellsBennik. 2007.Theheatshockresponseof Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis,andtheSOSresponse.Microbiology 153: 3593607. 42. Vermeulen,A.,K.P.Gysemans,K.Bernaerts,A.H.Geeraerd,J.F.VanImpe, J.Debevere,andF.Devlieghere. 2007.InfluenceofpH,wateractivityandacetic acidconcentrationon Listeria monocytogenes at7degreesC:datacollectionforthe developmentofagrowth/nogrowthmodel.IntJFoodMicrobiol 114: 33241.

61

43. Vialette,M.,A.Pinon,E.Chasseignaux,andM.Lange. 2003.Growthskinetics comparison of clinical and seafood Listeria monocytogenes isolates in acid and osmoticenvironment.IntJFoodMicrobiol 82: 12131. 44. WemekampKamphuis, H. H., R. D. Sleator, J. A. Wouters, C. Hill, and T. Abee. 2004. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures.ApplEnvironMicrobiol 70: 29128. 45. WemekampKamphuis, H. H., J. A. Wouters, R. D. Sleator,C. G. Gahan, C. Hill,andT.Abee. 2002.MultipledeletionsoftheosmolytetransportersBetL,Gbu, andOpuCof Listeria monocytogenes affectvirulenceandgrowthathighosmolarity. ApplEnvironMicrobiol 68: 47106. 46. Wiedmann,M.,J.L.Bruce,C.Keating,A.E.Johnson,P.L.McDonough,and C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. InfectImmun 65: 270716. 47. Wilson,R.L.,L.L.Brown,D.KirkwoodWatts,T.K.Warren,S.A.Lund,D. S. King, K. F. Jones, and D. E. Hruby. 2006. Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74: 7658. 48. Wonderling, L. D., B. J. Wilkinson, and D. O. Bayles. 2004. The htrA (degP) geneof Listeria monocytogenes 10403Sisessentialforoptimalgrowthunderstress conditions.ApplEnvironMicrobiol 70: 193543. 49. Wouters, J. A., T. Hain, A. Darji, E. Hufner, H. WemekampKamphuis, T. Chakraborty, and T. Abee. 2005. Identification and characterization of Di and tripeptide transporter DtpT of Listeria monocytogenes EGDe. Appl Environ Microbiol 71: 57718. 50. Zhang, C., J. Nietfeldt, M. Zhang, and A. K. Benson. 2005. Functional consequences of genome evolution in Listeria monocytogenes : the lmo0423 and lmo0422genesencodesigmaCandLstR,alineageIIspecificheatshocksystem.J Bacteriol 187: 724353. 51. Zhang,C.,M.Zhang,J.Ju,J.Nietfeldt,J.Wise,P.M.Terry,M.Olson,S.D. Kachman, M. Wiedmann, M. Samadpour, and A. K. Benson. 2003. Genome diversification in phylogenetic lineages I and II of Listeria monocytogenes : identificationofsegmentsuniquetolineageIIpopulations.JBacteriol 185: 557384. 52. Zhang, Y., E. Yeh, G. Hall, J. Cripe, A. A. Bhagwat, and J. Meng. 2007. Characterization of Listeria monocytogenes isolated from retail foods. Int J Food Microbiol 113: 4753.

62

3.Diversityassessmentofheatresistanceof Listeria monocytogenes strains in a continuousflowheatingsystem StijnvanderVeen,ArjenWagendorp,TjakkoAbee,MarjonH.J.Wells Bennik Submittedforpublication Abstract

Listeria monocytogenes is a foodborne pathogen that has the ability to survive relatively high temperatures compared with other nonsporulating foodborne pathogens. Therefore, L. monocytogenes mightposeariskinfoodproductsthatdependon thermal preservationsteps.Theheatresistanceofalargecollectionofstrainswasassessedinbatch heatingexperiments.Subsequently,theheatinactivationkineticparametersoftwoofthe most heatresistant strains (1E and NV8) and those of reference strain ScottA were determined in a continuous flowthrough system that mimics industrial conditions. The threestrainswereculturesinwholemilkandBHIat30ºCand7ºC.Strains1EandNV8 weresignificantlymoreheatresistantthanstrainScottAaftergrowthinBHIat30ºCand aftergrowthinmilkat7ºC.At72ºC,whichistheminimalrequiredtemperaturefora15s HTSTpasteurizationprocess,theDvaluesofthestrains1E,NV8,andScottAinmilkwere

1.2s,1.0s,and0.17s,respectively,resultingin12.1,14.2,and87.5log 10 reductionfora 15 s HTST process at this temperature. These results demonstrate that industrial pasteurization conditions suffice to inactivate the most heatresistant L. monocytogenes strainstestedinthisstudy.However,itiscriticalthatthetemperatureduringpasteurization issafeguarded,becauseatemperaturedropof2ºCmightresultinsurvivalofheatresistant strainsofthisbacterium.

63

Introduction Controlofpathogenicandspoilagebacteriaisneededtoensurefoodsafetyandto extendtheshelflifeoffoods.Acommoncontrolmeasurethatisusedinindustrialfood manufacturing is heat treatment.Typical thermal inactivation conditions that are applied consistofpasteurization(i.e.72ºC,15seconds)andsterilization(i.e.121ºC,3minutes) (23).Theeffectivenessofacertainthermaltreatmenttoreducethenumberofpathogenicor spoilagebacteriainfoodsdependsonthegeneralheatsusceptibilityoftheorganism,the physiologicalstateoftheorganism,thecompositionofthefood,andtheheatsusceptibility ofspecificstrainsoftheorganism(6).Ingeneral,apasteurisationprocessissufficientto inactivatevegetativecellsofthemajorityofspecies,whilesterilizationisrequiredforspore inactivation. Thefoodbornepathogen Listeria monocytogenes hasahighertolerancetoheatthan various other nonsporulating foodborne pathogens, such as Escherichia coli O157:H7, Salmonella ssp, and Campylobacter ssp (11, 15). If L. monocytogenes is not fully inactivated and conditions in a food allow for growth, the organism could reach high numbers and subsequently cause a foodborne disease (24, 26). Therefore, the legal requirement in the European Union for readytoeat foods that support growth of L. monocytogenes is absence in 25 g or a maximum of 100 cfu/g at the moment of consumption(9).Followinganoutbreakoflisteriosisin1983,inwhichpasteurizedmilk was identified as the source (13), various researchers evaluated the ability of L. monocytogenes to survive the pasteurization process (Reviewed by Farber and Peterkin (11)). In general, sufficient inactivation of L. monocytogenes was found after high temperature shorttime (HTST) pasteurization for 15 sec at 72 ºC. Thermal inactivation kinetics of L. monocytogenes has been established using laboratory strains or reference strains like ScottA (isolate from Massachusetts milk outbreak in 1983, as described by Fleming et al. (13). However, diversity in the thermal resistance of L. monocytogenes strainscanoccur,ashasbeenshownbyEdelsonMammeletal.(8).Furthermore,thermo resistantsubpopulationsinculturesof L. monocytogenes havebeendescribed:Karatzaset al(16,17)showedthatasubpopulationofstrain ScottA,containingamutationin ctsR (classIIIheatshockregulator),wasmorethermoresistantthanthewildtypestrain. Heating of liquid foods at an industrial scale is regularly performed using heat exchangers with countercurrent flow (22). The traditional way to estimate the expected reductionofspecificorganismsinaspecificprocess(heatingtimeandheatingtemperature combination)isbasedontheD/zconcept.TheDvaluerepresentsthetimetoobtain1log 10 reduction at a certain temperature while the zvalue represents the temperature increase requiredtoreducetheDvaluewithafactor10.The D/zvaluesof L. monocytogenes as determinedinmanyresearchpublicationsforbatchprocessescannoteasilybetranslatedto

64

continuousprocesseslikeHTSTpasteurization,becauseeffectsofshearforcesandphysical stressarenottakenintoaccount(20).Inheatexchangers,itispossibletovarytheheating temperatures,butingeneral theheating times can not be adjusted due to fixed holders. Instead of calculating D/zvalues based on batch heating at varying exposure times, the inactivation kineticsin continuousflow systems with varying exposure temperatures are describedbythefirstorderexponentialarrheniusrelationwiththeenergyofactivation( Ea) andtheinactivationconstant( k0).Theseconstantscansubsequentlybeusedtoderivethe D/zvalues(19). Toestablishthevariationinheatresistancefordifferent L. monocytogenes strains, wescreenedalargenumberof L. monocytogenes strainsfortheirheatresistances.Theheat inactivation kinetic parameters of the strains with the highest heat resistance were subsequentlydeterminedinacontinuousflowthroughsystem,mimickingindustrialfood processingconditions. MaterialsandMethods

L. monocytogenes s trainsandgrowthconditions StrainswerestoredinBrainHearthInfusion(BHI)broth(Difco)containing15% sterileglycerol(BDH)at80ºC.Singlecoloniesofthestrainswereinoculatedandgrown overnightinBHIbrothwithshaking(200rpm;NewBrunswicktypeC24KC)at30ºC. Screeningof L. monocytogenes strains Inapreliminaryscreening,theheatresistanceof48 L. monocytogenes strainswas assessedat55ºCinBHIbroth.Culturesweregrownovernightat30ºCand200rpm(New BrunswickC24KC)andsubsequentlyinoculated(1%v/v)in10mlfreshBHIbroth.The incubationwascontinuedat30ºCand200rpmuntilanabsorbance(OD 600 )ofapprox.0.2 0.3wasreached.Thesecultureswerediluted(1:10)infreshprewarmedbrothof55ºCand placed in a waterbath (GFL type 1083) that was set at this temperature. Samples were collectedafter0,60and180minutes,andseriallydilutedinapeptonephysiologicalsalt (PPS)solution(0.85%NaCl,0.1%peptone;TritiumMicrobiology).Viablecountswere determinedonBHIplatesafterincubationat30ºCfor35days. Microbialinactivationexperiment CellsofculturesthatweregrownovernightinBHIbroth(30ºCand200rpm)were harvested by centrifugation at 4300 rpm for 10 min at room temperature (Heraeus type megafuse 1.0R) and resuspendedin an equivalent volumeofBHIbrothorfullfatmilk (LonglifeUHT:fat3.5%w/w,proteins3.3%w/w,carbohydrates4.8%w/w,Calcium 0.12 % w/w; Milbona). These cell suspensions in BHI broth and milk were used to

65

inoculate500mlBHIbroth(30ºCor7ºC)andfullfatmilk(7ºC),respectively,in500ml Scottflasks(1%v/v).Theseflaskswereincubatedstaticallyat30ºCfor24h(Bindertype BD400) or at 7 ºC for 7 days (temperature controlled chamber). The 500 ml cultures obtainedbygrowthinBHIbroth(30°Cand7°C)orfullfatmilk(7°C)weresuspendedin 4.5litrefreshBHIbroth(30ºCor7ºC)orfullfatmilk(7ºC),whichweredirectlyusedfor theheatinactivationexperiments.Theheattreatmentswerecarriedoutusinganinhouse continuousflowmicroheaterdevice.Thisdeviceconsistsofaheatingsectionwherecell suspensionsareheatedtothedesiredtemperatureinaheatexchanger,aholdersectionthat issubmergedinanoilbathattheselectedtemperature,andacoolingsectionwherecell suspensionsarecooledinaheatexchanger.Theresidencetimesintheheatingandcooling sectionswere1.7s.Foreachcombinationofstrain,medium,andgrowthtemperature,three differentheatingtimesof3,6and10swereapplied,byusingthreedifferentholderswitha flowof5l/h.Theexposuretemperatureintheholdersectionwassetusingincremental stepsof2ºC,coveringatemperaturerangethatresulted in no inactivation, measurable inactivationandcompleteinactivationofthecultureduringtheexposuretimesof3,6or 10s.Afterheattreatment,sampleswerecollectedandseriallydilutedinaPPSsolution. ViablecountsweredeterminedbyplatingonBHIagarplatesandincubationat30ºCfor3 5days. Dataanalysis Thethermalinactivationdatawereanalyzedbythefirstorderexponentialarrhenius relation:

N − (1) t = e k0t N 0 were tisthetreatmenttime, Ntand N0arethepopulationsoflivingcellsattime tandtime zero,and k0istheinactivationconstant.The k0isdeterminedbylinearregressionanalysis of the time versus ln( Nt/N0) plot. However, in heatexchangers, not the time, but the temperature is the parameter that can be varied. Therefore, equation 1 was modified, resultinginthefollowingequation: E (2) ln(k) = ln(k ) − a 0 R ⋅ (T + 273,15K) were kisthelogarithmicinactivationrate, Eaistheenergyofactivationconstant, Risthe gasconstant(8,314J/mol/K),and Tistheheatingtemperature(ºC).Thekineticconstants

66

Ea and k0 can be derived by linear regression analysis of ln( k) versus 1/ RT . Ea is the reciprocaloftheslopeandln( k0)istheintercept.Partoftheresidencetimeintheheating andcoolingsectionsofthemicroheatermaycontributetotheheatinactivationofthecells. Thesecontributionshavebeentakenintoaccountinourcalculationsbytransformationof thesesectionstoanextraresidencetimeintheholder.Thesecalculationsarebasedonthe F0concept,whichisusedforlethalityindication(extensivelydescribedbyDeJong(5)). The cumulative normal distribution function in Excel (Microsoft) was used to identify significantdifferences(p<0.05)of Eaandln( k0)betweenthedifferentstrain,medium,and temperaturecombinations.

Theconstants Eaandln( k0)canbeuseddirectlytoderivetheD/zvalues.TheD value(s)attemperature T( DT)canbecalculatedbyusingthe kvalueattemperature T( kT) fromequation2inthefollowingequation: = ln(10) (3) DT kT

Thezvalue(ºC)attemperature T( zT)canbecalculatedusingthefollowingequation: ln(10) ⋅ R ⋅ (T + 273,15K) 2 (4) z = T − ⋅ ⋅ + Ea ln(10) R (T 273,15K) TheDandzvaluesandtheirstandarderrorwerecalculatedbysimulationusingtherisk analysis software @RISK (Palisade corporation), based on the predicted Ea, ln( k0), and errorestimates. Results Preliminaryscreeningforheatresistant L. monocytogenes strains A preliminary screening was performed to determine the heatresistance of 48 L. monocytogenes strainsofdiverseserotypesandoriginsofisolation(Fig.1A).Thestrains withthehighestheatresistancewerestrains1E(isolatedfromacheeseplant)andNV8 (isolatedfromabovinecarcass)(21).Thereductionsinviablenumbersofthereference strainScottAwas2log 10 higherafter3hoursincubationinBHIbrothat55ºC(Fig1B). Themostsensitivestrainswerenotrecoveredafter3hoursexposuretothistemperature andonestrainshowedalready2.5log 10 reductionafterexposureforonehour.Thetwoheat

67

A

0 0 20 40 60 80 100 120 140 160 180 200

1

2

3 Reduction(logcfu/ml) 4

5

6 Time(min)

B

0 0 20 40 60 80 100 120 140 160 180 200

1

2

3 Reduction(logcfu/ml) 4

5

6 Time(min)

Fig.1.Heatinactivationof L. monocytogenes strainsinBHIbrothafterexposureto55ºCfor3 hours.A)Reductioninviablecountsof48 L. monocytogenes strainsinasingleexperiment.B) AveragereductioninviablecountsofthestrainsScottA,1E,andNV8inaduplicateexperiment.

68

resistant strains 1E and NV8, and the reference strain ScottA were used in further experimentstocharacterisetheirheatresistancesinthemicroheater. Heatinactivationkineticparameters Ingeneral,firstorderinactivationkineticscanbeappliedtoheatinactivationdataof

L. monocytogenes obtainedinliquidmediawithana wcloseto1andatemperaturebetween 60ºCand80ºC(12).Foreachstrain,theinactivationdataobtainedusingthecorrected heatingtimesfor3,6,or10swereusedtocalculatethe Eaandln( k0)inBHIbrothorfull fat milk at 30 ºC and/or 7 ºC by linear regression of ln( k) versus 1/RT (Fig. 2). The correlation coefficient (R 2), which is a measure of how well inactivation data fit the prediction,rangedfrom0.81to0.98,indicatingagoodfit.Theresultsoftheparameters Ea andln( k0)fortheheatinactivationexperimentsarereportedinTable1.Statisticalanalysis wasperformedtodeterminewhethertheseparameters differed significantly between the different strains, media, and temperatures. The significant differences are presented in Table 2. For strainmedium combinations that are absent from this table, no significant differenceswereobserved.Fromequations1and2itcanbedepictedthathigher Eaand lowerln( k0)valuesresultinahigherfractionofsurvivingcellsafteraheattreatmentand consequently more resistant bacteria. When comparing different strains under the same inactivationconditions,the Eaandln( k0)valuesofstrainsScottAand1EinBHIbrothat30

A B 2.5 2 1.5 1 0.5 0

0.5 1 ln(k) ln(k) 2 1.5 3 2.5 4 3.5 5 3.46E04 3.48E04 3.50E04 3.52E04 3.54E04 3.56E04 3.46E04 3.48E04 3.50E04 3.52E04 3.54E04 3.56E04 3.58E04 1/RT 1/RT

C 2

1

0

1

ln(k) 2

3

4

5 3.48E04 3.50E04 3.52E04 3.54E04 3.56E04 3.58E04 3.60E04 1/RT Fig.2.Valuesofcalculatedln( k)plottedagainst1/RT,basedontheinactivationofstrainsScottA (black),1E(darkgrey),andNV8(lightgrey)grownin:A)BHIat30ºC,B)BHIat7ºC,andC)

Milkat7ºC.Theparameters Eaandln( k0)werecalculatedbyregressionanalysisofthefitted line.TheparametersarepresentedinTable1.

69

ºC were significantly lower than the values of strain NV8 under these conditions.

Furthermore,strainsScottAandNV8showedsignificantlylower Eavaluesthanstrain1E in milk at 7 ºC. In addition, strain NV8 showed a significantly lower ln( k0) value than strainsScottAand1Einmilkat7ºC. Whencomparingtheheatinactivationkineticparametersofaspecificstrainunder differentgrowthconditions,significantdifferenceswerefoundforthefollowingcases.For strainScottA,the Eaandln( k0)valuesinBHIat30ºCweresignificantlylowerthanthose inBHIat7ºCandmilkat7ºC.Nosignificantdifferencesforthe Eaandln( k0)valuesof

ScottAwereobservedbetweenBHIandmilkat7ºC.Forstrain1E,significantlylower Ea andln( k0)valueswereobservedfollowingheatinactivationofaculturegrowninBHIat30 ºCcomparedwithgrowthinmilkat7ºC.Significantlylowervalueswerealsoobserved aftergrowthinBHIat7ºCcomparedwithmilkat7ºC.Lastly,forstrainNV8,the Eaand ln( k0)valuesweresignificantlyhigherforculturesgrowninBHIat30ºCcomparedwith culturesgrowninmilkat7ºC. Table1.Kineticparametersofheatinactivationforthe3 L. monocytogenes strainsinthe3heating mediausingfirstorderlinearregression. E Ln( k ) Strain Medium a 0 R2 Value SE value SE BHI30 334570 61379 118 22 0,81 ScottA BHI7 469368 38048 166 13 0,95 Milk7 461393 23266 163 8 0,98 BHI30 386034 27651 135 10 0,95 1E BHI7 403731 50445 142 18 0,85 Milk7 518734 22717 181 8 0,98 BHI30 477006 27247 167 10 0,97 NV8 BHI7 467244 35269 164 12 0,94 Milk7 416456 16497 146 6 0,98 D/zvalues

Theparameters Eaandln( k0)fromTable1wereusedtocalculatetheD/zvaluesat 68,70,and72ºCforthe3strainsgrowninBHIat30ºCor7ºCorinmilkat7ºC(Table 3). For all three medium growth temperature combinations, the Dvalues of the heat resistantstrains1EandNV8arehigherthantheDvaluesofstrainScottA.Thezvalues rangedfrom4.23to7.14.Furthermore,Table3showsthelog 10 reductionfora15sHTST pasteurization process at the reported temperatures. At 72 ºC, all strains show 12.1 or higher log 10 reduction values for a 15 s heat inactivation process. This is sufficient for eradication of any potential L. monocytogenes contamination. However, if the pasteurisation temperature were to drop to 70 ºC due to for instance equipment failure,

70

contaminationwithexceptionallyhighinitialsnumbersofstrain1E(>700cfu/ml)might pose a risk factor in milk. A further temperature drop of 2°C to 68 ºC could result in survivalofbothheatresistantstrains1EandNV8following15sheattreatmentinBHIand milk,sinceundertheseconditions,theexpectedinactivationisbetween1.5and2.6log 10 units.

Table2.Significantdifferent Eaandln( k0)values(p<0.05)betweendifferentstrainsandmediaare indicated(x). ScottA 1E NV8 Strain Broth BHI7 Milk7 Milk7 BHI30 Milk7

Ea ln( k0) Ea ln( k0) Ea ln( k0) Ea ln( k0) Ea ln( k0) BHI30x x x x x x ScottA Milk7 x x BHI30 x x x x 1E BHI7 x x Milk7 x x NV8 BHI30 x x Discussion Most of the research on heatresistance of L. monocytogenes has been performed with laboratory strains in batch processes. Data obtained using such experimental setup cannotdirectlybeextrapolatedtoheatingprocessesincontinuousflowheatexchangersdue toeffectsofadditionalstresses(20).Furthermore,onlylimitedinformationisavailableon strain variation with regard to heat resistance and on the heat resistance of industrial isolates.Thepresentstudywasperformedtoinvestigatethepotentialofheatresistant L. monocytogenes strains to survive in HTST pasteurisation processes in a countercurrent continuousflowheatexchanger. Heatresistant strains were selected following preliminary screening of a random selectionof48strainswithdiverseserotypesandoriginsofisolationusingabatchheating process.Hereby,twoheatresistantstrains(1EandNV8)wereidentifiedwhichshowed2 log 10 cfu/mlhighersurvivalthanthescottAreferencestrainafter3hoursexposureat55ºC inBHIbroth.AsstrainScottAwasisolatedfromthelisteriosisoutbreakin1983inwhich pasteurizedmilkwasthevehicle,theheatinactivationofthisparticularstrainhasbeenbest characterised.Inapreviousstudyonheatresistanceof L. monocytogenes indairyproducts, itwasshownthatstrainScottAdisplaysrelativelyhighheatresistance(2).Remarkably, strain ScottA showed an average heatresistance in our initial screening experiments, althoughthisexperimentswasperformedusingdifferentconditions.Apreviousstudyon

71

10 log 87.5 12.1 14.2 34.3 4.2 6.1 13.3 1.5 2.6 se 0.28 0.19 0.20 0.20 0.19 0.20 0.20 0.18 0.19 (ºC) T z 4.83 4.33 5.42 4.82 4.28 5.36 4.75 4.23 5.29 se 0.00 0.02 0.02 0.01 0.10 0.02 0.02 0.16 0.07 reductionafter15sexposureto 10 (s) T milk7 D 0.17 1.24 1.05 0.44 3.54 2.46 1.13 10.29 5.78 10 log 68.6 16.8 17.5 26.5 7.4 7.8 10.1 3.2 3.0 se 0.32 0.61 0.38 0.27 0.62 0.36 0.27 0.60 0.36 (ºC) T z 4.81 4.87 4.60 4.69 4.81 4.55 4.62 4.77 4.50 se 0.00 0.03 0.04 0.01 0.09 0.05 0.03 0.25 0.12 (s) T D 0.22 0.89 0.85 0.57 2.03 1.92 1.49 4.65 5.00 BHI7 10 ingmediaat72,70,and68ºCandtheresultinglog log 37.1 14.6 15.9 18.8 6.7 6.0 9.5 3.0 2.3 se 0.24 0.35 0.25 0.31 0.36 0.24 0.31 0.35 0.24 (ºC) T z 7.14 5.71 4.66 6.79 5.65 4.61 6.55 5.59 4.56 se 0.01 0.03 0.02 0.02 0.04 0.06 0.04 0.18 0.13 (s) T BHI30 D 0.40 1.03 0.95 0.80 2.24 2.49 1.58 4.96 6.64 Strain ScottA 1E ScottA 1E ScottA 1E NV8 NV8 NV8

Table3.D/zvaluesforthe3strainsinthe3heat thesetemperatures. Temp. (ºC) 72 70 68

72

thermalinactivationof13strainsinBHIbrothatpH3.0anda w0.987oratpH7.0anda w 0.970showedthatrelativeresistanceofstrainsweredifferentfortheseconditions(8).In our experiments, the selected heatresistant strains 1E and NV8 were significantly more heatresistantthanstrainScottAfollowinggrowthinBHIat30ºCandinmilkat7ºC.For strain 1E, the heat resistance was higher in milk than in BHI. However, for the strains ScottAandNV8,nosignificantdifferencesintheheatinactivationparametersforcultures growninBHIormilkat7ºCwereobserved.Previous studies have shown a protective effectofmilkfat(2.55.0%)(3)orlowa w(7%NaCl)(18,23)onheatresistance.Thea wof fullfatmilkis0.97withafatcontentof3.5%.Aprotectiveeffectofmilkontheheat inactivationof l. monocytogenes comparedwithinactivationinBHI(a w=0.995)wasonly observedforoneoutofthreestrains,thereforewecannotconcludefromourdatathatthe milkmatrixprotects L. monocytogenes fromheatinactivation.

FollowingaHTSTpasteurizationprocessof15sat71.7ºC(D 71.7 =1.45),ourstudy showed approximately 10.3 log 10 reduction for the most heatresistant strain that was culturedinmilkat7ºC(1E).Similarresultswere obtainedbyBunningetal(1).Their studyshowedthatinactivationofstrainScottAinrawmilkinaslugflowheatexchanger resultedinaDvalueof1.3sat71.7ºCandconsequently11.5log 10 reductionforthe15s HTSTpasteurisationprocessatthistemperature.Remarkably,ourresultsforstrainScottA showed76log 10 reductioninmilkusingthisHTSTpasteurisationprocess(D 71.7 =0.20).Our studyshowsthataminimalHTSTpasteurizationprocess(15sat72ºC)isinprinciple sufficient to inactivate the most heatresistant L. monocytogenes strains. However, relatively small deviations in the temperature settings might result in survival of heat resistantstrainsofthisbacterium.Astudyonthecontaminationlevelof L. monocytogenes inrawmilkfromSwedishbulktanksshowedthatonlyinrarecaseslevelsashighas10 2 cfu/mlcouldbeexpected,whilecontaminationlevels<10cfu/mlaremorecommon(25). Thelegalrequirementfor L. monocytogenes inmilkintheEuropeanUnionisabsencein25 g(9).Tocompletelyeradicate L. monocytogenes from25gofrawmilkwithcontamination 2 levelsashighas10 cfu/ml,approximately3.4log 10 reductionisrequired.Usingthe Eaand ln( k0) values obtained with strain 1E in milk, the minimal temperature of the 15 s pasteurisationprocessshouldbe69.6ºC.Theseresultsare incontrast tosome previous studiesinwhich L. monocytogenes wascapableofsurvivingminimalHTSTpasteurization processes.Doyleetal.(7)showedthat L. monocytogenes wasabletosurvivetheHTST processinindustrialpasteurizersinmilkattemperaturesof71.7ºCto73.9ºCfor16.4s. Similarresultswereobtainedinapilotscalepasteurizerwhenmilkwaspasteurizedat72

ºCfor15susinganinoculumof6.5log 10 cfu/ml(14).Finally,Farberetal(10)showedthat L. monocytogenes couldberecoveredfromaHTSTpasteurizerafter16.2secexposureto 72ºCifthecellsweregrownatrelativelyhightemperatures(39ºCandabove),butthey

73

concluded that under normal processing conditions and storage of milk, minimal pasteurisation(15sat71.7ºC)providedagoodsafetymargin. Itshouldbenotedthat L. monocytogenes cellssurvivingHTSTpasteurisationare probablyinjuredandunabletorecoverormultiplyduringtheperiodofcoldstorage(4). Surviving bacteria in a commercial process would therefore likely not grow to high numbersduringstorage.Also,milkisgenerallytreatedwithasubpasteurizationtreatment (thermization)at57to68ºCfor15to30s.Thistreatmentresultsininitialdamageof L. monocytogenes cells,therebyensuringcompleteeradicationofthis bacterium during the pasteurizationprocess.Furthermore,minimalpasteurizationconditions(15sat72ºC)are seldomlyusedinacommercialprocess.Thesettingsofcommercialpasteurizerstendtobe around7476ºCtoensuresufficientinactivationofmicrobes.Forthemostheatresistant strainthatwasculturedinmilk,aheattreatmentat75ºCfor15s(NV8)wouldresultina

50 log 10 reduction. In conclusion, this study showed that if commercial HTST pasteurization processes are performed without any failures, heatresistant L. monocytogenes strainsareinactivated.However,itiscriticaltosafeguardthetemperature duringthepasteurisationprocess,becauseadropinthetemperatureto70ºCcouldresultin survivalofheatresistant L. monocytogenes strains. Acknowledgements WeacknowledgeMartijnFoxforperformingthesimulationtoobtaintheDandz values and Erik Smit for calculations based on the F0concept. Furthermore, we thank SaskiavanSchalkwijkfortechnicalassistance. References 1. Bunning,V.K.,R.G.Crawford,J.G.Bradshaw,J.T.Peeler,J.T.Tierney, andR.M.Twedt. 1986.Thermalresistanceofintracellular Listeria monocytogenes cellssuspendedinrawbovinemilk.ApplEnvironMicrobiol 52: 1398402. 2. Casadei,M.A.,R.EstevesdeMatos,S.T.Harrison,andJ.E.Gaze. 1998.Heat resistance of Listeria monocytogenes in dairy products as affected by the growth medium.JApplMicrobiol 84: 2349. 3. Chhabra, A. T., W. H. Carter, R. H. Linton, and M. A. Cousin. 1999. A predictivemodeltodeterminetheeffectsofpH,milkfat,andtemperatureonthermal inactivationof Listeria monocytogenes .JFoodProt 62: 11439. 4. Crawford, R. G., C. M. Beliveau, J. T. Peeler, C. W. Donnelly, and V. K. Bunning. 1989. Comparative recovery of uninjured and heatinjured Listeria monocytogenes cellsfrombovinemilk.ApplEnvironMicrobiol 55: 14904. 5. de Jong, P. 1996. Modelling and optimization of thermal processes in the dairy industry.Thesis.DelftUniversityofTechnology,Delft.

74

6. Doyle,M.E.,A.S.Mazzotta,T.Wang,D.W.Wiseman,andV.N.Scott. 2001. Heatresistanceof Listeria monocytogenes .JFoodProt 64: 41029. 7. Doyle,M.P.,K.A.Glass,J.T.Beery,G.A.Garcia,D.J.Pollard,andR.D. Schultz. 1987.Survivalof Listeria monocytogenes inmilkduringhightemperature, shorttimepasteurization.ApplEnvironMicrobiol 53: 14338. 8. EdelsonMammel, S. G., R. C. Whiting, S. W. Joseph, and R. L. Buchanan. 2005.Effectofpriorgrowthconditionsonthethermalinactivationof13strainsof Listeria monocytogenes intwoheatingmenstrua.JFoodProt 68: 16872. 9. EuropeanUnion. 2005.COMMISSIONREGULATION(EC)No2073/2005of15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the EuropeanUnion :L338/1L338/26. 10. Farber, J. M., E. Daley, F. Coates, D. B. Emmons, and R. McKellar. 1992. Factorsinfleuncingsurvivalof Listeria monocytogenes inmilkinahightemperature shorttimepasteurizer.JournalofFoodProtection55: 946951. 11. Farber, J. M., and P. I. Peterkin. 1991. Listeria monocytogenes , a foodborne pathogen.MicrobiolRev 55: 476511. 12. Fernandez,A.,M.Lopez,A.Bernardo,S.Condon,andJ.Raso. 2007.Modelling thermalinactivationof Listeria monocytogenes insucrosesolutionsofvariouswater activities.FoodMicrobiol 24: 3729. 13. Fleming,D.W.,S.L.Cochi,K.L.MacDonald,J.Brondum,P.S.Hayes,B.D. Plikaytis,M.B.Holmes,A.Audurier,C.V.Broome,andA.L.Reingold. 1985. Pasteurizedmilkasavehicleofinfectioninanoutbreakoflisteriosis.NEnglJMed 312: 4047. 14. Garayzabal, J. F. F., L. D. Rodriguez, J. A. V. Boland, E. F. R. Ferri, V. B. Dieste, J. L. B. Cancelo, and G. S. Fernandez. 1987. Survival of Listeria monocytogenes in raw milk treated in a pilot plant size pasteurizer. Journal of AppliedBacteriology 63: 533537. 15. Hudson,A.,T.Wong,andR.Lake. 2003.Pasteurisationofdairyproducts:Times, temperaturesandevidenceforcontrolofpathogens.Reportnr.FW0374.Instituteof EnvironmentalScience&ResearchLimited. 16. Karatzas, K. A., and M. H. Bennik. 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure.ApplEnvironMicrobiol 68: 31839. 17. Karatzas, K. A., J. A. Wouters, C. G. Gahan, C. Hill, T. Abee, and M. H. Bennik. 2003. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence.MolMicrobiol 49: 122738. 18. Lou, Y., and A. E. Yousef. 1997.Adaptationtosublethalenvironmentalstresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63: 12525. 19. Pearce,L.E.,H.T.Truong,R.A.Crawford,G.F.Yates,S.Cavaignac,andG. W. de Lisle. 2001. Effect of turbulentflow pasteurization on survival of Mycobacterium avium subsp. paratuberculosis added to raw milk. Appl Environ Microbiol 67: 39649.

75

20. Piyasena, P., S. Liou, and R. C. McKellar. 1998. Predictive modelling of inactivation of Listeria spp. in bovine milk during hightemperature shorttime pasteurization.IntJFoodMicrobiol 39: 16773. 21. Rousseaux,S.,M.Olier,J.P.Lemaitre,P.Piveteau,andJ.Guzzo. 2004.Useof PCRrestriction fragment length polymorphism of inlA for rapid screening of Listeria monocytogenes strainsdeficientintheabilitytoinvadeCaco2cells.Appl EnvironMicrobiol 70: 21805. 22. Uzzan,M.,K.M.Leinen,andT.P.Labuza. 2004.Temperatureprofileswithina doublepipeheatexchangerwithcountercurrentturbulentflowofNewtonianfluids: derivation,validation,andapplicationtofoodprocessing.JournalofFoodScience 69: E433E440. 23. van Asselt, E. D., and M. H. Zwietering. 2006. A systematic approach to determineglobalthermalinactivationparametersforvariousfoodpathogens.IntJ FoodMicrobiol 107: 7382. 24. vanderVeen,S.,R.Moezelaar,T.Abee,andM.H.WellsBennik. 2008.The growthlimitsofalargenumberof Listeria monocytogenes strainsatcombinations ofstressesshowserotypeandnichespecifictraits.JApplMicrobiol. 25. Waak, E., W. Tham, and M. L. DanielssonTham. 2002. Prevalence and fingerprinting of Listeria monocytogenes strains isolated from raw whole milk in farmbulktanksandindairyplantreceivingtanks.ApplEnvironMicrobiol 68: 3366 70. 26. Walker, S. J., P. Archer, and J. G. Banks. 1990. Growth of Listeria monocytogenes at refrigeration temperatures. Journal of Applied Bacteriology 68: 157162.

76

4. The heatshock response of Listeria monocytogenes comprises genes involved in heatshock, cell division, cell wall synthesis, andtheSOSresponse StijnvanderVeen,TorstenHain,JeroenA.Wouters,HamidHossain, WillemM.deVos,TjakkoAbee,TrinadChakraborty,MarjonH.J.Wells Bennik PublishedinMicrobiology(2007), 153: 35933607 Abstract Thefoodbornepathogen Listeria monocytogeneshastheabilitytosurviveextreme environmentalconditionsduetoanextensiveinteractivenetworkofstressresponses.Itis able to grow and survive at relatively high temperatures in comparison with other non sporulating foodborne pathogens. To investigate the heatshock response of L. monocytogenes ,wholegenomeexpressionprofilesofcellsthatweregrownat37°Cand exposedto48°CweredeterminedusingDNAmicroarrays.Thetranscriptionlevelswere measuredovera40minperiodafterexposureofthecultureto48 °Candcomparedwith the unexposed culture at 37 °C. After 3 min, 25 % of all genes were differentially expressed, while after 40 min only 2 % of all genes showed differential expression, indicatingatransientnatureoftheheatshockresponse.Theglobaltranscriptionalresponse wasvalidatedbyanalysingtheexpressionofaset of13genesbyquantitativerealtime PCR.GenespreviouslyidentifiedaspartoftheclassIandclassIIIheatshockresponseand theclassIIstressresponseshowedinductionatoneormoreofthetimepointsinvestigated. ThisisthefirststudytoreportthatseveralheatshockinducedgenesarepartoftheSOS responsein L. monocytogenes .Furthermore,numerousdifferentiallyexpressedgenesthat playaroleinthecelldivisionmachineryandcellwallsynthesisweredownregulated.This expressionpatternisinlinewiththeobservationthatheatshockresultedincellelongation andpreventionofcelldivision.

77

Introduction The foodborne pathogen Listeria monocytogenes is a Grampositive facultative anaerobicrodandthecausativeagentoflisteriosis.Duetotheseverityofthediseaseand thefactthatitsincidenceisincreasinginnumerousEuropeancountries, L. monocytogenes isofgreatpublichealthconcern(9,17,23).Thisbacterium showsrelativelyhighresistance to environmental insults compared with many other nonsporeforming foodborne pathogens. It is able to grow at a wide pH range (from pH 5 to pH 9), at high salt concentrations(upto12%),andatawidetemperaturerange(0.4to44ºC)(19,20).The ability of L. monocytogenes to proliferate under adverse conditions and survive environmental insults is mediatedby various mechanisms that allow for rapid responses and adaptation to changing environments. Due to consumer’s demands for less heavily preservedfoodsandmoreconveniencefoods,processingconditionsinthefoodindustryare becomingmilder. L. monocytogenes isabletoadapttosuchmilderconditions,makingitof majorconcernforthefoodindustry. Variation in temperature is a stress that is commonly encountered in nature and duringtheprocessingoffoods.DNAmicroarraysprovideanexcellenttooltostudythe expressionprofilesofacompletegenomeduringexposuretoheatstress.Previousstudies involving transcriptional analysis of the heatshock response in various bacteria showed inductionofseveralprotectionmechanisms,includinggeneralprotectionmechanismsand specificheatshockresponses.Theheatshockresponseisacommonphenomenonamong bacteriathatenablesthemtosurviveawidevarietyofstresses,inparticularheatstress. Mostheatstressinducedgenesencodemolecularchaperonesorproteasesthatcaneither protect other proteins/enzymes against misfolding and damage or mediate degradation whenthisfails.Maintenanceofproteinqualityisimportantfornormalgrowthofcells,and isessentialunderstressconditions.In L. monocytogenes ,twospecificheatshockresponse mechanisms and a general stressresponse mechanism can be distinguished, namely, the classIandclassIIIheatshockresponse,andtheclassIIstressresponse(3,25,40).ClassI heatshockgenesarecontrolledbytheHrcArepressor,whichbindstotheCIRCEoperator sequence (TTAGCACTCN9GAGTGCTAA) preceding this class of genes. Class I heat shockgenesinclude dnaK , dnaJ , groES ,and groEL ,encodingchaperones.ClassIIIheat shockgenesencodechaperonesandATPdependentClpproteases,whichdegradedamaged ormisfoldedproteins.ThisclassisregulatedbytheCtsRrepressor(classthreestressgene repressor), which binds specifically to a heptanucleotide repeat in the promoter region (A/GGTCAAA NAN A/GGTCAAA). The class II stress genes encode general stress proteins,ofwhichtheexpressionisregulatedbythealternativesigmafactorSigB.This sigmafactorrecognizesalternative35and10sequences(GTTTN1317 GGGWAT)inthe promoterregionoftheclassIIstressgenes(22).

78

Thecompleteheatshockregulonof L. monocytogenes inresponsetoatemperature upshifthasnotbeeninvestigatedbefore,eventhoughheatingisanimportantpreservation strategy for the food industry during minimal processing. The aim of this study was to determinetheglobaltranscriptionalresponseof L. monocytogenes toheatstress.Ourdata showthatexposuretoelevatedtemperaturestriggerstheclassicalheatshockgenes,andin addition,atransienteffectonexpressionofgenesinvolvedinthecellreplicationmachinery was observed. Another novel finding is that heatshock triggers the SOS response in L. monocytogenes . MaterialsandMethods Strainsandsampleconditions L. monocytogenes EGDe(11)wasgrowninBrainHearthInfusionBroth(Difco) withshaking(200rpm,NewBrunswickC24KC)using10mlculturemediumin100ml conicalflasks.Anexponentiallygrowingculturewasusedtoinoculate100mloffreshpre warmedBHIbrothina500mlflask.Thisculturewasincubatedat37 °Cwithagitationat

200 rpm until an optical density of 1.0 at 600 nm (OD 600 ) was reached. At this point (designatedtimezero),a5mlaliquotwasremovedforRNAextractionand10mlaliquots weretransferredtoprewarmed100mlflasksat48°C.Thecultureswereincubatedina shakingwaterbathat48°C(GFLType1083,60%shakingspeed)andsamplesforRNA extractionandmicroscopyanalysisweretakenafter3,10,20,and40min. RNAisolation,labelling,hybridization,imaging,andmicroarrayanalysis Samples of 0.5 ml were rapidly removed and diluted in 1.0 ml of RNAprotect (Qiagen).Afterincubationfor5minatroomtemperatureandcentrifugationat5000xgfor 5 min pellets were stored at –80 °C. Microarray experiments (including microarray generation, total RNA extraction, labelling, hybridization, imaging and microarray analysis)wereperformedasdescribedingreatdetailinourpreviousmanuscript(Chatterjee et al. , 2006). The program SAM (Significance Analysis of Microarrays) was used to analysethedata.Thecutoffforsignificantlydifferentiallyexpressedgeneswassetwitha qvalue (false discovery rate) of ≤ 1 % and a foldchange ≥ 2. In three independent experiments,thewholegenomeexpressionprofilesofcellsthathadundergoneheatshock for3,10,20and40minwerecomparedwiththoseofcellsattimezeroinadyeswap hybridizationexperiment.Themicroarrayplatformandmicroarraydataareavailableat ArrayExpress(http://www.ebi.ac.uk/arrayexpress)underaccessionnumbersAMEXP752 andEMEXP1118,respectively.

79

Microscopyandimageanalysis Samplesof1mlwereremovedfromcultures(seeStrainsandsampleconditions) andcentrifugedat5000xgfor2min.Cellsweredissolvedinnigrosinsolution(Sigma Aldrich)anddriedonaglassslide.Imagesofthecellsweretakenat100xmagnification under a Dialux 20 microscope (Leica). The ImageJ program (http://rsb.info.nih.gov/ij/download.html )wasusedtoanalysetheimages.Theimageswere loadedin8bittypeandthethresholdwasadjustedtoblack&white.Thenumberofpixels per cell was counted and distribution graphs were constructed in Excel (Microsoft) by analysesof7imagesfromtwocellpreparationsforeachtimepoint. QuantitativePCR(QPCR) SuperscriptIIIReverseTranscriptase(Invitrogen)wasusedtosynthesizefirststrand cDNAusing1gofDNasetreatedtotalRNA.TheRNAsampleswerecontrolledforDNA contamination by omitting this cDNA synthesis step. QPCR reactions were performed using10l2xSybrGreenPCRMasterMix(AppliedBiosystems),200nMprimers,and1 l cDNA sample in a 20 l final volume. For each primer set a standard curve was generatedusingbothgenomicDNAandcDNA,andnegativecontrolsamplesusingpure water were included. Reactions were run on the 7500 realtime PCR System (Applied Biosystems)withaninitialstepof10minat95 °C,40cyclesof15sat95 °C,and1minat 60 °C. To verify single product formation a dissociation cycle was added. Forward and reverseprimers(TableS1,onlinemanuscript)weredesignedwithanampliconlengthof about100bpandaNetprimerratingabove80(http://www.premierbiosoft.com/netprimer). Results Globalgeneexpressionanalysis Wholegenomeexpressionprofilesofcellsatfourtimepoints(3,10,20,40min) followingthetemperatureshiftfrom37 °Cto48 °Cwerecomparedwiththosefromcells harvestedpriortotheupshift(timezero).Intotal,714genesshowed ≥2folddifferential expressionduringatleastoneofthefourtimepointscomparedwiththetimezerosamples withaqvalue≤1%(significantvaluesinTableS2, online manuscript). Of these 714 genes,427showedincreasedexpressionand287showeddecreasedexpressionuponheat shock,constituting15%and10%ofthetotalnumberof2857genes,respectively.The maximumlevelofgeneinductionobservedwas50.3fold(lmo1883),whilethemaximum level of gene repression was 31.6fold (lmo0048). Most of the differentially expressed genes showed a transient pattern. The highest number of differentially expressed genes, whichaccountsfor24%ofallgenes,wasobserved3minafterthetemperatureupshift.

80

100

90 Downregulated 80 Upregulated

70

60

50

40 Numberofgenes

30

20

10

0 CDEFGHIJKLMNOPQRSTUV Functionalclassdesignation

Fig. 1. Differentially expressed genes (foldchange ≥ 2, qvalue ≤ 1%) grouped by functional classification according to the NCBI database (www.ncbi.nlm.nih.gov/COG/ ). Columns: C, energy production and conversion; D, cell cycle control, mitosis and meiosis; E, aminoacid transportandmetabolism;F,nucleotidetransportandmetabolism;G,carbohydratetransportand metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; J, translation; K, transcription; L, replication, recombination and repair; M, cell wall/membrane biogenesis; N, cell motility; O, posttranslational modification, protein turnover, chaperones; P, inorganic ion transport and metabolism; Q, secondary metabolite biosynthesis, transport and catabolism; R, general function prediction only; S, function unknown; T, signal transduction mechanisms;U,intracellulartraffickingandsecretion;V,defencemechanisms.

After 40 min, only 2 % of all genes were differentially expressed. The differentially expressedgenesweregroupedintofunctionalclasses(Fig.1).Theclassescontainingthe highest numbers of differentially expressed genes were carbohydrate transport and metabolism,transcription,translation,andaminoacidtransportandmetabolism,with84, 59, 52, and 63 genes, respectively. Most genes involved in carbohydrate transport and metabolism(82%)andtranscription(81%)showedupregulationandmostgenesinvolved intranslation(92%)showeddownregulation.Numerousgenesbelongingtotheclassof aminoacidtransportandmetabolismshoweddifferentialexpression,bothupanddown regulation(36and27genes,respectively).

81

Stressresponse L. monocytogenes encodes different classes of (heat) stressresponse genes and generalmechanismstosurviveawidevarietyofenvironmentalinsults.Duringexposureto elevated temperatures these classes of genes show differential expression of constant or transientnature.Thenumberofdifferentiallyexpressedgenesbelongingtodifferentclasses thataresignificantlyupregulatedanddownregulatedatthemeasuredtimepointsisshown inTable1.Adetailedlistoftheactualdifferentiallyexpressedgenesbelongingtothese differentclassesispresentedinTable2andfurtherdescribedbelow. Table1.Numberofupanddownregulatedgenesof L. monocytogenes at designated timepoints after exposure to 48 ºC in comparison with timezero expression at 37 ºC, belonging to different classes of (heat) stress response and general mechanisms that are important for surviving a wide varietyofenvironmentalinsults. 3min 10min 20min 40min Response up down up down up down up down GroupIheatshock 6 0 2 0 6 0 5 0 GroupIIIheatshock 9 0 4 0 6 0 4 0 GroupIIstress 54 0 33 0 21 0 5 0 SOS response & 7 0 4 0 7 0 8 0 DNArepair Celldivision 0 12 0 2 0 1 0 0 Autolysis&cellwall 0 8 0 3 0 3 0 1 hydrolases Cellwallsynthesis 7 7 3 4 3 4 2 4 Cellwallassociated 6 2 1 1 3 0 0 0 Virulenceassociated 3 4 1 3 2 4 2 4 Stressresponsegenes ThespecificheatshockregulonsconsistingofclassI(molecularchaperones)and classIII(ATPdependentproteases)heatshockgeneswereinducedduringtheheatshock experiments.GenesbelongingtotheclassIheatshockresponse( dnaJ , dnaK , grpE , hrcA [lmo1472tolmo1475]and groEL , groES [lmo2068andlmo2069])showedbetween2and 4foldhigherexpressionlevels.Incontrast,theclassIIIheatshockgenes( ctsR [lmo0229], lmo0230, lmo0231, clpC [lmo0232], clpE [lmo0997], lmo1138, clpY [lmo1279], clpB [lmo2206]and clpP [lmo2468])showedatransientdifferentialexpressionpattern.Another transiently expressed gene ( htrA or lmo0292), encoding a serine protease, showed approximately 5fold higher expression levels (Table S2, supplemental material). This

82

Table 2. Differentially expressed genes of L. monocytogenes EGDeatdesignatedtime pointsafterexposureto48ºCincomparisonwithtimezeroexpressionat37ºC*. Foldchangeattime(min) Gene Name Productdescription 3 10 20 40 ClassIheatshockgenes lmo1472 2.67 1.64 2.15 2.50 dnaJ HeatshockproteinDnaJ lmo1473 3.14 1.94 2.52 2.41 dnaK HeatshockproteinDnaK lmo1474 2.97 1.48 2.06 2.10 grpE HeatshockproteinGrpE Transcription repressor of class I heat lmo1475 3.04 1.81 2.42 2.30 hrcA shockgenesHrcA lmo2068 2.96 2.97 2.96 2.71 groEL HeatshockproteinGroEL lmo2069 3.06 2.66 3.26 2.94 groES HeatshockproteinGroES ClassIIIheatshockgenes Transcription repressor of class III heat lmo0229 2.95 1.02 1.13 1.22 shockgenesCtsR lmo0230 4.98 1.13 1.57 1.56 Similarto B. subtilis YacHprotein lmo0231 8.12 1.81 2.27 1.95 Similartoargininekinase lmo0232 6.86 1.74 2.23 2.14 clpC EndopeptidaseClpATPbindingchainC lmo0997 29.0 3.42 4.37 3.32 clpE ATPdependentprotease lmo1138 7.10 2.75 3.13 2.49 SimilartoATPdependentClpprotease clpY; lmo1279 1.97 1.28 1.18 1.1 SimilartoATPdependentClpprotease hslU Similar toendopeptidaseClpATPbinding lmo2206 16.1 8.20 6.42 4.00 clpB chainB lmo2468 6.38 4.94 4.76 3.34 clpP ATPdependentClpprotease ClassIIstressgenes(SigBregulated) lmo0200 6.63 4.29 5.06 4.35 prfA Listeriolysinpositiveregulatoryprotein lmo0211 2.32 1.22 1.50 1.36 ctc Similarto B. subtilis generalstressprotein lmo0405 5.69 1.54 1.16 1.0 Similartophosphatetransportprotein lmo0593 2.04 1.50 1.0 1.3 Similartotransportproteins lmo0669 5.30 1.17 1.66 1.30 Similartooxidoreductase lmo0670 6.49 1.17 1.74 1.23 Hypotheticalprotein Similar to mannosespecific PTS lmo0781 5.30 1.49 1.30 1.2 componentIID

83

Table2.Continued. Foldchangeattime(min) Gene Name Productdescription 3 10 20 40 Similar to mannosespecific PTS lmo0782 4.83 1.56 1.33 1.2 componentIIC Similar to mannosespecific PTS lmo0783 6.08 1.83 1.47 1.2 componentIIB lmo0794 11.6 2.03 1.77 1.01 Similarto B. subtilis YwnBprotein Similartowallassociatedproteinprecursor lmo0880 8.15 1.43 1.37 1.1 (LPXTGmotif) lmo0911 9.90 2.10 2.36 1.20 Hypotheticalprotein Similar to Nacetylglucosamine6 lmo0956 7.93 3.30 4.29 2.80 phosphatedeacetylase Similar to glucosamine6phosphate lmo0957 7.19 2.52 3.33 2.41 nagB isomerase lmo0958 5.39 2.56 3.27 2.47 Similartotranscriptionregulator lmo0994 6.59 1.59 1.62 1.1 Hypotheticalprotein lmo1421 3.03 1.19 1.15 1.0 bilEA Bileexclusionsystem opuC Similar to betainecarnitinecholine ABC lmo1425 5.01 2.52 1.56 1.3 D transporter Similartoglycinebetainecarnitinecholine lmo1426 5.09 2.03 1.58 1.3 opuCC ABCtransporter Similartoglycinebetainecarnitinecholine lmo1427 5.54 1.49 1.35 1.3 opuCB ABCtransporter Similartoglycinebetainecarnitinecholine lmo1428 4.86 1.44 1.28 1.4 opuCA ABCtransporter lmo1433 4.10 1.27 1.42 1.2 Similartoglutathionereductase lmo1538 4.93 1.09 1.12 1.2 glpK Similartoglycerolkinase lmo1539 7.02 1.70 1.41 1.0 Similartoglyceroluptakefacilitator lmo1580 2.85 1.0 1.1 1.3 Similartounknownprotein lmo1601 2.79 2.63 2.03 1.5 Similartogeneralstressprotein lmo1602 3.03 1.94 1.46 1.4 Similartounknownproteins lmo1694 8.96 3.48 2.27 1.18 SimilartoCDPabequosesynthase lmo1883 50.3 2.48 3.22 2.18 Similartochitinases lmo2067 8.22 3.22 2.88 1.84 Similartoconjugatedbileacidhydrolase Putative peptidoglycan bound protein lmo2085 10.8 2.38 2.02 1.43 (LPXTGmotif)

84

Table2.Continued. Foldchangeattime(min) Gene Name Productdescription 3 10 20 40 lmo2157 10.5 3.76 5.04 1.12 sepA SepA lmo2205 11.9 7.47 5.55 3.05 gpmA Similartophosphoglyceromutase1 lmo2230 11.0 5.12 4.59 2.44 Similartoarsenatereductase lmo2269 2.66 2.14 2.36 2.17 Hypotheticalprotein lmo2386 10.3 2.02 1.92 1.42 Similarto B. subtilis YuiDprotein Similar to B.subtilis conserved lmo2391 15.5 2.35 1.72 1.1 hypotheticalproteinYhfK lmo2398 3.93 1.99 1.48 1.01 ltrC LowtemperaturerequirementCprotein lmo2434 19.4 2.79 2.24 1.51 Highlysimilartoglutamatedecarboxylases lmo2463 12.8 2.89 1.82 1.19 Similartotransportprotein lmo2484 11.9 2.62 2.58 1.34 Similarto B. subtilis YvlDprotein lmo2485 9.04 2.35 2.18 1.36 Similarto B. subtilis yvlCprotein Similar to B. subtilis conserved lmo2511 4.39 1.71 1.27 1.2 hypotheticalproteinYvyD lmo2570 11.7 3.04 2.40 1.41 Hypotheticalprotein lmo2571 12.6 3.13 2.37 1.37 Similartonicotinamidase lmo2572 15.2 2.86 2.07 1.40 SimilartoChainA,dihydrofolatereductase lmo2573 15.9 3.11 2.53 1.23 Similartozincbindingdehydrogenase lmo2602 7.66 2.16 1.69 1.14 Conservedhypotheticalprotein lmo2673 12.8 3.36 2.73 1.61 Conservedhypotheticalprotein lmo2695 13.8 3.91 2.27 1.1 Similartodihydroxyacetonekinase Similar to hypothetical dihydroxyacetone lmo2696 13.6 3.06 1.90 1.1 kinase lmo2697 11.8 3.00 2.00 1.2 Hypotheticalprotein lmo2748 11.9 2.34 1.68 1.07 Similarto B. subtilis stressproteinYdaG SOSresponseandDNArepair radA; lmo0233 3.32 1.04 1.19 1.29 SimilartoDNArepairproteinSms sms lmo0496 6.51 3.58 5.04 3.36 ynzC SimilartoYnzCof B. subtilis lmo1303 2.48 1.27 3.14 5.15 Similarto B. subtilis YneAprotein lmo1368 2.00 1.14 1.11 1.10 recN DNArepairandgeneticrecombination

85

Table2.Continued. Foldchangeattime(min) Gene Name Productdescription 3 10 20 40 lmo1398 1.40 2.29 4.47 5.23 recA RecombinationproteinRecA lmo1975 3.99 3.15 4.53 5.52 dinB DNApolymeraseIV lmo2488 2.29 2.15 2.55 4.54 uvrA ExcinucleaseABC(subunitA) lmo2489 2.65 2.26 3.60 5.24 uvrB ExcinucleaseABC(subunitB) lmo2675 1.82 1.38 2.00 2.90 umuD DNApolymeraseV lmo2676 1.60 1.30 1.41 2.60 umuC DNApolymeraseV Celldivision lmo2687 3.40 1.14 1.24 1.50 SimilartocelldivisionproteinFtsW lmo2688 3.56 1.12 1.27 1.59 SimilartocelldivisionproteinFtsW Similar to celldivision protein RodA and lmo1071 2.1 1.2 1.2 1.0 FtsW lmo1544 2.5 1.4 1.6 1.7 minD SimilartoseptumplacementproteinMinD lmo1545 3.3 1.8 2.0 2.0 minC SimilartoseptumplacementproteinMinC Similar to cellshapedetermining protein lmo1546 3.5 1.5 1.3 1.6 mreD MreD Similar to cellshapedetermining protein lmo1547 3.0 1.6 1.7 1.8 mreC MreC Similar to cellshapedetermining protein lmo1548 2.9 1.5 1.8 1.6 mreB MreB lmo2020 4.3 1.6 1.9 1.9 divIVA Similartocelldivisioninitiationprotein Similar to binding protein 2B, lmo2039 2.4 1.2 1.4 1.4 pbpB celldivisionproteinFtsI lmo2506 2.7 2.3 1.3 ftsX HighlysimilartocelldivisionproteinFtsX 10.3 Highly similar to the celldivision ATP lmo2507 2.7 2.3 1.4 ftsE 11.4 bindingproteinFtsE Autolysinsandcellwallhydrolases P60 extracellular protein, invasion lmo0582 3.2 2.1 3.0 3.2 iap associatedproteinIap Similar to NacetylmuramoylLalanine lmo1076 2.7 1.5 1.7 1.5 auto amidase(autolysin) Similar to NacetylmuramoylLalanine lmo1216 5.5 2.0 2.1 1.5 amidase(autolysin)

86

Table2.Continued. Foldchangeattime(min) Gene Name Productdescription 3 10 20 40 Similar to similar to DalanylDalanine lmo1855 2.4 1.5 1.6 1.6 carboxypeptidases lmo2505 8.8 3.0 2.6 1.3 spl PeptidoglycanlyticproteinP45 lmo2558 2.2 1.5 1.7 1.5 ami Amidase(autolysin) lmo2691 8.0 2.8 3.2 2.3 murA SimilartoNacetylmuramidase(autolysin) Similar to DalanylDalanine lmo2754 2.4 1.7 2.0 1.9 carboxypeptidase Cellwallsynthesis Similar to glucosamine6phosphate lmo0877 2.39 1.13 1.04 1.05 isomerase Similar to Nacetylglucosamine6 lmo0956 7.93 3.30 4.29 2.80 phosphatedeacetylase Similar to glucosamine6phosphate lmo0957 7.19 2.52 3.33 2.41 isomerase lmo0958 5.39 2.56 3.27 2.47 Similartotranscriptionregulator Weakly similar to glucosaminefructose6 lmo1998 3.36 1.07 1.03 1.02 phosphateaminotransferase Weakly similar to glucosaminefructose6 lmo1999 14.4 1.22 1.39 1.31 phosphateaminotransferase Similar to Nacetylglucosamine6 lmo2108 9.88 1.49 1.86 1.76 phosphatedeacetylase DltDproteinforDalanineesterificationof lmo0971 6.8 2.9 5.0 5.0 dltD lipoteichoicacidandwallteichoicacid lmo0972 6.1 2.2 3.3 3.6 dltC Dalanylcarrierprotein DltBproteinforDalanineesterificationof lmo0973 6.5 2.0 2.8 2.6 dltB lipoteichoicacidandwallteichoicacid Dalanineactivating enzyme (dae), D lmo0974 2.9 4.4 3.8 dltA 10.1 alanineDalanylcarrierproteinligase(dcl) Similar to UDPNacetylglucosaminyl3 lmo1420 2.2 1.2 1.2 1.3 murB enolpyruvatereductase Similar to UDPNacetylglucosamine 2 lmo2537 4.6 2.3 2.6 2.0 epimerase SimilartoteichoicacidtranslocationATP lmo1075 2.15 1.37 1.45 1.44 bindingproteinTagH(ABCtransporter)

87

Table2.Continued. Foldchangeattime(min) Gene Name Productdescription 3 10 20 40 Cellwallassociated lmo0576 2.20 1.11 1.28 1.20 Hypotheticalcellwallassociatedprotein Similar to internalin proteins, (LPXTG lmo0610 6.17 1.33 1.12 1.13 motif) Similartowallassociatedproteinprecursor lmo0880 8.15 1.43 1.37 1.13 (LPXTGmotif) Putative peptidoglycan bound protein lmo1413 1.63 1.33 2.07 1.91 (LPXTGmotif) Peptidoglycan bound protein (LPXTG lmo1666 2.13 1.34 1.07 1.16 motif) Putative cell surface protein, similar to lmo2027 2.31 1.44 2.05 1.74 internalinproteins Putative peptidoglycan bound protein lmo2085 10.8 2.38 2.02 1.43 (LPXTGmotif) lmo2504 4.4 2.1 1.5 1.5 Similartocellwallbindingproteins Similar to hypothetical cell wall binding lmo2522 1.21 5.91 1.42 1.30 proteinfrom B. subtilis PrfAregulatedgenes lmo0200 6.63 4.29 5.06 4.35 prfA Listeriolysinpositiveregulatoryprotein plcA; Phosphatidylinositolspecificphospholipase lmo0201 1.74 1.25 2.13 3.86 pic C lmo0433 3.88 1.07 1.09 1.1 inlA InternalinA lmo0434 2.30 1.82 1.61 1.43 inlB InternalinB agr operon lmo0048 3.2 6.3 6.7 SimilartoAgrB 31.6 lmo0049 3.8 5.8 8.1 SimilartotwocomponentproteinAgrD 19.4 Similar to twocomponent sensor histidine lmo0050 2.4 3.7 3.8 11.8 kinaseAgrC Similar to 2component response regulator lmo0051 8.9 1.9 3.3 3.5 proteinAgrA *Thesignificantvaluesofthegenes(qvalue≤1%andfoldchange≥2)aregiveninbold.

88

proteasedoesnotbelongtotheclassIIIheatshockgenesbuttoageneralgroupofstress genes.Helmann et al. (14)showed5foldinductionfortwo htrA paraloguesin B. subtilis as well,anddesignatedthisgeneralclassofheatshockgenesclassU. TheclassIIstressresponserepresentsageneralstressresponsemechanismthatis regulatedbythealternativesigmafactorSigB.ThegeneencodingSigB(lmo0895)didnot show ≥ 2fold differential expression on the microarrays during the heatshock. Verificationof sigB expressionusingqPCRshowed1.5foldupregulationafter3and10 min(Fig.2).Intotal,51genespreviouslyidentifiedasbeingSigBregulated(22)showed increasedexpressionatoneormoreoftheselectedtimepoints.Amongtheseupregulated geneswere ctc (lmo0211), lmo1601 and ydaG (lmo2748).Thesegenesencodeproteinsthat show sequence similarity with general stress proteins. Increased expression was also observedfortheSigBregulated opuC operon(lmo1425tolmo1428).Thisoperonencodes a betaine/carnitine/choline ABC transporter and has previously been shown to be responsiblefortheaccumulationofosmolytesinresponsetosalt,acidandcoldstress(41, 44). Notably, these osmolytes have been shown also to provide protection during heat exposure of B. subtilis (16) and Escherichia coli (4), though no increase in their intracellularconcentrationwasobserved.

A B

6 8 lmo0037 6 4 ctsR clpC lmo0037 clpP 4 yneA clpC hrcA dnaK ctsR clpP 2 sigB groES 2 hrcA groES sigB dnaK recA lexA yneA 0 0 recA lexA 3 2 12 0 1 2 3

ratioqPCR 6 4mptA 2 0 2 4 ratioqPCR 2 2 2 4 log log 6 4 mptA agrB 8 agrB 6 10 log 2ratiomicroarray log 2ratiomicroarray C D

6 yneA 8 4 6 yneA ctsR clpC hrcA recA clpP 4 ctsR hrcA 2 lmo0037 dnaK groES clpP lexA clpC recA 2 lexA groES 0 lmo0037 dnaK sigB 0 4 3 2 12 0 1 2 3 sigB 4 3 2 12 0 1 2 3

ratioqPCR 4 ratioqPCR 2 2 4

log 6 log 6 agrB mptA 8 mptA agrB 8 10 10 log 2ratiomicroarray log 2ratiomicroarray

Fig.2.ValidationofmicroarraydatawithquantitativerealtimePCRanalysis.A,Comparisonof differentiallyexpressedgenesafter3min.B,Comparisonofdifferentiallyexpressedgenesafter 10 min. C, Comparison of differentially expressed genes after 20 min. D, Comparison of differentiallyexpressedgenesafter40min.

89

SOSresponse andDNArepair TheSOSresponseisamechanisminvolvedintherepairofDNAdamageandrestart ofstalledreplicationforks(30)orintheintroductionofadaptivepointmutations(32,33). NumerousgenesthatarepartoftheSOSresponseandtheDNArepairmachineryshowed increased expression after heat exposure. The gene recA (lmo1398), encoding the major activatoroftheSOSresponseRecA,showedgradualincreaseinexpressionovertime,from 1.4fold to 5.2fold induction between 3 and 40 min. Differential expression of lexA (lmo1302),therepressoroftheSOSresponse,wasnotobservedusingmicroarrays,butq PCRshowedachangefrom1.9foldrepressionat3minto2.0foldinductionat40min (Fig.2).Transcriptionof dinB (lmo1975),and umuDC (lmo2675andlmo2676),codingfor DNA polymerases IV and V, respectively, was also upregulated. These gene products constitute important alternative polymerases in the SOS response. The genes encoding DNA repair proteins radA (lmo0233), recN (lmo1368), uvrA (lmo2488), and uvrB (lmo2489),showedincreasedexpressionaswell.TwoothergenesbelongingtotheSOS response were induced, namely ynzC (lmo0496) and yneA (lmo1303). The latter is transcribeddivergentlyfrom lexA andtheproducthasbeenshowntoberesponsibleforcell elongationandsuppressionofcelldivision(21).Thus,theexpressionof yneA isconsistent withtheobservationthatexposureof L. monocytogenes toelevatedtemperaturesresultedin elongatedcells(Fig.3).Afterheatexposureofcellsgrowingat37ºCto48ºCtheOD 600 continuedtoincrease(Fig.3A)whereastheconcentrationofcells(cfu/ml)wasfoundto remainconstant(Fig.3B).Cellsizemeasurementsofmicroscopicimagesshowedincreased cellsizeintimeafterheatexposurecomparedwithcellsthatweregrowncontinuouslyat37 ºC(Fig.3Cto3E). Celldivision Cell division is a complicated mechanism involving different pathways that are intertwined.Theexpressionoftwogenes,lmo2687andlmo2688,encodingproteinsthat show sequence similarity to the cell division protein FtsW, was induced after 3 min exposureto48ºC.Tenothergenesinvolvedincelldivisionshowedreducedexpression mainly in the initial phase of the heatshock. Repression of the genes lmo1071, minDE (lmo1544 and lmo1545), mreDCB (lmo1546 to lmo1548), divIVA (lmo2020), and pbpB (lmo2039),encodingproteinssimilartoRodAandFtsW,celldivisioninhibitors(septum placement), cell shape determining proteins, cell division initiation protein (septum placement),andcelldivisionproteinFtsI(penicillinbindingprotein3)respectively,was observedonlyafter3minheatshock.Transcriptionofthegenes ftsX (lmo2506)and ftsE (lmo2507),whoseproductsarehighlysimilartocelldivisionproteinFtsXandcelldivision

90

A 1.6 B 1.0E+10 D 1.2 C 1.0E+09 E 0.8 cfu/ml OD600 1.0E+08 0.4

0 1.0E+07 300 200 100 0 100 300 200 100 0 100 Time(min) Time(min)

C1 C2 120

80

40 Numberofcells

0

5160 7180 91100 111120 131140 151160 171180 191200 Cellsize(pixels)

D1 D2 160

120

80

40 Numberofcells

0

5160 7180 91100 111120 131140 151160 171180 191200 Cellsize(pixels)

E1 E2 160

120

80

40 Numberofcells

0

60 80 51 71 91100 111120 131140 151160 171180 191200 Cellsize(pixels) Fig.3.Increasingcellsizeof L. monocytogenes cellsexposedto48ºCincomparisonwithcells continuouslygrownat37ºC.Theopticaldensity(A)andviabilitycount(B)weremeasuredofa L. monocytogenes culture grown at 37 ºC (Diamonds). At timezero (point C) the culture was transferred to 48 ºC (squares) or continuously grown at 37 ºC (diamonds). The cultures were incubatedfor40minandsamplesweretakenfromthecultureat37ºC(pointD)andfromthe cultureat48ºC(pointE).C1,D1,andE1;Microscopicimagesofthecellscollectedfrompoints C,D,andE.C2,D2,andE2;AnalysesofthemicroscopicimagesofcellsfrompointC,D,andE usingImageJ.Thegraphsshowthedistributionofcellsizesinnumberofpixelspercell.

91

ATPbinding protein FtsE, was transiently downregulated for 10 and 20min after heat exposure,respectively. Cellwallassociatedgenes Thebacterialcellwallisacomplexstructureandplaysanimportantroleasthefirst protectionagainstenvironmentalstresses.Cellwallhydrolases(includingautolysins)play important roles in numerous cellular processes including cell division and cell wall turnover.Inlinewiththeresultsdescribedabove,allgenesencodingcellwallhydrolases, namely aut ( lmo1076), lmo1216, lmo1855, spl (lmo2505), ami (lmo2558), murA (lmo2691),andlmo2754,showedatransientrepressedexpressionpattern,exceptfor iap (lmo0582),whichshowedaconstant3foldrepression.Theintermediateglucosamine6 phosphateplaysacentralroleintheregulationofcellwallbiosynthesisversusglycolysis (24).Genescontrollingtheregulationbetweenthesetwopathwaysshowedinductionafter heatexposure.Thesegenesarelmo0877andlmo0957,ofwhichtheencodedproductsshow sequencesimilaritytoglucosamine6phosphateisomerases,lmo0957andlmo2108,which encode putative Nacetylglucosamine6phosphate deacetylases, and lmo1998 and lmo1999, which encode products that show low sequence similarity to glucosamine fructose6phosphate aminotransferases. The essential gene in the biosynthetic pathway, murB (lmo1420),wasdownregulationafter3minofheatshock.Anotheroperonthatplays aroleincellwallsynthesisandshoweddecreasedexpressionuponheatshockwasthe dlt operon(lmo0971tolmo0974),encodingproteinsimportantincatalysingtheincorporation ofDalanineresiduesintolipoteichoicacidsandwallteichoicacids.Furthermore,thegene lmo1075,encodingaproteinwith64%sequencesimilarityto B. subtilis teichoicacidtra nslocationATPbindingproteinTagH,wasalsodownregulatedafter3minofheatshock. Nine genes encoding putative cell wallassociated proteins were differentially expressed during heat exposure. Five of these genes encode products containing an LPXTG peptidoglycanbinding motif, namely lmo0610, lmo0880, lmo1413, lmo1666, and lmo2085. Virulenceassociatedgenes Aconstantinductionwasobservedfor prfA (lmo0200)encodingthemajorregulator ofthevirulencegenes.ThisgeneisbothSigBandSigAregulatedanditsproductinduces genes containing a PrfA box in their promoter sequence. Accordingly, numerous PrfA regulated virulence genes (34) showed upregulation after heat exposure, including plcA (lmo0201), encoding a phospholipase, inlA and inlB (lmo0433 and lmo0434), encoding Listeria specific internalins, lmo2067, encoding a conjugated bile acid hydrolase, and lmo0596,encodinganunknownprotein.However,Rauch et al. (37)showedthatPrfAhad no direct influence on the transcription of lmo2067 and lmo0596. Significant down

92

regulationwasfoundforthe agr locus(lmo0048tolmo0051).Thislocusencodesatwo componentsystemthathasbeenshowntoplayaroleinbacterialvirulence(2). Validationofmicroarraygeneexpression ThemicroarraydatawasvalidatedbyquantitativerealtimePCRanalysisusinga set of 13 genes which cover a range of expression values in the microarray data. The relativegeneexpressionlevelsobtainedbythequantitativerealtimePCRwerenormalized tothatof3genes( tpi , rpoB , 16S rRNA )thatdidnotfluctuateduringtemperaturechanges. Relativequantitativevalueswereobtainedusingthecomparativethresholdcyclemethod

(CT) in which the C T value corresponds to the cycle at which the fluorescent signal crosses the threshold line. The relative expression of the genes was determined in quadruplicateforthreeindependenttemperatureupshiftexperiments.Theresultingratios were log 2 transformed andplotted against the log 2valuesfromthemicroarrayanalysis. Figure2showsastrongcorrelationwithr >0.8foralltimepoints,whichisconsideredthe threshold for strong correlation. Generally, the microarray analysis underestimated the differential expression values by an average of 5fold. Similar observations have been reportedpreviouslywhenusingorfarraysinmicrobialtranscriptomeanalysis(10,14,43). Discussion Variation in temperature is frequently encountered in nature and bacteria have evolvedtocopewithsuchfluctuationsbyemploying various mechanisms. Microarrays were used to investigate the wholegenome expression profiles of L. monocytogenes in responsetoatemperatureupshiftfrom37ºCto48ºCovera40minperiod.Ourdatashow differential expression for genes involved in different cellular processes, including SOS response, cell division, and specific (heat) stress responses. For many differentially expressedgenesatransientexpressionpatternwasobservedbetween3and40min.The highest number of differentially expressed genes was observed 3 min after temperature upshift.Wholegenomeexpressionprofilesinresponsetoheatshockhavebeenreportedfor Bacillus subtilis , Shewanella oneidensis , and Campylobacter jejuni (10, 14, 43). These studiesalsoshowedtransientexpressionpatterns,albeitthatpeaknumbersofdifferentially expressed genes were observed later in time upon heat exposure. The ability of L. monocytogenes torapidlyalterthetranscriptlevelsallowsforaquickresponsetosudden environmentalchanges. In L. monocytogenes ,genesbelongingtotheclassIandclassIIIheatshockregulons showed increased expression during heat exposure. Interestingly, the class I heatshock genesshowedaconstantinductioninexpressionlevelsoverthe40minperiod,whereasthe

93

A dinB lexA yneA recA uvrA uvrB umuD umuC

Operator

RecA

LexA Gyrase

Helicase SSB DNApolymeraseI

DNApolymeraseIII Ligase

RNAprimer

Leadingstrand Laggingstrand B

5.5 5.2 5.2 4.5 5.2 2.9 2.6 4.0 4.5 4.5 3.2 3.1 3.6 2.0 1.7 2.5 2.3 2.6 2.7 1.8 1.6 1.4 1.5 1.5 2.3 2.2 2.3 1.4 1.3 1.3 1.3 1.4

dinB lexA yneA recA uvrA uvrB umuD umuC

Operator LexA

CleavedLexA

ActivatedRecA

Fig. 4. Activation of the SOS response of L. monocytogenes during exposure to elevated temperatures.A.Inthecellswithanactivereplicationfork(beforeexposure),LexArepressesthe transcription of lexA , recA , and the other genes of the SOSresponse ( dinB , yneA , uvrAB and umuDC ) by binding to the operator in the promoter region. B. When the replication fork is stalling after exposure to elevated temperatures, RecA is activated by the resulting ssDNA. Activated RecA promotes cleavage of LexA, and consequently the SOS response genes are induced.ThegenesoftheSOSresponseareillustratedschematicallyandarenottoscale.The inductionofthegenesafterheatshockisrepresentedbythegraphsaboveeachgene(3min,blue; 10min,purple;20min,yellow;40min,green).

94

A Positioning Cellwalland membrane Zringat Cell separation midcell biogenesis. FtsZ

Midcell

DNA Autolysins replication DivIVA Ring Septum MinCD disassembly closure

B NoZring NoZring formation formation

DivIVA YneA MinCD FtsZ FtsZ StalledDNA replication

5.2 ftsZ minD minC divIVA 3.1 2.5 1.3 1.6 1.9 1.4 1.8 1.9 1.4 1.6 1.6 1.7 1.9 2.0 1.8 1.7 2.5 yneA 3.3 4.3

Fig. 5. Nucleoid occlusion. A. Normal replicating cells. B. Stalling DNA replication results in perturbationofcelldivision.Twopossibleexplanations:1,AnactivatedSOSresponseresultsin increasednumbersofYneAatthenucleoidinthemidcell.YneAreducestheconcentrationof FtsZ,preventingseptumformation.2,ReductioninnumbersofMinCDandDivIVApreventsthe concentrationofFtsZatthemidcellbyallowingFtsZatthepoles.Differentialexpressionofthe genesafterheatshockisrepresentedbythegraphs(3min,blue;10min,purple;20min,yellow; 40min,green).

95

classIIIheatshockgenesshowedatransientexpressionpattern.Thisislikelyrelatedtothe different roles the two classes fulfil during heatshock. The Clpases are specifically requiredattheearlystagesoftheheatshocktoremovetheinitiallydamagedandmisfolded proteins.Followingadaptationtoheat,Clpaselevelsarereducedwhilehigherlevelsof chaperonesarepresenttopreventaccumulationofdamagedandmisfoldedproteins.QPCR showed1.5foldinductionofthegeneencodingSigBafter3and10min.Consideringthe role for SigB as a regulator, this slight increase in expression appears to be enough to inducegenescontainingaSigBpromoterasevidencedbythetransientnatureoftheclassII stressresponse.Wholegenomeexpressionprofilesuponheatshockhavebeenreportedfor anumberofbacteria,namely, B. subtilis , C. jejuni ,and S. oneidensis (7,10,14,43).When presentinthesebacteria,genesbelongingtotheclassIandclassIIIheatshockresponse, andSigBregulatedclassIIstressresponsewereinduced.Giventhegeneticresemblance andsimilarheatshockconditionsapplied,adirectcomparisonofupregulatedgenesof L. monocytogenes and B. subtilis (14) was possible. A total of 25 orthologues of the 130 inducedclassIIstressgenesin B. subtilis showedinductionin L. monocytogenes aswell. Ofthese25genes,8geneswerepreviouslyindentified in L. monocytogenes to be SigB regulated (22). In B. subtilis , 76 other genes, designated class U, showed increased expression upon heatshock. In L. monocytogenes , 9 orthologues of these genes showed induction,amongwhichwas htrA .PreviousresearchshowedthatHtrAwasimportantfor survivalduringexposuretoenvironmentalandcellularstresses(42,45). In L. monocytogenes ,severalgenesthatplayaroleintheSOSresponseandDNA repairmachineryshowedincreasedexpressionafterheatexposure,including recA ,whichis themajoractivatoroftheSOSresponse.RecAisinvolvedinvariousprocessingstepsof DNA replication proteins and repair proteins, and plays a role in the restart of stalled replication forks (8), homologous recombination, repair of doublestranded DNA breaks (29),andintroducingadaptivepointmutations(31).Furthermore,itstimulatescleavageof theLexArepressoroftheSOSresponse,activatingexpressionoftheSOSresponsegenes (Fig.4).TheLexArepressorisautoregulatory,andbindstotheoperatorsequenceinthe promoter region of the SOS response genes (CGAACATATGTTCG in B. subtilis (1)). SeverallexAregulatedgenesshowedincreasedexpressionin L. monocytogenes, including genesencodingthetwoalternativeDNApolymerasesumuDC and dinB .DNApolymerases

PolIV(DinB)andPolV(UmuD 2’C)havepreviouslybeenshowntorespondtoinhibition of replication fork progression in a damageindependent manner (12, 13). Elevated temperatures may cause the L. monocytogenes DNA replication fork to stall, leading to exposureandpossibledegradationofthearrestedreplicationforkwithoutrescuebyPolIV andPolV.Thistheoryisconsistentwiththeobservationthatheatshockresultedincell elongationandpreventionofcelldivision.Thiseffectiscalled“nucleoidocclusion”,andis generally interpreted as prevention of Zring formation in the vicinity of the nucleoid,

96

thereby preventing cell division without complete replication and segregation of the nucleoid(38).Theexpressionprofilesshowedtwopossiblemechanismsthatmightleadto preventionofZringformationafterheatshock(Fig.5).Thefirstmechanismwouldbethe resultofincreasedexpressionof yneA (aspartoftheSOSresponse),whichisresponsible forsuppressionofcelldivisionin B. subtilis byreducingFtsZproteinsatthecelldivision site,therebypreventingFtsZringformation(21).Thesecondmechanismistheresultofa decreasedexpressionofthegenes minDE ,and divIVA ,whichareinvolvedinspatialcorrect septumplacement.TheMinCDcomplexnegativelyregulatesformationofthecytokinetic Zringtomidcellbypreventingitsformationnearthepoles(46).Anotherstrategyof L. monocytogenes tosuppresscelldivisionmightbetodecreaseexpressionofthegenes fteX and ftsE .ThesegenesencodeproteinswithsequencesimilaritytoABCtransportersandare localizedatthedivisionsite.In E. coli theyaredirectlyinvolvedincelldivisionandare importantforseptalringformation(39).Mutantsfor ftsXE constitutivelyshowedinduction oftheSOSresponsein E. coli (36). Apossiblestrategyofthe L. monocytogenes cellstopreventcontinuouselongation aftersuppressionofcelldivisionistoreducethe expression of genes encoding proteins involved in cell wall biosynthesis and turnover. The downregulated genes rodA and mreDCB encodeproteinsinvolvedincellwallsynthesisanddeterminationofcellshape. TheMreDCBcomplexformslikecablesbeneaththecellsurfaceandrequiresRodA forcontrolofcellshape(26).Researchin B. subtilis showedthatcellsdepletedofRodA wereimpairedintheircelldivision(15).Reducedexpressionlevelswerealsoobservedfor thegenesencodingautolysins, murB ,whichisanessentialgeneinthebiosyntheticpathway ofpeptidoglycan,andthe dlt operon,whichencodesproductsthatcatalyseincorporationof Dalanine residues into teichoic acids. While most bacteria showed slower growth rates aftermutationsinthe dlt operon, gordonii showedabnormalseptationand defectivecellseparation(35). PrfAandvariousothervirulencegenesshowedinductionuponheatexposure,which hasnotbeenreportedbefore.PrfAisthemajorvirulenceregulatorin L. monocytogenes (5, 28).Previousstudiesshowedmaximalinductionofthevirulencegenesat37ºC(18,27). However, expression levels at temperatures above 37 ºC were not measured in these studies. Destabilizing mutations in the secondary structure of the untranslated region of prfA mRNAresultedinincreasedlevelsofPrfAat37ºC(18),indicatingthatthisstructure is not completely unfolded at this temperature. Increasing the temperature above 37 ºC probablyresultsinamorerelaxedsecondarystructureallowingmorePrfAtranslation. A comparative analysis of the transcription profiles of L. monocytogenes during heatshockandintheintracellularenvironment(6)showedahighnumberofgenesthat were differentially expressed during both exposures. Of the 714 differentially expressed genes during heatshock, 236 genes showed differential expression in the intracellular

97

environmentaswell.Amonggenesthatwerecommonlyregulatedduringbothexposures, 172 genes showed increased expression and 64 genes showed decreased expression. Exposureof L. monocytogenes totheintracellularenvironmenttriggerednumerous(heat) stressresponsesthatwereshowntobedifferentiallyexpressedduringheatshockinthis study. AllgenesbelongingtotheclassIandclassIIIheatshockgenesand24oftheSigB regulatedclassIIstressresponsegenesshowedinductionintheintracellularenvironment. Remarkably, similar expression profiles for the SOS response genes, the cell division genes,andthecellwallrelatedgeneswereobserved. This comparative analysis showed thatnumerousresponsesinducedduringheatexposurecontributetothepathogenicityof L. monocytogenes by allowing survival during the stressful conditions encountered intracellularlyandduringpassagethroughthestomachandtheintestinaltract. This study shows the importance of the SOS response as a common protection mechanismduringheatshockanditspossibleroleinsuppressionofcelldivisiontoprevent transection of the genome as a result of incomplete chromosomal segregation. Whether replication fork stalling is the actual cause leading to both the SOS response and suppressionofcelldivisionremainstobeelucidated.Thisopensupinterestingpossibilities for future research. Our transcriptome analysis has revealed several aspects of the heat shockresponseof L. monocytogenes thatmayincludetargetsforinactivation.Theroleof specificfactorssuchastheSOSresponsein L. monocytogenes stresssurvivalandvirulence willbeassessedinfuturestudies. Acknowledgements WethankAlexandraAmendFörsterforherexcellenttechnicalassistance.Wethank CarstenT.KünneandAndreBillionforprovidinghelpfulanalysisprogrammsformicro array data. Support for this work was provided by funds from the ERANET PathogenomicsNetworksupportedbytheBundesministeriumfürBildungundForschung (BMBF) and from the Sonderforschungsbereich 535 supported by the Deutsche ForschungsgemeinschafttoTrinadChakrabortyandTorstenHain. References 1. Au, N., E. KuesterSchoeck, V. Mandava, L. E. Bothwell, S. P. Canny, K. Chachu,S.A.Colavito,S.N.Fuller,E.S.Groban,L.A.Hensley,T.C.O'Brien, A. Shah, J. T. Tierney, L. L. Tomm, T. M. O'Gara, A. I. Goranov, A. D. Grossman,andC.M.Lovett. 2005.Geneticcompositionofthe Bacillus subtilis SOSsystem.JBacteriol 187: 765566.

98

2. Autret, N., C. Raynaud, I. Dubail, P. Berche, and A. Charbit. 2003. Identificationofthe agr locusof Listeria monocytogenes :roleinbacterialvirulence. InfectImmun 71: 446371. 3. Benson,A.K.,andW.G.Haldenwang. 1993.ThesigmaBdependentpromoterof the Bacillus subtilis sigB operonisinducedbyheatshock.JBacteriol 175: 192935. 4. Caldas, T., N. DemontCaulet, A. Ghazi, and G. Richarme. 1999. Thermoprotectionbyglycinebetaineandcholine.Microbiology 145(Pt9): 25438. 5. Chakraborty,T.,M.LeimeisterWachter,E.Domann,M.Hartl,W.Goebel,T. Nichterlein,andS.Notermans. 1992.Coordinateregulationofvirulencegenesin ListeriamonocytogenesrequirestheproductoftheprfAgene.JBacteriol 174: 568 74. 6. Chatterjee,S.S.,H.Hossain,S.Otten,C.Kuenne,K.Kuchmina,S.Machata, E. Domann, T. Chakraborty, and T. Hain. 2006. Intracellular gene expression profileof Listeria monocytogenes .InfectImmun 74: 132338. 7. Chhabra,S.R.,Q.He,K.H.Huang,S.P.Gaucher,E.J.Alm,Z.He,M.Z. Hadi, T. C. Hazen, J. D. Wall, J. Zhou, A. P. Arkin, and A. K. Singh. 2006. Globalanalysisofheatshockresponsein Desulfovibrio vulgaris Hildenborough.J Bacteriol 188: 181728. 8. Cox,M.M.,M.F.Goodman,K.N.Kreuzer,D.J.Sherratt,S.J.Sandler,and K.J.Marians. 2000.Theimportanceofrepairingstalledreplicationforks.Nature 404: 3741. 9. Doorduyn,Y.,C.M.deJager,W.K.vanderZwaluw,W.J.Wannet,A.van der Ende, L. Spanjaard, and Y. T. van Duynhoven. 2006. First results of the active surveillance of Listeria monocytogenes infectionsintheNetherlandsreveal higherthanexpectedincidence.EuroSurveill 11: E0604204. 10. Gao,H.,Y.Wang,X.Liu,T.Yan,L.Wu,E.Alm,A.Arkin,D.K.Thompson, and J. Zhou. 2004. Global transcriptome analysis of the heat shock response of Shewanella oneidensis .JBacteriol 186: 7796803. 11. Glaser,P.,L.Frangeul,C.Buchrieser,C.Rusniok,A.Amend,F.Baquero,P. Berche,H.Bloecker,P.Brandt,T.Chakraborty,A.Charbit,F.Chetouani,E. Couve, A. de Daruvar, P. Dehoux, E. Domann, G. DominguezBernal, E. Duchaud, L. Durant, O. Dussurget, K. D. Entian, H. Fsihi, F. Garciadel Portillo,P.Garrido,L.Gautier,W.Goebel,N.GomezLopez,T.Hain,J.Hauf, D.Jackson,L.M.Jones,U.Kaerst,J.Kreft,M.Kuhn,F.Kunst,G.Kurapkat, E.Madueno,A.Maitournam,J.M.Vicente,E.Ng,H.Nedjari,G.Nordsiek,S. Novella, B. de Pablos, J. C. PerezDiaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter,N.Simoes,A.Tierrez,J.A.VazquezBoland,H.Voss,J.Wehland, andP.Cossart. 2001.Comparativegenomicsof Listeria species.Science 294: 849 52. 12. Godoy,V.G.,D.F.Jarosz,F.L.Walker,L.A.Simmons,andG.C.Walker. 2006.YfamilyDNApolymerasesrespondtoDNAdamageindependentinhibition ofreplicationforkprogression.EmboJ 25: 86879. 13. Hare, J. M., S. N. Perkins, and L. A. GreggJolly. 2006. A constitutively expressed, truncated umuDC operon regulates the recAdependent DNA damage

99

inductionofagenein Acinetobacter baylyi strainADP1.ApplEnvironMicrobiol 72: 403643. 14. Helmann, J. D., M. F. Wu, P. A. Kobel, F. J. Gamo, M. Wilson, M. M. Morshedi, M. Navre, and C. Paddon. 2001. Global transcriptional response of Bacillus subtilis toheatshock.JBacteriol 183: 731828. 15. Henriques,A.O.,P.Glaser,P.J.Piggot,andC.P.Moran,Jr. 1998.Controlof cell shape and elongation by the rodA gene in Bacillus subtilis . Mol Microbiol 28: 23547. 16. Holtmann, G., and E. Bremer. 2004. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvementofOputransporters.JBacteriol 186: 168393. 17. HPA. 2005. The changing epidemiology of listeriosis in England and Wales. CommunDisRepCDRWkly 15 . 18. Johansson, J., P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes .Cell 110: 55161. 19. Kallipolitis, B. H., and H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 204: 1115. 20. Karatzas,K.A.,V.P.Valdramidis,andM.H.WellsBennik. 2005.Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundantpiezotolerantisolateswithinclonalpopulations.ApplEnvironMicrobiol 71: 83906. 21. Kawai,Y.,S.Moriya,andN.Ogasawara. 2003.Identificationofaprotein,YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis .MolMicrobiol 47: 111322. 22. Kazmierczak,M.J.,S.C.Mithoe,K.J.Boor,andM.Wiedmann. 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185: 572234. 23. Koch, J., and K. Stark. 2006. Significant increase of listeriosis in Germany Epidemiologicalpatterns20012005.EuroSurveill 11 . 24. Komatsuzawa,H.,T.Fujiwara,H.Nishi,S.Yamada,M.Ohara,N.McCallum, B.BergerBachi,andM.Sugai. 2004.Thegatecontrollingcellwallsynthesisin Staphylococcus aureus .MolMicrobiol 53: 122131. 25. Kruger, E., and M. Hecker. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR ,encodesanegativeregulatorofitsownoperonandotherclassIIIheat shockgenes.JBacteriol 180: 66818. 26. Kruse, T., J. BorkJensen, and K. Gerdes. 2005. The morphogenetic MreBCD proteins of Escherichia coli form an essential membranebound complex. Mol Microbiol 55: 7889. 27. LeimeisterWachter,M.,E.Domann,andT.Chakraborty.1992.Theexpression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 174: 94752. 28. LeimeisterWachter, M., C. Haffner, E. Domann, W. Goebel, and T. Chakraborty. 1990.Identificationofagenethatpositivelyregulatesexpressionof

100

listeriolysin,themajorvirulencefactoroflisteriamonocytogenes.ProcNatlAcad SciUSA 87: 833640. 29. Lusetti, S. L., and M. M. Cox. 2002. The bacterial RecA protein and the recombinationalDNArepairofstalledreplicationforks.AnnuRevBiochem 71: 71 100. 30. Maul,R.W.,andM.D.Sutton. 2005.Rolesofthe Escherichia coli RecAprotein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187: 760718. 31. McKenzie, G. J., P. L. Lee, M. J. Lombardo, P. J. Hastings, and S. M. Rosenberg. 2001.SOSmutatorDNApolymeraseIVfunctionsinadaptivemutation andnotadaptiveamplification.MolCell 7: 5719. 32. Michel,B. 2005.After30yearsofstudy,thebacterialSOSresponsestillsurprises us.PLoSBiol 3: e255. 33. Miller,C.,L.E.Thomsen,C.Gaggero,R.Mosseri,H.Ingmer,andS.N.Cohen. 2004. SOS response induction by betalactams and bacterial defense against antibioticlethality.Science 305: 162931. 34. Milohanic,E.,P.Glaser,J.Y.Coppee,L.Frangeul, Y. Vega, J. A. Vazquez Boland,F.Kunst,P.Cossart,andC.Buchrieser. 2003.Transcriptomeanalysisof Listeria monocytogenes identifies three groups of genes differently regulated by PrfA.MolMicrobiol 47: 161325. 35. Neuhaus,F.C.,andJ.Baddiley. 2003.Acontinuumofanioniccharge:structures andfunctionsofDalanylteichoicacidsingrampositive bacteria. Microbiol Mol BiolRev 67: 686723. 36. O'Reilly,E.K.,andK.N.Kreuzer. 2004.IsolationofSOSconstitutivemutantsof Escherichia coli .JBacteriol 186: 714960. 37. Rauch,M.,Q.Luo,S.MullerAltrock,andW.Goebel.2005.SigBdependentin vitro transcription of prfA and some newly identified genes of Listeria monocytogenes whoseexpressionisaffectedbyPrfAinvivo.JBacteriol 187: 8004. 38. Rothfield, L., A. Taghbalout, and Y. L. Shih. 2005.Spatialcontrolofbacterial divisionsiteplacement.NatRevMicrobiol 3: 95968. 39. Schmidt,K.L.,N.D.Peterson,R.J.Kustusch,M.C.Wissel,B.Graham,G.J. Phillips,andD.S.Weiss. 2004.ApredictedABCtransporter,FtsEX,isneededfor celldivisionin Escherichia coli .JBacteriol 186: 78593. 40. Schulz,A.,andW.Schumann. 1996. hrcA ,thefirstgeneofthe Bacillus subtilis dnaK operonencodesanegativeregulatorofclassIheatshockgenes.JBacteriol 178: 108893. 41. Sleator,R.D.,J.Wouters,C.G.Gahan,T.Abee,andC.Hill. 2001.Analysisof the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potentialof Listeria monocytogenes .ApplEnvironMicrobiol 67: 26928. 42. Stack,H.M.,R.D.Sleator,M.Bowers,C.Hill,andC.G.Gahan. 2005.Rolefor HtrA in stress induction and virulence potential in Listeria monocytogenes . Appl EnvironMicrobiol 71: 42417. 43. Stintzi, A. 2003. Gene expression profile of Campylobacter jejuni in response to growthtemperaturevariation.JBacteriol 185: 200916.

101

44. WemekampKamphuis, H. H., R. D. Sleator, J. A. Wouters, C. Hill, and T. Abee. 2004. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures.ApplEnvironMicrobiol 70: 29128. 45. Wilson,R.L.,L.L.Brown,D.KirkwoodWatts,T.K.Warren,S.A.Lund,D. S. King, K. F. Jones, and D. E. Hruby. 2006. Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74: 7658. 46. Zhou,H.,andJ.Lutkenhaus. 2005.MinCmutantsdeficientinMinDandDicB mediatedcelldivisioninhibitionduetolossofinteractionwithMinD,DicB,ora septalcomponent.JBacteriol 187: 284657.

102

5. Genomewide screen for Listeria monocytogenes genes important for growth athightemperatures StijnvanderVeen,TjakkoAbee,WillemM.deVos,MarjonH.J.Wells Bennik Submittedforpublication Abstract Listeria monocytogenes isaGrampositivefoodbornepathogenthatisable grow overawidetemperaturerange.WhiletheclassIandclassIIIheatshockgenesareknown toplayanimportantroleinheatshock,informationongenesthatareessentialforgrowth athightemperaturesisscarce.Todeterminewhichgenesareimportantforgrowthathigh temperatures(42.543ºC),weperformedarandominsertionscreenin L. monocytogenes , rendering28temperaturesensitivemutants.Thesemutantsshowedinsertionsingenesthat play a role in transcription regulation, cell wallbiosynthesis, cell division, translation, transport, sensing, and specific stress responses like the SOS response and the class III heatshockresponse.Someofthesemutantsshowedalteredmorphologicalcharacteristics suchascellelongation,reducedcelllength,orsickleshapes.Furthermore,themajorityof themutantsshowedincreasedheatinactivationafterexposureto55ºCcomparedwiththe wildtypestrain.Theroleofthespecificgenesinrelationtogrowthathightemperaturesis discussed.

103

Introduction The Grampositive foodborne pathogen Listeria monocytogenes is the causative agent of listeriosis. In many European countries the incidence of listeriosis cases is increasing(8,18),andintheUnitedStatesithasbeenestimatedthat28%ofalldeathsdue toknownfoodbornepathogensarecausedby L. monocytogenes (25).Thisbacteriumhas theabilitytosurvivearangeofstressesrelatedtofoodprocessingandisabletogrowover awidetemperaturerange,spanningfrom0.3ºCto46ºC(16,35,36).Thepersistenceof thispathogeninthefoodchainisleadingtorisingconcerns(15). Theresponseof L. monocytogenes totemperaturestresshassofarbeenassessedfor growthatlowtemperatures(10ºCandbelow)(33)andexposuretoheatshock(32,34). Only limited information is available on the capacity of this organism to grow at high temperatures(44ºCandabove)(35)anditisnotknownwhichgenesareimportantfor growth at high temperatures. To identify such genes and to understand the molecular mechanisms involved in growth at high temperatures, a random insertion mutant library wascreatedandscreenedformutantswithgrowthdeficiencyat42.5ºConBrainHearth Infusion (BHI; Difco) agar plates, which is the highest temperature that is not growth limitingforthe L. monocytogenes EGDewildtypestrain(13)onBHIagar.Thesemutants were subsequently investigated for heatresistance, and altered morphology or growth characteristicsinBHIbroth. MaterialsandMethods The mutagenesis library was constructed in strain EGDe using the temperature sensitiveplasmidpGh9:ISS1(22). L. monocytogenes EGDewastransformedwithplasmid pGH9:ISS1usingtheprotocoldescribedbyParkand Stewart (29). Transposition of the plasmidintothebacterialgenomewasperformedusingthemethoddescribedbyMaguinet al.(22).Thegrowthofapproximately6500mutantswasassessedatboth42.5ºCand37ºC on BHI agar plates. Mutants that showed a deficiency in colony formation at 42.5 ºC compared to 37 ºC were selected. A semiquantitative sensitivity analysis on these temperature sensitive mutants was performed in triplicate using a dilution assay as described by Frees et al. (12). In this assay, 10 ul drops of a 10fold serial dilution of culturesgrownovernightat37°CwerespottedonBHIagarplatesandincubatedat42.5ºC and37ºCfor48h.Thevectorinsertionsiteforthesemutantswasdeterminedbyinverse PCR on HindIII digested circularized DNA using primers ISS1fwd (5’ CATTGATATATCCTCGCTGTC3’) and ISS1rev (5’ CTTAATGGGAATATTAGCTTAAG3’). The growth of the mutants in BHI broth was followedintwoindependentexperimentsusingtworeplicatesin96wellflatbottomtissue

104

cultureplates(Greiner)usingtheEL808IUPC(Biotek)at630nm.Themorphologyofthe mutants,suspendedinnigrosinsolution(Sigma)anddriedonglassslides,wasinvestigated at 100 x magnification using a Dialux 20 microscope (Leica). To determine the heat resistance ofthe differentmutant strains and the wildtype strain, 100 l of exponential phasecultures(OD 6000.30.8),grownat37ºCinBHIbrothat200rpm,werepelleted(2 min,5000xg)andsuspendedin100lPBSin1.5mlEppendorftubes.Thetubeswere placedinawaterbathat55ºC.Inactivationwasdeterminedafter20minheatexposure. SamplesweretakenandappropriatedilutionswereplatedonBHIagar.Theplateswere incubated at 30 ºC for 35 days and colonies were enumerated. The experiment was performedintriplicate. Table 1. Genetic location of the vector insertion for the temperature sensitive mutants and the resultinggrowthreductionat42.5ºC.Entriesinthegrowthreductionincludefoldchanges.

Vectorintegrationsite Growth Descriptionofproduct reduction b Gene Length a Site a

lmo0197 309 33 c StageVsporulationproteinG(SpoVG) 10 2 lmo0220 2076 1782 ATPdependentmetalloproteaseFtsH 10 5 Similar to a fusion of two types of conserved lmo0590 1767 704 10 2 hypotheticalproteins lmo0674 921 216 Motilitygenerepressor(MogR) 10 4 lmo0776 867 563 Similartotranscriptionregulator(repressor) 10 1 DltD protein for Dalanine esterification of lmo0971 1275 746 10 3 lipoteichoicacidandwallteichoicacid Similar to antibiotic ABC transporter, ATP lmo0986 912 62 10 4 bindingprotein lmo1010 879 22 Similartotranscriptionregulator(LysRfamily) 10 3 Highly similar to ribosomebinding factor A lmo1327 345 7 10 1 (RbfA) lmo1333 480 439 SimilartoB.subtilisYqzCprotein 10 1 lmo1355 558 302 HighlysimilartoelongationfactorP(EFP) 10 5 lmo1420 897 890 UDPNacetylmuramatedehydrogenase(MurB) 10 3 lmo1487 576 90 Similartounknownproteins 10 4 lmo1495 624 38 hypotheticalprotein 10 2 lmo1619 870 157 Daminoacidaminotransferase(DaaA) 10 4 Similar to Osuccinylbenzoic acidCoA ligase lmo1672 1410 146 10 1 (MenE) Similar to twocomponent sensor histidine lmo1741 1041 325 10 2 kinase(VirS) lmo1746 1980 1565 SimilartoABCtransporter(permease) 10 1

105

Table1.Continued.

Vectorintegrationsite Growth Descriptionofproduct reduction b Gene Length a Site a lmo2045 387 106 Hypotheticalprotein 10 2 SimilartoendopeptidaseClpATPbindingchain lmo2206 2601 814 10 1 B(ClpB) Similar to ATPdependent deoxyribonuclease lmo2267 3708 3311 10 4 (AddA) lmo2302 540 277 Hypotheticalprotein 10 5 lmo2473 969 173 Conservedhypotheticalprotein 103 Similar to B. subtilis OsuccinylbenzoateCoA lmo2520 1125 842 10 1 synthase(MenC) lmo2598 747 639 Pseudouridylatesynthase(TruA) 10 1 lmo2694 1380 338 Similartolysinedecarboxylase 102 Similar to DalanylDalanine carboxypeptidase lmo2754 1338 63 10 1 (PBP5) Highlysimilarglucoseinhibiteddivisionprotein lmo2810 1890 1780 10 3 A(GidA) aBasepairs(bp) bGrowthreductionat42.5ºCcomparedtogrowthat37ºC,asdeterminedbythedilutionessay cVectorintegratedinpromoterregion33basepairsupstreamofthestartcodon ResultsandDiscussion Screeningofthemutantlibraryrendered28temperaturesensitivemutantsofwhich colony formation was reduced on BHI agar at 42.5 ºC compared with 37 ºC. Southern hybridization analyses using a probe for the erythromycin resistance gene of vector pGH9:ISS1 confirmed that the vector was integrated at a single location (results not shown).Geneticanalysisrevealedthatthetemperaturesensitivemutantscontaininsertions ingenesencodingtranscriptionalregulators(3mutants)andingenesinvolvedincellwall biosynthesis (5 mutants), cell division (1 mutant), translation (4 mutants), transport (2 mutants),sensing(1mutant),andspecificstressresponses(3mutants).Table1showsthe geneticlocationofthevectorinsertionforthedifferentmutantsandtheresultinggrowth deficiencyat42.5ºCasdeterminedbythedilutionessay. Growthat37ºCinBHIbrothshowedcomparablegrowthratesormaximumcell densityreachedforthewildtypeandinsertionmutantstrains(resultsnotshown).At43ºC, forthemajorityofthemutantsdifferenceswereobservedforthemaximumgrowthrateor themaximumcelldensityreachedinBHIbrothcomparedwiththewildtypestrain(Fig.1).

106

Fivemutantsshowedareducedmaximumgrowthrate,whilefortwomutantsthemaximum growthratewasincreased(Fig.1A).Intotal,20mutantsshowedreducedmaximumcell densitiesand,surprisingly,fivemutantsshowedincreasedcelldensities(Fig.1B).Several mutantsshowedmorphologicalcharacteristicsthatweredifferentfromthewildtypestrain athightemperatures,suchascellelongation(Fig.2).Thesealteredmorphologieswerealso observedat37ºC,albeitinamilderforminsomecases. Toinvestigateapotentialrolefortheidentifiedgenesinheatresistance,themutants were tested for differences in heatinactivation. Several mutants showed decreased or increasedresistancetoheatinactivationat55ºCcomparedwiththewildtypestrain(Fig. 3).Thespecificgenesbelongingtodifferentfunctionalgroupswillbediscussedbelowin relationtotheirputativeroleingrowthathightemperatures. Threemutantswithreducedgrowthathightemperaturesshowedinsertionsingenes encoding for transcription regulators ( mogR [lmo0674], lmo0776 , and lmo1010 ). It is unknown which regulons are controlled by lmo0776 and lmo1010. MogR represses the temperaturedependentexpressionofthemotilitygenes(31).Thesensitivityforgrowthat temperatures above the optimum temperature might be related to derepression of the motilitygenesinthe mogR mutantandoverproductionofthemotilityassociatedproteinsat 37 ºC and above. Since mogR expression is transiently induced during heatshock in L. monocytogenes (34),anotherpossibleexplanationisthatMogRregulatesgenesotherthan themotilitygeneswithanimportantfunctionathightemperatures.Interestingly,the mogR mutantshowedincreasedresistancetoheatinactivationcomparedtothewildtypestrain (Fig.3). Five other high temperaturesensitive mutants contained insertions in genes encodingforproteinswitharoleinthecellwallsynthesis,namely spoVG [lmo0197], dltD [lmo0971], murB [lmo1420], daaA [lmo1619],and lmo2754 .Exceptfor dltD ,allofthese mutantsshowedincreasedsensitivitytoheatinactivationcomparedtothewildtypestrain (Fig. 3). SpoVG is involved in capsular polysaccharide (CP) production and capsule formationin Staphylococcus aureus throughregulationoftranscriptionof capA ,encoding CapA, which is an important protein for CP production. Deletion of spoVG resulted in decreased capA expression and abolished capsule formation (26). A previous study in whicharandommutantlibraryin L. monocytogenes wasscreenedforbilesensitivemutants resultedina capA (lmo0516)mutantandtheauthorshypothesizedthatthisgenecouldbe involvedincellenvelopebiogenesis(3).In L. monocytogenes ,aninsertionin spoVG might alsoresultindecreasedexpressionof capA ,therebyeffectingcellenvelopebiogenesis. DltDisimportantforincorporationofDalanineestersintothecellwallteichoic acids.Propercrosslinkingofteichocacidsinthecellwallisthusimportantforgrowthof L. monocytogenes athightemperaturesonBHIagar(Table1)andinBHIbroth(Fig.1).

107

A

1.30 *

*

1.10 ) 1 * (h 0.90 * * * max *

0.70

0.50

e A A 6 A 590 333 u 495 487 473 010 pB aA nE 98 741 776 nC ltD 746 045 gR 302 efp typ tr 1 dd cl BP5 gidA 1 0 rbf e d oVG ftsH d murB a da me P o m mo p il mo0 mo1 mo1 mo2 mo1 mo0 m mo1 mo2 s w l l l lmo2694lmo l l l lmo l l l lmo2

B

0.60

* * * * *

* * * 0.40 * * * * * * * * * *

max * * * * OD630 *

0.20 * *

0.00

e A A 6 A 590 333 u 495 487 473 010 pB aA nE 98 741 776 nC ltD 746 045 gR 302 efp typ tr 1 dd cl BP5 gidA 1 0 rbf e d oVG ftsH d murB a da me P o m mo p il mo0 mo1 mo1 mo2 mo1 mo0 m mo1 mo2 s w l l l lmo2694lmo l l l lmo l l l lmo2

Fig.1.GrowthcharacteristicsofthewildtypestrainanditsrespectiveinsertionmutantsinBHI

broth as determined by OD 630 at 43 ºC. A) Maximum growth rate. B) Maximum cell density. Significant different values (ttest) compared with the wildtype strain are indicated by an asterisk.

108

The dlt operonhasalsobeenshowntobeimportantforstressresistanceinotherbacteria.A dltD mutantof Lactococcus lactis forinstanceshowsUVsensitivity(9),anda dlt mutant of Lactobacillus reuteri showsimpairedgrowthunderacidicconditions(37).Furthermore, Abachin et al. (1) previously showed impaired virulence of a dltA mutant of L. monocytogenes inamouseinfectionmodel,indicatingthataproperlyformedteichoicacid networkisalsoimportantforcorrectdisplayofpotentialvirulencetraitsallowingefficient colonizationofthehosts. Anothergenerequiredforgrowthathightemperaturesis murB .MurBisinvolvedin thebiosynthesisofthepeptidoglycanofthecellwallandisactuallydownregulatedduring heatshock in L. monocytogenes (34). Mutations in murB also resulted in temperature sensitivityof S. aureus ;peptidoglycansynthesiswasreducedandcellwallswerethinat43 ºC(24).Theinsertionmutantof L. monocytogenes alsoshowedreducedgrowthat43ºCin BHIbroth(Fig.1)andahighnumberofelongatedcellsincultures(Fig.2),indicatingthat itmighthaveafunctionduringcellseparationaswell. Inactivationofthegene daaA resultedinimpairedgrowthat42.5ºCaswell.DaaA isaputativeDaminoacidaminotransferase,andin Bacillus spaericus ,thisenzymeplaysa roleinsynthesisofcellwallprecursors(11). Lastly,PenicillinBindingProteinV(PBP5),encodedbygene lmo2754 ,wasfound tobeimportantforgrowthathightemperatures.AspreviouslyshownbyKorsaketal.(19), L. monocytogenes lmo2754 mutantsproducethickenedcellwallswithmorecrosslinking,

wildtype addA ftsH

efp rbfA murB

Fig. 2.Microscopic images ofcells of the wildtype strain and its respective insertion mutants duringexponentialgrowthat42.5ºC.

109

andslightlyslowergrowthat37ºC.PBP5removestheterminalDalanineresiduefromthe mureinpentapeptidesidechainsandtherebyplaysanimportantroleincellwallturnover duringcelldivision(30). Takentogether,ourresultsshowthataproperlyformedcellwallisveryimportant forbacteriatogrowathightemperatures.Mutationsingenesaffectingcellwallformation, crosslinking of the peptidoglycan layer, and synthesis of teichoic acids resulted in abolishedgrowthundertheseconditions,whereasgrowthat37ºCisnotaffected. Theabilitytogrowat42.5ºConBHIagarwasimpairedprofoundlyinthemutant withaninsertioninthegeneencodingmetalloproteaseFtsH(lmo0220;Table1),whichhas a function incell division. Furthermore, the ftsH mutant showed increased sensitivityto heatinactivationcomparedtothewildtypestrain(Fig.3).In B. subtilis, FtsHaccumulates at the septum during cell division (38). FtsH expression is transiently induced after a temperature upshift in B. subtilis (6) and in Caulobacter crescentus (10), but overexpressiondidnotresultinincreasedthermotolerancein C. crescentus .In B. subtilis , ftsH mutationsresultedinfilamentousgrowthduetooverexpressionandproductionof PenicillinBinding Protein IV (PBP4) (44). In L. monocytogenes PBP4 catalyzes glycan polymerizationandcrosslinking(43).Wefoundthatthe L. monocytogenes ftsH insertion

5 * *

* 4 *

* * * * 3 * * * * * * * * * * * * * * 2

Reduction(logcfu/ml) *

* 1

0

e 3 A B 6 2 fp yp 95 p nE ltD gR VG e 0590 133 truA 14 2694 2473 1010 dd cl 098 BP5 gidA 1741 rbfA d 1746 2045 o 230 ftsH murB o1487 a daaA me P o0776 menC m po ildt mo mo m mo mo mo m mo mo s mo w l l lmo lmo l l l l lmo l l l l

Fig. 3. Heatinactivation of exponential phase cells of the wildtype and mutant strains after growthat37ºC.Thegraphshowsthereductioninviablecountsafter20minexposureto55ºC. Significant different values (ttest) compared with the wildtype strain are indicated by an asterisk.

110

mutantindeedshowedfilamentation(Fig.2).Thisshowsthataproperlyfunctioningcell divisionsystemisveryimportantathightemperatures.Wheresuchdefectsareseemingly compensated at optimal temperatures, this ability is lost at elevated temperatures. Interestingly,the ftsH insertionmutantdidnotshowreducedgrowthinBHIbrothat43ºC comparedtothewildtypestrain(Fig.1). Four high temperature sensitive mutants showed insertions in genes encoding productsinvolvedintranslation( rbfA [lmo1327], efp [lmo1355], truA [lmo2598],and gidA [lmo2810]).RbfAprocessesthepartof16SrRNAinvolvedinmRNAdecodingandtRNA binding(5),anditwasdemonstratedthatthisgeneisessentialfor Escherichia coli toadapt tolowtemperatures(40).OurstudyshowsthatRbfAisalsoimportantforgrowthof L. monocytogenes atelevatedtemperaturesonBHIagar(Table1)andinBHIbroth(Fig.1). Furthermore,the rbfA insertionmutantshowedasickleshapedcell(Fig.2),indicatingthat cellwallsynthesisisinfluencedinthismutant.Thisalteredcellshapemightexplainthe observedincreasedsensitivitytoheatinactivationofthismutantcomparedtothewildtype strain(Fig.3).Anotherribosomerelatedprotein, EFP, influences the peptidyltransferase activityof70Sribosomes.EFPgenesareuniversallyconservedinbacteria(20).In E. coli , EFPisessentialforviability(2),whilein B. subtilis , efp mutantsonlyaffectedsporulation, butnotgrowth(28).Inourstudy,growthofthe efp insertionmutantwasnotaffectedin BHIbrothat37ºC,whileat43ºCreducedgrowthwasclearlyshown(Fig.1).Apparently, in L. monocytogenes EFPisnotessentialforviability,butgrowthathightemperaturesis affected in efp mutants. It is noteworthy that microscopic images showed reduced cell lengthinthismutant(Fig.2). TheproteinsTruAandGidAareinvolvedinmodificationoftheuridinesoftRNA (14,42).A gidA mutantof L. lactis wasshowntobeUVsensitive(9),whilea gidA mutant of Lactococcus garvieae wasunabletosurviveinafishhost(27).Ourresultsshowedthat the gidA mutantwasmoresensitivetoheatinactivationcomparedtothewildtypestrain (Fig. 3). These results show that L. monocytogenes is able to compensate for mutations affecting the translation machinery at 37 ºC, but fails to do so at above optimum temperatures.TheabilitytomodifytheribosomeandtheuridinesoftRNAseemsimportant forproperfunctioningofthetranslationmachineryathighertemperatures. Two high temperaturesensitive mutants showed insertions in putative ABC transporters ( lmo0986 and lmo1746 ). The expression of lmo0986 was transiently down regulated during heatshock (34). The insertion in lmo1746 probably resulted in polar effectson virS (lmo1741),whichislocatedinthesameoperon.Wealsofoundamutant withaninsertionin virS ,whichrenderedahightemperaturesensitivephenotype.VirSisa histidinekinaseandformsatwocomponentsystemwithVirR(lmo1745)(39).Boththe dlt operonandtheclassIheatshockresponsearedownregulatedina virS mutant(23), whichmightexplainthetemperaturesensitivityofthesemutants.

111

Threemutantsshowedinsertionsingeneswithaknownstressrelatedfunction.One ofthesetemperaturesensitivemutantsshowedtheinsertionintheCtsRregulatedclassIII heatshockgene clpB (lmo2206).Thismutantshowed3log 10 higherreductionincfu’safter 20minexposureto55ºCcomparedwiththewildtypestrain(Fig.3). ClpB expressionis inducedduringheatshockin L. monocytogenes EGDe(34)anditsproductfunctionsasa molecularchaperone,therebyprotectingproteinsduringexposuretovariousstresses(21). For L. monocytogenes itwasshownthatClpBisimportantforvirulenceaswell(4). Anothertemperaturesensitivemutantcontainedaninsertioninageneencodinga putativeAddAtypehelicase(lmo2267),whichisgenerallyinvolvedinprocessingofDNA breaks.Wholegenometranscriptionprofilingstudiesshowedthatthisgeneistransiently upregulatedafterheatshock(34).ItcontainsaputativeLexAbindingsite,suggestingitis partoftheSOSresponse(resultsnotshown).Deletionof addA hasbeenshowntoresultin sensitivitytoDNAdamagingagentsandreducedviabilityinnumerousbacteria(41).The addA insertionmutantshowedincreasednumbersofelongatedcells(Fig.2),whichmight betheresultofreducedcapabilitiesforDNArepairduringreplication. Notably,ageneencodingaputativelysinedecarboxylase(lmo2694)wasfoundto beimportantforhightemperaturegrowth.Thisgenewasalsotransientlyinducedduring heatshock in L. monocytogenes (34). However, this mutant did not show increased sensitivity to heatinactivation at 55 ºC compared with the wildtype strain (Fig. 3). DecarboxylasesystemsareusuallyinvolvedinlowpHandoxidativestressresponse(17). Various researchers have speculated that exposure to stress, including heatstress, is associatedwithconcomitantoxidativestressatamolecularlevelduetometabolicdisorders (7). Decarboxylase systems are involved in superoxide radical scavenging, thereby preventingDNAdamage(17). Taken together, these results show that growth at high temperatures requires adequatemechanismstocounteracteffectsofproteininstabilityandDNAdamage.In L. monocytogenes ,thesesystemsincludee.g.theheatshockresponse,theSOSresponse,and specificstressresponses. Inshort,weidentifiedanumberofgenesof L. monocytogenes thatareimportantfor growth at high temperatures. Some belong to specific stress responses (e.g. heatshock response or SOSresponse). These responses are induced during heatshock as well, indicatingapotentialoverlapintheheatshockresponseandgrowthathightemperature. Anothergroupofgenesimportantforgrowthathightemperaturesincludesgenesencoding factorsinvolvedincellwallsynthesis,indicatingtheimportanceofaproperlysynthesized cellwall under such conditions. One other remarkable outcome of this study is the importanceofthetranslationmachineryunderhightemperatureconditions.Mutationsin genesinvolvedinribosomeprocessingortRNAmodificationresultedinreducedgrowthat high temperatures, which indicates that ribosomes and tRNA need to be processed for

112

proper functioning at high temperatures. We anticipate that further molecular characterization of the here described mutants by advanced functional genomics studies will provide insight in how L. monocytogenes adapts to high temperatures that can be encounteredduringfoodprocessing. Acknowledgements WethankSaskiavanSchalkwijkfortechnicalassistance. References 1. Abachin,E.,C.Poyart,E.Pellegrini,E.Milohanic,F.Fiedler,P.Berche,andP. TrieuCuot. 2002.FormationofDalanyllipoteichoicacidisrequiredforadhesion andvirulenceof Listeria monocytogenes .MolMicrobiol 43: 114. 2. Aoki,H.,K.Dekany,S.L.Adams,andM.C.Ganoza.1997.Thegeneencoding theelongationfactorPproteinisessentialforviabilityandisrequiredforprotein synthesis.JBiolChem 272: 322549. 3. Begley, M., C. G. Gahan, and C. Hill. 2002. Bile stress response in Listeria monocytogenesLO28:adaptation,crossprotection,andidentificationofgeneticloci involvedinbileresistance.ApplEnvironMicrobiol 68: 600512. 4. Chastanet,A.,I.Derre,S.Nair,andT.Msadek. 2004. clpB ,anovelmemberof the Listeria monocytogenes CtsRregulon,isinvolvedinvirulencebutnotingeneral stresstolerance.JBacteriol 186: 116574. 5. Datta, P. P., D. N. Wilson, M. Kawazoe, N. K. Swami, T. Kaminishi, M. R. Sharma, T. M. Booth, C. Takemoto, P. Fucini, S. Yokoyama, and R. K. Agrawal. 2007.StructuralaspectsofRbfAactionduringsmall ribosomal subunit assembly.MolCell 28: 43445. 6. Deuerling,E.,B.Paeslack,andW.Schumann. 1995.The ftsH geneof Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol 177: 410512. 7. Dodd,C.E.,P.J.Richards,andT.G.Aldsworth. 2007.Suicidethroughstress:a bacterialresponsetosublethalinjuryinthefoodenvironment.IntJFoodMicrobiol 120: 4650. 8. Doorduyn,Y.,C.M.deJager,W.K.vanderZwaluw,W.J.Wannet,A.van der Ende, L. Spanjaard, and Y. T. van Duynhoven. 2006. First results of the active surveillance of Listeria monocytogenes infectionsintheNetherlandsreveal higherthanexpectedincidence.EuroSurveill11: E0604204. 9. Duwat, P., A. Cochu, S. D. Ehrlich, and A. Gruss. 1997. Characterization of Lactococcus lactis UVsensitivemutantsobtainedbyISS1transposition.JBacteriol 179: 44739.

113

10. Fischer,B.,G.Rummel,P.Aldridge,andU.Jenal. 2002.TheFtsHproteaseis involved in development, stress response and heat shock control in Caulobacter crescentus .MolMicrobiol 44: 46178. 11. Fotheringham,I.G.,S.A.Bledig,andP.P.Taylor. 1998.Characterizationofthe genes encoding Damino acid transaminase and glutamate racemase, two D glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J Bacteriol 180: 431923. 12. Frees,D.,L.E.Thomsen,andH.Ingmer. 2005. Staphylococcus aureus ClpYQ playsaminorroleinstresssurvival.ArchMicrobiol 183: 28691. 13. Glaser,P.,L.Frangeul,C.Buchrieser,C.Rusniok,A.Amend,F.Baquero,P. Berche,H.Bloecker,P.Brandt,T.Chakraborty,A.Charbit,F.Chetouani,E. Couve, A. de Daruvar, P. Dehoux, E. Domann, G. DominguezBernal, E. Duchaud, L. Durant, O. Dussurget, K. D. Entian, H. Fsihi, F. Garciadel Portillo,P.Garrido,L.Gautier,W.Goebel,N.GomezLopez,T.Hain,J.Hauf, D.Jackson,L.M.Jones,U.Kaerst,J.Kreft,M.Kuhn,F.Kunst,G.Kurapkat, E.Madueno,A.Maitournam,J.M.Vicente,E.Ng,H.Nedjari,G.Nordsiek,S. Novella, B. de Pablos, J. C. PerezDiaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter,N.Simoes,A.Tierrez,J.A.VazquezBoland,H.Voss,J.Wehland, andP.Cossart. 2001.ComparativegenomicsofListeriaspecies.Science 294: 849 52. 14. Hur,S.,andR.M.Stroud. 2007.HowU38,39,and40ofmanytRNAsbecome thetargetsforpseudouridylationbyTruA.MolCell26: 189203. 15. ILSI. 2005. Achieving continuous improvement in reductions in foodborne listeriosisariskbasedapproach.JFoodProt 68: 193294. 16. Kallipolitis, B. H., and H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 204: 1115. 17. Kim,J.S.,S.H.Choi,andJ.K.Lee. 2006.Lysinedecarboxylaseexpressionby Vibrio vulnificus isinducedbySoxRinresponsetosuperoxidestress.JBacteriol 188: 858692. 18. Koch, J., and K. Stark. 2006. Significant increase of listeriosis in Germany epidemiologicalpatterns20012005.EuroSurveill 11: 858. 19. Korsak,D.,W.Vollmer,andZ.Markiewicz. 2005. Listeria monocytogenes EGD lacking penicillinbinding protein 5 (PBP5) produces a thicker cell wall. FEMS MicrobiolLett 251: 2818. 20. Kyrpides, N. C., and C. R. Woese. 1998. Universally conserved translation initiationfactors.ProcNatlAcadSciUSA 95: 2248. 21. Liu,S.,J.E.Graham,L.Bigelow,P.D.Morse,2nd,andB.J.Wilkinson. 2002. Identificationof Listeria monocytogenes genesexpressedinresponsetogrowthat lowtemperature.ApplEnvironMicrobiol 68: 1697705. 22. Maguin,E.,H.Prevost,S.D.Ehrlich,andA.Gruss.1996.Efficientinsertional mutagenesisinlactococciandothergrampositivebacteria.JBacteriol 178: 9315. 23. Mandin, P., H. Fsihi, O. Dussurget, M. Vergassola, E. Milohanic, A. Toledo Arana, I. Lasa, J. Johansson, and P. Cossart. 2005.VirR,aresponseregulator criticalfor Listeria monocytogenes virulence.MolMicrobiol 57: 136780.

114

24. Matsuo, M., K. Kurokawa, S. Nishida, Y. Li, H. Takimura, C. Kaito, N. Fukuhara,H.Maki,K.Miura,K.Murakami,andK.Sekimizu. 2003.Isolation and mutation site determination of the temperaturesensitive murB mutants of Staphylococcusaureus.FEMSMicrobiolLett 222: 10713. 25. Mead,P.S.,L.Slutsker,V.Dietz,L.F.McCaig,J.S.Bresee,C.Shapiro,P.M. Griffin,andR.V.Tauxe. 1999.FoodrelatedillnessanddeathintheUnitedStates. EmergInfectDis 5: 60725. 26. Meier, S., C. Goerke, C. Wolz, K. Seidl, D. Homerova, B. Schulthess, J. Kormanec, B. BergerBachi, and M. Bischoff. 2007. σ B and the σ Bdependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus . InfectImmun 75: 456271. 27. Menendez, A., L. Fernandez, P. Reimundo, and J. A. Guijarro. 2007. Genes requiredfor Lactococcus garvieae survivalinafishhost.Microbiology 153: 3286 94. 28. Ohashi,Y.,T.Inaoka,K.Kasai,Y.Ito,S.Okamoto,H.Satsu,Y.Tozawa,F. Kawamura, and K. Ochi. 2003. Expression profiling of translationassociated genes in sporulating Bacillus subtilis and consequence of sporulation by gene inactivation.BiosciBiotechnolBiochem 67: 224553. 29. Park, S. F., and G. S. Stewart. 1990. Highefficiency transformation of Listeria monocytogenesbyelectroporationofpenicillintreatedcells.Gene 94: 12932. 30. Scheffers,D.J.,L.J.Jones,andJ.Errington. 2004.Severaldistinctlocalization patternsforpenicillinbindingproteinsin Bacillus subtilis .MolMicrobiol 51: 749 64. 31. Shen,A.,andD.E.Higgins. 2006.TheMogRtranscriptionalrepressorregulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes .PLoSPathog 2: e30. 32. Skandamis,P.N.,Y.Yoon,J.D.Stopforth,P.A.Kendall,andJ.N.Sofos. 2008. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiplesublethalstresses.FoodMicrobiol 25: 294303. 33. Tasara,T.,andR.Stephan. 2006.Coldstresstoleranceof Listeria monocytogenes : Areviewofmolecularadaptivemechanismsandfoodsafetyimplications.JFood Prot 69: 147384. 34. vanderVeen,S.,T.Hain,J.A.Wouters,H.Hossain,W.M.deVos,T.Abee,T. Chakraborty,andM.H.WellsBennik. 2007.Theheatshockresponseof Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis,andtheSOSresponse.Microbiology 153: 3593607. 35. vanderVeen,S.,R.Moezelaar,T.Abee,andM.H.WellsBennik. 2008.The growthlimitsofalargenumberof Listeria monocytogenes strainsatcombinations ofstressesshowserotypeandnichespecifictraits.JApplMicrobiol. 36. Walker, S. J., P. Archer, and J. G. Banks. 1990. Growth of Listeria monocytogenes atrefrigerationtemperatures.JApplBacteriol 68: 15762. 37. Walter, J., D. M. Loach, M. Alqumber, C. Rockel, C. Hermann, M. Pfitzenmaier,andG.W.Tannock. 2007.Dalanylesterdepletionofteichoicacids in Lactobacillus reuteri 10023 results in impaired colonization of the mouse gastrointestinaltract.EnvironMicrobiol 9: 175060.

115

38. Wehrl, W., M. Niederweis, and W. Schumann. 2000. The FtsH protein accumulatesattheseptumof Bacillus subtilis duringcelldivisionandsporulation.J Bacteriol 182: 38703. 39. Williams, T., S. Bauer, D. Beier, and M. Kuhn. 2005. Construction and characterization of Listeria monocytogenes mutantswithinframedeletionsinthe responseregulatorgenesidentifiedinthegenomesequence.InfectImmun 73: 3152 9. 40. Xia,B.,H.Ke,U.Shinde,andM.Inouye. 2003.TheroleofRbfAin16SrRNA processing and cell growth at low temperature in Escherichia coli . J Mol Biol 332: 57584. 41. Yeeles,J.T.,andM.S.Dillingham. 2007.AdualnucleasemechanismforDNA breakprocessingbyAddABtypehelicasenucleases.JMolBiol 371: 6678. 42. Yim,L.,I.Moukadiri,G.R.Bjork,andM.E.Armengod. 2006.Furtherinsights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli .NucleicAcidsRes 34: 5892905. 43. ZawadzkaSkomial,J.,Z.Markiewicz,M.NguyenDisteche,B.Devreese,J.M. Frere, and M. Terrak. 2006. Characterization of the bifunctional glycosyltransferase/acyltransferase penicillinbinding protein 4 of Listeria monocytogenes .JBacteriol 188: 187581. 44. Zellmeier, S., U. Zuber, W. Schumann, and T. Wiegert. 2003.Theabsenceof FtsHmetalloproteaseactivitycausesoverexpressionoftheσ Wcontrolled pbpE gene, resultinginfilamentousgrowthof Bacillus subtilis .JBacteriol 185: 97382.

116

6. The Listeria monocytogenes motility regulator MogR controls expression of clpB andaffectsstressresistance StijnvanderVeen,InekeK.H.VanBoeijen,WillemM.DeVos,Tjakko Abee,MarjonH.J.WellsBennik Submittedforpublication Abstract Listeria monocytogenes is a foodborne pathogen that can survive adverse environmentalconditionsandcolonizeitshostsduetoaninteractivenetworkofresponses. It contains a large number of regulators, including the recently identified motility gene repressor MogR, which controls the expression of the flagellar motility genes in a temperaturedependentmanner.InthisstudywedemonstratedthattheclassIIIheatshock gene clpB also belongs to the MogR regulon. ClpB is required for proper refolding of damagedproteins. ClpB geneexpressionwasincreasedintheabsenceofMogRrepression inamogR strain,resultinginincreasedresistanceof L. monocytogenes toheatandhigh hydrostaticpressure(HHP).Apivotalrolefor clpB inheatstressandHHPresistancewas further substantiated by our findings that a clpB mutant and a mogR clpB mutant showeddecreasedresistancetoheatandtoHHPcomparedwiththewildtypestrain.The specific role that ClpB plays in the resistance to these stresses was demonstrated by overexpressionof clpB .TheMogRcontrolledconcomitantexpressionofflagellarmotility genesand clpB mayindicatearoleforthischaperoneinthemaintenanceofflagellaprotein quality.

117

Introduction Listeria monocytogenes is a Grampositive foodborne pathogen, which is the causative agent of listeriosis. This bacterium can survive and even grow under adverse conditionsduetoacomplexnetworkofdifferentstressresponses.Inthelastdecade, L. monocytogenes beenstudiedextensivelyandisnowregardedasoneofthemodelGram positiveorganismsforvirulence(29,37),motility(31,33),andstressresponse(26,32,35, 36).Thedifferentpathwaysinvolvedinstresssurvival,virulence,andmotilityarecomplex and their potential interactions have not all been unraveled. Many important central regulatorshavesofarbeenidentifiedin L. monocytogenes ,includingCtsR(23)andHrcA (10) for heatshock, SigB (39) for general stress response, PrfA (21) for virulence, and MogR(9)andDegU(40)formotility.Moreover,variousinteractionsbetweenthesecentral regulators and their regulons have been identified (11, 12, 15, 18, 36, 39), whereby overlappingfunctionsarepossible. L. monocytogenes cangrowandsurviveinvariousniches,rangingfromcoldwet environmentstowarmbloodedhosts.Uponuptakebythehost,expressionofvirulenceand stressfactorsisofteninducedbythetemperatureshift.Temperaturedependentexpression ofspecificgenesandregulatorsisthereforeimportantforthepathogenicity,motility,and stressresponseof L. monocytogenes .Sofar,fourtemperaturesensitivecentralregulators havebeenidentifiedin L. monocytogenes ,namely,PrfA,MogR,CtsR,andHrcA.PrfAis themajorvirulenceregulator.Translationof prfA mRNAtoPrfAproteindependsonthe conformationofathermosensorintheuntranslatedmRNAprecedingthe prfA gene;PrfA proteinisonlysynthesizedattemperaturesof37ºCandabove,followedbyactivationof transcriptionofvirulencegenes(13).TheactivityofthecentralmotilityregulatorMogRis alsotemperaturedependent:at37ºCandaboveMogRrepressesmotilitygenes,whileat lower temperatures MogR repression is antagonized by the GmaR protein, resulting in flagellasynthesis(31).Studieson L. monocytogenes motilityandvirulencehaveshownthat basedmotilityisimportantfortheinitialphaseofhostinvasionbutthatflagella donotplayaroleinadhesiontothehostcells(25).Sinceflagellaarepotentialtargetsfor the host immune response, their expression is repressed during infection. Lastly, the activitiesoftheheatshockresponseregulatorsHrcAandCtsRaretemperaturedependent. HrcAandCtsRarerepressorsthatregulatetheclassIandclassIIIheatshockresponse, respectively. These responses are activated upon intracellular accumulation of protein aggregates and damaged proteins during exposure to stressful conditions such as high temperatures or the host environment, to maintain the quality and functionality of the proteinpool(4,6,17,24). Recent findings suggest that the MogR regulator might have a role that is more genericthanjusttheregulationofmotilitygenes.TheMogRproteinbindsdirectlytoa

118

minimum of two TTTTN5AAAA recognition sites typically separated by 7 to 9, or alternatively,by17to19basepairs.Whiletheserecognitionsitesarepresentupstreamof motilitygenesof L. monocytogenes ,variousothergeneshavealsobeenpredictedtocontain aMogRbindingsiteintheirpromoterregion(30).However,thesegeneshavenotbeen investigatedinrelationtoMogRthusfar. Inthisstudy,weidentifiedtwoMogRbindingsitesinthepromoterregionofthe heatshockgene clpB, whichbelongstotheCtsRregulon,anddemonstratedthatMogRco regulates clpB . Furthermore, induction of ClpB in the absence of MogR repression contributedtosurvivaluponexposuretoheatandhighhydrostaticpressure(HHP)of L. monocytogenes .GiventheroleofClpBinproteinqualitycontrol,regulationofClpBby MogRlikelyplaysanimportantroleinqualitymaintenanceofproteintertiarystructureand properfoldingduringflagellasynthesis. MaterialsandMethods Strains,media,andplasmids L monocytogenes EGDe(8)andmutantsthereof(Table1)wereusedthroughoutthe study.Singlecoloniesofthestrainswereinoculated and grown in Brain Heart Infusion (BHI) broth (Difco) with shaking (200 rpm; New Brunswick type C24KC). When appropriate,antibioticswereaddedtothemedium(10gml 1erythromycin[Sigma]or2 gml 1 chloramphenicol [Sigma]). Recombinant DNA techniques were performed followingstandardprotocols(27).The clpB deletionmutantwasconstructedbyusingthe suicide plasmid pAULaclpB , which contains the flanking regions of the clpB gene, resultingina2577bpinternaldeletion.Thisplasmidwasconstructedusingthetemperature sensitivesuicideplasmidpAULa(1)andtheprimersclpBA,clpBB,clpBC,andclpBD (Table 2) following the protocol described by Wouters et al. (41). The mogR deletion mutantwasconstructedwiththetemperaturesensitivesuicideplasmidpSvS26(Table1) andtheprimersmogRA,mogRB,mogRC,andmogRD(Table2)followingtheprotocol describedbyLambertetal.(19),resultinginan897bpinternaldeletion.PlasmidpSvS26 was constructed by cloning the XhoIScaI digested origin of replication fragment from vector pGH9:ISS1 (22) in the NheIScaI digested plasmid pNZ5319 (19). The clpB mogR doubledeletionmutantwasconstructedbyusingthesuicideplasmidpAULaclpB (Table 1) in the mogR strain following the protocol from Wouters et al. (41). To complement clpB in clpB strainsandtooverexpress clpB invariousbackgrounds, clpB wasintroducedintheinducibleplasmidpSPAC(7)bycloningaPCRfragmentusingthe primers clpBE and clpBF (Table 2) in the XbaIPstI digested plasmid pSPAC, which contains an isopropylβDthiogalactopyranoside ( IPTG) inducible promoter, resulting in plasmidpSPACclpB (Table1).

119

Table1.Bacterialstrainsandplasmidsusedinthisstudy Strainsorplasmids Relevantgenotypeorcharacteristics Reference L. monocytogenes EGDe Wildtypeserotype1/2astrain (8) mogR EGDemogR Thisstudy clpB EGDeclpB Thisstudy mogR clpB EGDemogR clpB Thisstudy EGDepSPAC EGDestraincontainingplasmidpSPAC Thisstudy clpB pSPAC EGDeclpB straincontainingplasmidpSPAC Thisstudy clpB pSPACclpB EGDeclpB straincontainingplasmidpSPACclpB Thisstudy mogR clpB pSPAC EGDemogR clpB straincontainingplasmidpSPAC Thisstudy mogR clpB EGDemogR clpB straincontainingplasmidpSPACclpB Thisstudy pSPACclpB Plasmids Em r;CloningplasmidforgenereplacementsinGrampositive pAULa (1) bacteria Em r; pAULa derivative containing homologous regions up pAULaclpB Thisstudy anddownstreamofEGDe clpB Cm r Em r; pNZ5319 derivative containing the temperature pSvS26 Thisstudy sensitiveoriginofreplicationofplasmidpGHost9:ISS1 Cm r Em r; pSvS26 derivative containing homologous regions pSvS28 Thisstudy upanddownstreamofEGDe mogR Em r; Plasmid for random mutagenesis of Grampositive pGHost9:ISS1 (22) bacteria Cm r Em r; Cloning plasmid for gene replacements in Gram pNZ5319 (19) positivebacteria Cm r; Shuttle plasmid containing IPTGinducible P pSPAC spac (7) promoter pSPACclpB Cm r;pSPACderivativecontaining clpB Thisstudy QuantitativePCR(QPCR) To determine the clpB-expression levels, strains were grown overnight and inoculated (0.5%) in 10 ml BHI broth in 100 ml conical flasks. In three independent

experiments,culturesweregrownat30ºC,37ºC,and43ºCuntilOD 600 0.5andsamplesof 0.5 ml were rapidly removed and diluted in 1.0 ml RNAprotect (Qiagen). After 5 min incubation at room temperature and 5 min centrifugation at 5000 x g (Eppendorf type 5417R) pellets were stored at 80 ºC. RNA extraction was performed as described previously (4). First strand cDNA synthesis and qPCR reactions were performed as

120

describedpreviouslybyVanderVeenetal.(36)usingprimersclpBGandclpBH(Table 2).Relativeexpressionlevelswerecorrectedusingthehousekeepinggenestpi(tpiAand tpiB),rpoB(rpoBAandrpoBB),and16SrRNA(16SrRNAAand16SrRNAB)(Table2 forprimers). Table2.PCRprimersusedinthisstudy Primer Sequence(5’3’)a clpBA GTGGGGATCC CTTGCGCTGAATTTATACCT clpBB GTGGGCGGCCGC TTGTAAATCCATTCATTCGTC clpBC GTGGGCGGCCGC GTCACAGAATAACCTAAAAAAGG clpBD GTGGGTCGAC TAATGGCAGAATTCGTTCTT clpBE GTGGACTAGT CTTTTATAAGGAGGACGAATGA clpBF GTGGCTGCAG GAAGTGTCAAACCTTTTTTAGG clpBG CGAAGGATTAGCGCAACGTA clpBH GCTCCAGCAATAAGGGAACC mogRA AACCCTCGAG ACTTGGTTGGGCGGCAAATT mogRB TGATTTAGGCATACAATCAC mogRC AAACAAATGTAATTTAGAAG mogRD AACCAGATCT TATTTCTCGCAATCATCAAC tpiA AACACGGCATGACACCAATC tpiA CACGGATTTGACCACGTACC rpoBA CGTCGTCTTCGTTCTGTTGG rpoBA GTTCACGAACCACACGTTCC 16SrRNAA GATGCATAGCCGACCTGAGA 16SrRNAB TGCTCCGTCAGACTTTCGTC aNucleotidesintroducedtocreaterestrictionsitesareunderlined Heatinactivation Todeterminetheheatresistanceofthedifferentmutantstrainsandwiththewild typestrain,culturesweregrownovernightandinoculated(0.5%)in10mlBHIbrothin100 mlconicalflasks.Inthreeindependentexperiments,culturesweregrownat30ºCand37

ºC until OD 600 0.5andduringthelasttwohoursofgrowth0.5mM IPTG (Sigma) was addedwhenappropriate.Thecultureswerecentrifugedfor10min at4300rpmatroomtemperature(Heraeustypemegafuse1.0R)andthepelletswere resuspendedin1ml1xphosphatebufferedsaline(PBS;Sigma).Thecellswereaddedto9 mlprewarmedPBS(55ºC)in100mlconicalflasksandplacedinashakingwaterbath (60%shakingspeed;GFLtype1083)at55ºC.Inactivationwasdeterminedafter18min heatexposure.SamplesweretakenandappropriatedilutionswereplatedonBHIagar.The plateswereincubatedat30ºCfor35daysandcolonieswerecounted.

121

HHPinactivation TheHHPinactivationexperimentswerestartedbyinoculating(0.5%)of25mlBHI broth in 100 ml conical flasks using cultures that were grown overnight. Cultures were growninthreeindependentexperimentsat30ºCand37ºCtoanOD 600 0.5.Duringthelast two hours of growth 0.5 mM IPTG was added when appropriate. The cultures were harvestedbycentrifugationat2600xgfor5minat room temperature (Eppendorf type 5810R).ThepelletswerewashedtwicewithN(2acetamido)2aminoethanesulfonicacid (ACES;Sigma)buffer(pH7.0)andresuspendedin1.5 ml ACES buffer. Sterile plastic stomacherbags(Seward)of1.5x6cmwerefilledwith0.7mlcellsuspensionandvacuum sealed.ThebagswereplacedinglycolintheHHPunit(Resato)andexposedto350MPaat 20ºC.Thepressurewasbuiltupatarateof400MPa/minduringwhichthetemperatureof thesampletransientlyincreasedwith15ºC.Fourminafterthestartofthepressurebuiltup thetemperaturewasbackat20ºC.Inactivationof L. monocytogenes wasdeterminedafter 20minHHPexposureatthesetconditions.SampleswereserialdilutedandplatedonBHI agar.Theplateswereincubatedat30ºCfor5daysandcolonieswerecounted. Results

35 CTTTTTCTATAAAAA AAGAAGGTTTTTGT TAGACA AAAGCAA MogR1MogR2 10+1CtsR GATAAAAAAC TATAAT AAAGTT AAGGTCAAAAA AGTCAGA MogR3 RBS CTTATCTTTTAT AA GGAGG ACGAATGA ATG GAT MogR4MD

Fig. 1. The clpB promoter region contains four putative MogR recognition sites. The MogR recognition sites are indicated and underlined. The –35 and 10 promoter sequences, the +1 transcriptionalstartsite,theCtsRbindingsite,thepotentialRBSsequence,andthetranslational startsiteareindicatedandgiveninbold(adaptedfromChastanetetal.(2)).Thefirsttwoamino acidsofClpBareindicatedbelowthenucleotidesequence. MogRbindingsitesinthe clpB upstreamregion

Analysis of the promoter region of clpB revealedthepresenceoffourTTTTN5 AAAAMogRrecognitionsitesresultingintwoputativeMogRbindingsites(Fig.1).The first two recognition sites (MogR1 and MogR2) were separated by 7 to 9 base pairs overlapping the –35 sequence of the promoter. A single mismatch was observed in the

122

second recognition site. The two other recognition sites (MogR3 and MogR4) were separatedby9bp,andhadoverlapwiththeCtsRbindingsiteandthetranscriptionalstart siteof clpB (2).EachofthelattertwoMogRrecognitionsitescontainedtwomismatches withtheconsensussequence. ImpactoftemperatureandMogRon clpB expression To determine whether MogR regulates clpB expression, a mogR strain was constructed(Table1)andtheexpressionlevelsofclpB weredeterminedinthismutantand intheisogenicwildtypestrainbyQPCRaftergrowthat30ºC,37ºC,and43ºC(Fig.2). TheclpB expressionlevelswerelowerinthewildtypestrainthaninthe mogR strainat alltemperatures,indicatingarepressorfunctionofMogRon clpB .Boththewildtypeand mogR mutant strains showed induced expression of clpB at 37 °C and 43 °C, which resultsfromalossofCtsRrepressionatthesetemperatures(6). MogRinfluencesheatandHHPsurvivalthrough clpB repression TodeterminewhetherMogRrepresses clpB expressionandtherebyaffectssurvival upon heat and HHP exposure, we performed inactivation experiments of the wildtype strain,themogR strain,the clpB strain,andthe mogR clpB doublemutantstrainafter

12

10

8

6

Relativeexpression 4

2

0 30 37 43 ºC

Fig.2.ImpactoftemperatureandMogRonthe clpB expressionlevels.Thegraphpresentsthe relativeexpressionlevelsof clpB duringexponentialgrowthat30ºC,37ºC,and43ºCinBHI brothforthewildtype(darkgrey)andmogR (lightgrey)strains.The clpB expressionofthe wild typestraingrownat30 ºCwassetatone.

123

A

7

6

5

4

3 Reduction(logcfu/ml) 2

1

0 wildtype mogR clpB mogRclpB

B

8

7

6

5

4

3 Reduction(logcfu/ml). 2

1

0 wildtype mogR clpB mogRclpB

Fig. 3. MogR influences heat and HHPsurvival through clpB repression. The graphs present heatandHHPinactivationofthewildtypeandmutantstrainsafterexponentialgrowthat30ºC (dark grey) and 37 ºC (light grey) in BHI broth. A) Reduction in viable count after 18 min exposureto55ºC.B)Redu ctioninviablecountsafter20minexposureto350MPaat20ºC.

124

growthat30ºCand37ºC(Fig.3).ThemogR mutantstrainshowedhigherresistanceto heatinactivation(Fig.3A)andHHPinactivation(Fig.3B)thanthewildtypestrainafter growth at both 30 ºC and 37 ºC. Furthermore, both of these strains showed increased resistancetoheatandHHPaftergrowthat37ºCcomparedwithgrowthat30ºC.These resultsareconsistentwiththeobserved clpB expressionlevels,supportingapivotalrolefor ClpBinheatandHHPresistance.Thisrolewasfurthersubstantiatedbytheresultsofthe clpB andthe mogR clpB mutantstrains.Bothofthelattermutantsshowedlowerheat andHHPresistancethanthewildtypestrainaftergrowthat30ºCand37ºC. Complementationandoverexpressionof clpB Toverifywhethertheobserveddifferencesbetweenthewildtypeandmutantstrains withregardtoheatandHHPinactivationcouldbeattributedtoClpB,theclpB andthe mogR clpB strains were complemented for clpB using the IPTGinducible plasmid pSPACclpB (Table1).Experimentswereperformedaftergrowthat30ºCand37ºCusing the clpB complementedstrainsandwildtypestrainstransformedwiththeemptyplasmid pSPAC(Fig.4).Theinactivationofthemutantstrainswascomparedwithinactivationof the wildtype with empty plasmid. The clpB and mogR clpB strains complemented withtheplasmidpSPACclpB showedhigherresistancetoheatandHHPinactivationthan thewildtypestrain.The clpB expressionlevelsofthecomplementedstrainsaftergrowthat both30ºCand37ºCwereverifiedbyQPCRanalyses(Fig.5).Thecomplementedmutant strainsshowedhigher clpB expressionlevelsthanthewildtypestrain,whichisconsistent withtheresultsfromtheheatandHHPinactivationexperiments. Discussion Inthisstudy,wedemonstratedthatMogRregulatesthestressresistancegene clpB , whichestablishesClpBasanewMogRregulonmember.MogR mediated repression of clpB expression resulted in reduced heat and HHPresistance of L. monocytogenes , demonstrating a significant impact of this Clp protein on the survival capacity of this humanpathogen. The promoter region of clpB contains two putative MogR binding sites and four MogRrecognitionsitesoverlappingthepromoter,thetranscriptionalstartsite,andtheCtsR bindingsite.Tightrepressionof clpB expressionbyCtsRhaspreviouslybeendemonstrated (2),butthepresenceofMogRbindingsitesalsosuggestsrepressionof clpB expressionby

MogR.ThepresenceoftwomismatcheswiththeTTTTN5AAAAconsensussequencein twooftheMogRrecognitionsites(MogR3andMogR4)doesnotruleoutMogRbinding, since Shen and Higgins (30) showed that it requires four mismatches within one of the recognitionsitestopreventbindingofMogR.Wedemonstratedthat clpB expressionis

125

A

7

6

5

4

3 Reduction(logcfu/ml) 2

1

0 B wildtype clpB clpBc mogRclpB mogRclpBc

8

7

6

5

4

3 Reduction(logcfu/ml). 2

1

0 wildtype clpB clpBc mogRclpB mogRclpBc Fig.4.Overexpressionof clpB resultsinincreasedheatandHHPresistance.Thegraphspresent heat and HHP inactivation of the wildtype and mutant strains transformed with the empty plasmidpSPACorthecomplementationplasmidpSPACclpB (c)afterexponentialgrowthat30 ºC(darkgrey)and37ºC(lightgrey)inBHIbrothwith0.5mMIPTGinductionfor2hours.A) Reductioninviablecountafter18minexposureto55ºC.B)Reductioninviablecountsafter20 minexposureto350MPaat20ºC.

126

indeedregulatedbyMogRbyshowingthathigher clpB expressionlevelswerepresentina mogR mutantthaninthewildtypestrainaftergrowthatdifferenttemperatures. ClpB expressionat30ºCwashigherinthemogR mutantthaninthewildtype.At thistemperature,MogRrepressionisantagonizedbytheproteinGmaRinthewildtype strain,resultinginafunctionalknockoutstrainforMogRrepressionactivity.However,the differencesmightbepartiallyexplainedbythebackgroundrepressionactivityofMogRat thistemperatureinthewildtypestrain. ThetworepressorsCtsRandMogRregulate clpB expression.Atlowtemperatures (30ºCandbelow), clpB expressionisrepressedbyCtsR,whileathightemperatures(37ºC andabove), clpB expressionisrepressedbyMogR.Thisindicatesthattightregulationof clpB expressionisimportantforthe L. monocytogenes .ClpBisamolecularchaperonethat plays a role in unfolding and reactivating aggregated proteins in both prokaryotes and (42). Simultaneousregulationofthemotilitygenesand clpB byMogRindicatesarolefor the chaperone ClpB in the production and quality maintenance of flagellar proteins. Notably, flagella are very complex structures that require coordinate expression and productionoflargenumbersofproteinsforitssynthesisandfunction(forreviewsee(5)). Awellfunctioningproteinmaintenancesystemseemsthereforeimportant. ClpBseemstoplayanimportantroleinstressresistance.Previousresearchshowed thatanatural ctsR mutantin L. monocytogenes strainScottAwasmoreresistanttoheat inactivation (14) and HHPinactivation (15) due to overexpression of the clp genes. For Tetragenococcus halophilus ithasbeendemonstratedthatClpBformshomohexamericring structuresunderregularconditionsanddissociatesintomonomersanddimersuponastress response (34). A recent study in Escherichia coli revealed that ClpB is involved in the reactivationofproteinaggregateswhichaccumulateunderthermalstress,suggestingarole for ClpB in maintenance of intracellular protein quality (38). The heat and HHP inactivation experiments performed in this study using the mogR , clpB , and mogR clpB mutants, indeed showed that resistance to these stresses was repressed by MogR throughrepressionof clpB expression.Complementationandoverexpressionof clpB inthe clpB , and mogR clpB mutants resulted in increased stress resistance, showing that ClpBisimportantforbothheatandHHPresistance. Heatresistance is dependent on the presence of ClpB, while HHPresistance can alsobeinducedbyotherfactorsliketheKJEchaperoninsystem( dnaK , dnaJ ,and grpE )or otherclassIorclassIIIheatshockgenes(15,23,36)inabsenceofClpB.Ingeneral,the CtsRregulatedclassIIIheatshockgenes( clpB ),andtheHrcAregulatedclassIheatshock genes dnaK , dnaJ ,and grpE areexpressedathigherlevelsat37ºCthanat30ºC(3,6,10). TheKJEsystemformsabichaperonesystemwithClpB,whichsolubilizesandreactivates protein aggregates (20, 28, 38). Large protein aggregates are reduced to medium sized

127

1000

100

Relativeexpression 10

1 wildtype clpBc mogRclpBc

Fig. 5. Expression analysis in the clpB overexpressing mutant. The graph presents the relative clpB expressionlevelsofthewildtypestraintransformedwiththeemptyplasmidpSPACand mutantstrainstransformedwiththecomplementationplasmidpSPACclpB (c)afterexponential growthat30ºC(darkgrey)and37ºC(lightgrey)inBHIbrothwith0.5mMIPTGinductionfor 2hours.The clpB expressionofthewildtypestraintransformedwithpSPACandgrownat30ºC wassetatone. aggregatesbyClpB,whichinturnareeitherdirectlyrefoldedintheirnativestatebythe KJEsystemorfirsttranslocatedintounfoldedproteinbyjointactivityoftheClpBprotein andtheKJEsystembeforerefoldingbytheKJEsystem.SincebothheatandHHPstress resultinaccumulationofproteinaggregates(16,38),wildtypestrainsaremoreresistantto these stresses after growth at 37 ºC than after growth at 30 ºC. This phenotype was confirmed by our heat and HHPinactivation experiments. The wildtype and mogR mutantstrainsshowedhigherresistanceaftergrowthat37ºCthanaftergrowthat30ºC. However, in those cases where higher HHPresistance for the clpB and mogR clpB mutantswasobservedaftergrowthat37ºCthanaftergrowthat30ºC,noincreaseinheat resistancewasfound.Conceivably,HHPexposureresultsmainlyintheaccumulationof medium sized aggregates whereas heatexposure results in the accumulation of large proteinaggregates,enforcingaroleforClpBinthelatterstresscondition. Thisstudyestablishedaclearlinkbetweenmotilityregulationandstresssurvivalby showingthattheclassIIIheatshockgene clpB isregulatedbythemotilitygenerepressor MogR.Furthermore,weshowedthatClpBiscrucialforL. monocytogenes tosurviveheat

128

andHHPtreatmentsandthatrepressionof clpB byMogRinfluencesthesurvivalcapacity of L. monocytogenes during exposure to these stresses. Lastly, in combination with previousresultsonitsfunctionin L. monocytogenes motilityandvirulence(30),MogRcan nowbeclassifiedagenericregulator. Acknowledgements WethankSaskiavanSchalkwijkforconstructionofthemogR mutantstrain. References 1. Chakraborty,T.,M.LeimeisterWachter,E.Domann,M.Hartl,W.Goebel,T. Nichterlein,andS.Notermans. 1992.Coordinateregulationofvirulencegenesin Listeria monocytogenes requirestheproductofthe prfA gene.JBacteriol 174: 568 74. 2. Chastanet,A.,I.Derre,S.Nair,andT.Msadek. 2004. clpB ,anovelmemberof the Listeria monocytogenes CtsRregulon,isinvolvedinvirulencebutnotingeneral stresstolerance.JBacteriol 186: 116574. 3. Chastanet,A.,J.Fert,andT.Msadek. 2003.Comparativegenomicsrevealnovel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram positivebacteria.MolMicrobiol 47: 106173. 4. Chatterjee,S.S.,H.Hossain,S.Otten,C.Kuenne,K.Kuchmina,S.Machata, E. Domann, T. Chakraborty, and T. Hain. 2006. Intracellular gene expression profileof Listeria monocytogenes .InfectImmun 74: 132338. 5. Chevance, F. F., and K. T. Hughes. 2008.Coordinatingassemblyofabacterial macromolecularmachine.NatRevMicrobiol 6: 45565. 6. Derre, I., G. Rapoport, and T. Msadek. 2000. The CtsR regulator of stress responseisactiveasadimerandspecificallydegradedinvivoat37degreesC.Mol Microbiol 38: 33547. 7. Freitag, N. E., and K. E. Jacobs. 1999. Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria .InfectImmun 67: 184452. 8. Glaser,P.,L.Frangeul,C.Buchrieser,C.Rusniok,A.Amend,F.Baquero,P. Berche,H.Bloecker,P.Brandt,T.Chakraborty,A.Charbit,F.Chetouani,E. Couve, A. de Daruvar, P. Dehoux, E. Domann, G. DominguezBernal, E. Duchaud, L. Durant, O. Dussurget, K. D. Entian, H. Fsihi, F. Garciadel Portillo,P.Garrido,L.Gautier,W.Goebel,N.GomezLopez,T.Hain,J.Hauf, D.Jackson,L.M.Jones,U.Kaerst,J.Kreft,M.Kuhn,F.Kunst,G.Kurapkat, E.Madueno,A.Maitournam,J.M.Vicente,E.Ng,H.Nedjari,G.Nordsiek,S. Novella, B. de Pablos, J. C. PerezDiaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter,N.Simoes,A.Tierrez,J.A.VazquezBoland,H.Voss,J.Wehland,

129

andP.Cossart. 2001.Comparativegenomicsof Listeria species.Science 294: 849 52. 9. Grundling,A.,L.S.Burrack,H.G.Bouwer,andD.E.Higgins. 2004. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci U S A 101: 1231823. 10. Hanawa,T.,M.Kai,S.Kamiya,andT.Yamamoto. 2000.Cloning,sequencing, and transcriptional analysis of the dnaK heat shock operon of Listeria monocytogenes .CellStressChaperones 5: 219. 11. Hu,Y.,H.F.Oliver,S.Raengpradub,M.E.Palmer,R.H.Orsi,M.Wiedmann, andK.J.Boor. 2007.Transcriptomicandphenotypicanalysessuggestanetwork betweenthetranscriptionalregulatorsHrcAandsigmaBin Listeria monocytogenes . ApplEnvironMicrobiol 73: 798191. 12. Hu,Y.,S.Raengpradub,U.Schwab,C.Loss,R.H.Orsi,M.Wiedmann,andK. J. Boor. 2007. Phenotypic and transcriptomic analyses demonstrate interactions betweenthetranscriptionalregulatorsCtsRandSigmaBin Listeria monocytogenes . ApplEnvironMicrobiol 73: 796780. 13. Johansson, J., P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes .Cell 110: 55161. 14. Karatzas, K. A., and M. H. Bennik. 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure.ApplEnvironMicrobiol 68: 31839. 15. Karatzas, K. A., J. A. Wouters, C. G. Gahan, C. Hill, T. Abee, and M. H. Bennik. 2003. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence.MolMicrobiol 49: 122738. 16. Kim,Y.S.,T.W.Randolph,M.B.Seefeldt,andJ.F.Carpenter. 2006.High pressure studies on protein aggregates and amyloid fibrils. Methods Enzymol 413: 23753. 17. Kirstein,J.,D.Zuhlke,U.Gerth,K.Turgay,andM.Hecker. 2005.Atyrosine kinaseanditsactivatorcontroltheactivityoftheCtsRheatshockrepressorin B. subtilis .EmboJ 24: 343545. 18. Knudsen, G. M., J. E. Olsen, and L. Dons. 2004. Characterization of DegU, a responseregulatorin Listeria monocytogenes ,involvedinregulationofmotilityand contributestovirulence.FEMSMicrobiolLett 240: 1719. 19. Lambert,J.M.,R.S.Bongers,andM.Kleerebezem. 2007.Creloxbasedsystem for multiple gene deletions and selectablemarker removal in Lactobacillus plantarum .ApplEnvironMicrobiol 73: 112635. 20. Lee,S.,M.E.Sowa,Y.H.Watanabe,P.B.Sigler,W.Chiu,M.Yoshida,andF. T.Tsai. 2003.ThestructureofClpB:amolecularchaperonethatrescuesproteins fromanaggregatedstate.Cell 115: 22940. 21. LeimeisterWachter, M., C. Haffner, E. Domann, W. Goebel, and T. Chakraborty. 1990.Identificationofagenethatpositivelyregulatesexpressionof

130

listeriolysin,themajorvirulencefactorof Listeria monocytogenes .ProcNatlAcad SciUSA 87: 833640. 22. Maguin,E.,H.Prevost,S.D.Ehrlich,andA.Gruss.1996.Efficientinsertional mutagenesisinlactococciandothergrampositivebacteria.JBacteriol 178: 9315. 23. Nair,S.,I.Derre,T.Msadek,O.Gaillot,andP.Berche. 2000.CtsRcontrolsclass IIIheatshockgeneexpressioninthehumanpathogen Listeria monocytogenes .Mol Microbiol 35: 80011. 24. Narberhaus, F. 1999. Negative regulation of bacterial heat shock genes. Mol Microbiol 31: 18. 25. O'Neil,H.S.,andH.Marquis. 2006. Listeria monocytogenes flagellaareusedfor motility,notasadhesins,toincreasehostcellinvasion.InfectImmun 74: 667581. 26. PhanThanh,L.,andL.Jansch. 2006.Elucidationofmechanismsofacidstressin Listeria monocytogenes byproteomicanalysis.MethodsBiochemAnal 49: 7588. 27. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratorymanual2nded.ColdSpringHarborLaboratoryPress,N.Y. 28. Schlieker,C.,I.Tews,B.Bukau,andA.Mogk. 2004.Solubilizationofaggregated proteinsbyClpB/DnaKreliesonthecontinuousextractionofunfoldedpolypeptides. FEBSLett 578: 3516. 29. Seveau, S., J. PizarroCerda, and P. Cossart. 2007. Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect 9: 116775. 30. Shen,A.,andD.E.Higgins. 2006.TheMogRtranscriptionalrepressorregulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes .PLoSPathog 2: e30. 31. Shen,A.,H.D.Kamp,A.Grundling,andD.E.Higgins. 2006.AbifunctionalO GlcNAc transferase governs flagellar motility through antirepression. Genes Dev 20:328395. 32. Sleator, R. D., C. G. Gahan, and C. Hill. 2003. A postgenomic appraisal of osmotolerancein Listeria monocytogenes .ApplEnvironMicrobiol 69: 19. 33. Stevens, J. M., E. E. Galyov, and M. P. Stevens. 2006. Actindependent movementofbacterialpathogens.NatRevMicrobiol 4: 91101. 34. Sugimoto, S., H. Yoshida, Y. Mizunoe, K. Tsuruno, J. Nakayama, and K. Sonomoto. 2006.StructuralandfunctionalconversionofmolecularchaperoneClpB fromthegrampositivehalophiliclacticacidbacterium Tetragenococcus halophilus mediatedbyATPandstress.JBacteriol 188: 80708. 35. Tasara,T.,andR.Stephan. 2006.Coldstresstoleranceof Listeria monocytogenes : Areviewofmolecularadaptivemechanismsandfoodsafetyimplications.JFood Prot 69: 147384. 36. vanderVeen,S.,T.Hain,J.A.Wouters,H.Hossain,W.M.deVos,T.Abee,T. Chakraborty,andM.H.WellsBennik. 2007.Theheatshockresponseof Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis,andtheSOSresponse.Microbiology 153: 3593607. 37. VazquezBoland, J. A., M. Kuhn, P. Berche, T. Chakraborty,G.Dominguez Bernal,W.Goebel,B.GonzalezZorn,J.Wehland,andJ.Kreft. 2001. Listeria pathogenesisandmolecularvirulencedeterminants.ClinMicrobiolRev 14: 584640.

131

38. Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf,E.U.WeberBan,D.A.Dougan,F.T.Tsai,A.Mogk,andB.Bukau. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocationthroughthecentralporeofClpB.Cell 119: 65365. 39. Wiedmann,M.,T.J.Arvik,R.J.Hurley,andK.J.Boor. 1998.Generalstress transcriptionfactorsigmaBanditsroleinacidtoleranceandvirulenceof Listeria monocytogenes .JBacteriol 180: 36506. 40. Williams, T., B. Joseph, D. Beier, W. Goebel, and M. Kuhn. 2005. Response regulator DegU of Listeria monocytogenes regulates the expression of flagella specificgenes.FEMSMicrobiolLett 252: 28798. 41. Wouters, J. A., T. Hain, A. Darji, E. Hufner, H. WemekampKamphuis, T. Chakraborty, and T. Abee. 2005. Identification and characterization of Di and tripeptide transporter DtpT of Listeria monocytogenes EGDe. Appl Environ Microbiol 71: 57718. 42. Zolkiewski,M. 2006.Acamelpassesthroughtheeyeofaneedle:proteinunfolding activityofClpATPases.MolMicrobiol 61: 1094100.

132

7. The SOS response of Listeria monocytogenes isinvolvedinstressresistance andmutagenesis StijnvanderVeen,SaskiavanSchalkwijk,DouweMolenaar,WillemM. DeVos,TjakkoAbee,MarjonH.J.WellsBennik Submittedforpublication Abstract The SOS response is a conserved pathway that is activated under certain stress conditionsandisregulatedbytherepressorLexAandtheactivatorRecA.Thefoodborne pathogen Listeria monocytogenes containsRecAandLexA homologs,buttheirrolesin Listeria have not been established. In this study, we identified the SOS regulon in L. monocytogenes by comparing the transcription profiles of the wildtype strain and the recA mutantstrainafterexposuretotheDNAdamagingagentmitomycinC.Inagreement with studies in other bacteria, we identified an imperfect palindrome AATAAGAACATATGTTCGTTTastheSOSoperatorsequence.TheSOSregulonof L. monocytogenes consistsof29genesin16LexAregulatedoperons,encodingproteinswith functionsintranslesionDNAsynthesisandDNArepair.Italsoincludesthebileextrusion system BilE, which is known to affect virulence properties of L. monocytogenes by conferringresistancetobile.WefurthermoreidentifiedarolefortheproductoftheLexA regulatedgene yneA incellelongationandinhibitionofcelldivision.Notably,the yneA strain was less heat resistant than the wildtype, linking SOS response genes to heat resistance.Asanticipated,RecAof L. monocytogenes playsaroleinmutagenesis.Thiswas demonstrated by considerably lower rifampicin and streptomycin resistant fractions of recA culturescomparedwithwildtypecultures.TheinabilitytoinducetheSOSresponse furthermoreledtoreducedresistancetovariousstresses,includingheat,H 2O2,andacidin recA culturescomparedwiththewildtype.OurresultsindicatethattheSOSresponseof L. monocytogenes contributes to survival of a range of stresses that may influence its persistenceintheenvironmentandinthehost.

133

Introduction Listeriosisisafoodborneinfectioncausedby Listeria monocytogenes .Thedisease hasahighcasemortalityrateandisthereforeofgreatconcerntopublichealth(37). L. monocytogenes cangrowandsurviveduringexposuretosevereenvironmentalstresses.It hastheabilitytogrowatawidepHrange(pH4.6topH9),athighsaltconcentrations(up to 13 %), and over a wide temperature range (0.4 to 46 ºC) (31, 55). Exposure of L. monocytogenes tostresscanleadtostressadaptation,duetothe transcriptionalactivation ofstressresponsegenes(19).Severalclassesofstressresponsegeneshavebeendescribed in L. monocytogenes ,whichareactivatedduringexposuretospecificorgeneralstresses.In particular,theclassIandclassIIIheatshockandtheSigBresponsehavebeeninvestigated thoroughly (13, 24, 33). Recently, it has been shown that the SOS response of L. monocytogenes isactivateduponmildheatexposure(54). CertainenvironmentalinsultsleadtoundesirableDNAdamagethatrequiresrepair, whileunderothercircumstancesincreasedmutationratesareneededtomaximizechances ofsurvival.TheSOSresponseisaninduciblepathwayinvolvedinDNArepair,restartof stalledreplicationforks(8,10,35),andininductionofgeneticvariationinstressedand stationary phase cells (20, 36, 49, 53). It is regulated by LexA and RecA. LexA is an autoregulatoryrepressorwhichbindstotheCGAACATATGTTCGconsensussequencein the promoter region of the SOS response genes as determined for Bacillus subtilis (1), thereby repressing transcription. A consensus LexA binding motif for L. monocytogenes has not been identified thus far. Generally, the SOS response is induced under circumstances in which single stranded DNA accumulates in the cell. This results in activation of RecA, which in turn stimulates cleavage of LexA, and ultimately in the inductionoftheSOSresponse(48). ForanincreasingnumberofbacteriaithasbeenshownthattheSOSresponseis activated during stress exposure (6, 14, 15, 51) or during pathogenesis (30, 34). A comparativeanalysisbetweentheSOSregulonof B. subtilis and Escherichia coli showeda surprisinglysmalloverlap(eightgenes),whiletheregulonsineachofthesespeciescontain over 30 genes (34). The SOS regulon and its role in L. monocytogenes has not been established,butactivationoftheSOSresponsewaspreviouslyobservedduringheatshock (54). Induction of the SOS regulon was postulated to suppress cell division, thereby preventing transection of the genome after replication fork stalling (54). This effect of interruption of Zring formation in the vicinity of the nucleoid is called “nucleoid occlusion”(44).For Bacillus subtilis ,activationoftheSOSresponsegene yneA leadsto accumulationofYneAatthemidcell,therebypreventingseptumformation,whichresults

134

incellelongation(32).WhetherYneAhasasimilarfunctionin L. monocytogenes remains tobeelucidated. Inthisstudy,weestablishedtheregulonoftheSOSresponsein L. monocytogenes bycomparingwholegenomeexpressionprofilesofarecA strainandtheisogenicwild typestrainbeforeandafterexposuretotheDNAdamagingagentmitomycinC(MMC). Furthermore, we demonstrated that RecAcontrolled functions of L. monocytogenes are involvedinmutagenesisandstresssurvival,andthatthe L. monocytogenes SOSresponse gene yneA isinvolvedincellelongationandheatsurvival. Table1.Bacterialstrainsandplasmidsusedinthisstudy. Strainsorplasmids Relevantgenotypeorcharacteristics References L. monocytogenes EGDe Wildtypeserotype1/2astrain (21) recA EGDerecA Thisstudy yneA EGDeyneA Thisstudy Plasmids Emr; Cloning plasmid for gene replacements in Gram pAULa (4) positivebacteria Emr;pAULaderivativecontaininghomologousregionsup pAULarecA Thisstudy anddownstreamofEGDerecA Emr;pAULaderivativecontaininghomologousregionsup pAULayneA Thisstudy anddownstreamofEGDeyneA MaterialsandMethods Strains,media,andplasmids Strain L monocytogenes EGDe(21)wasthewildtypeparentstraininthisstudy. This strain and its mutants (Table 1) were stored in Brain Hearth Infusion (BHI) broth (Difco)containing15%sterileglycerol(BDH)at80ºC.Singlecolonieswereinoculatedin BHIbrothandgrownat37ºCand200rpm(NewBrunswicktypeC24KC).Antibiotics wereaddedtothemediumtomaintainplasmids(10gml 1 erythromycin [Sigma] or 2 gml 1 chloramphenicol [Sigma]). Standard protocols were performed for recombinant DNAtechniques(46).ThetemperaturesensitivesuicideplasmidpAULa(4)wasusedfor ConstructionoftherecA andyneA followingtheprotocoldescribedpreviously(57).The primers containing the flanking regions (recAA to D for recA and yneAA to D for yneA )arelistedinTable2.Thisresultedina915bpand306bpinternaldeletionsfor recA and yneA ,respectively.

135

Table2.PCRprimersusedinthisstudy. Primer Sequence(5’3’) a recAA GTGGGGATCC CTGCTGATTTAAACGATTTG recAB GTGGGCGGCCGC ACGATCATTCACATTGTTGC recAC GTGGGCGGCCGC ACACACAGATATTCGTGATGAG recAD GTGGGTCGAC CGGTTTTCTGATTCTTTGAC yneAA GTGGGGATCC ATCCAAGGGAAGTCAGTTCT yneAB GTGGGCGGCCGC TTTTAAAGTCATTAATAATCCCTC yneAC GTGGGCGGCCGC GCAAATCAGTAAGGTCGATTTAG yneAD GTGGGTCGAC TAAAAGCATTGAGCCGTGT aNucleotidesintroducedtocreaterestrictionsitesareunderlined. SamplecollectionandRNAisolation Inthreeindependentexperiments,culturesofthewildtypeandrecA strainwere grownin50mlBHIbroth(250mlconicalflasks,37 ºC,200rpm,)untilanabsorbance

(OD 600 ) of approximately 0.5 was obtained. At that moment 1 mM MMC (Sigma) was addedtothecultures.TenmlsamplesweretakenbeforeexposuretoMMCandonehour afterwards,anddissolvedin20mlRNAprotect(Qiagen).Themixtureswereincubatedfor 5minatroomtemperature,centrifugedfor10minat3720xg(Heraeustypemegafuse 1.0R),andthepelletswerestoredat80ºC.Thecellpelletswerewashedin400lSET buffer (50 mM NaCl [Sigma], 5 mM EDTA [Sigma], and 30 mM TrisHCl [pH 7.0; Sigma])containing10%sodiumdodecylsulfate(Sigma)andtreatedfor30minat37ºCin ashaker(350rpm;EppendorfThermomixerComfort)with200l50mMTrisHCl(pH 6.5)containing50mg/mllysozyme(Merck),2mg/mlProteinaseK(Ambion),2.5U/ml mutanolysin(Ambion),and4U/mlSUPERase(Ambion).TotalRNAwasextractedusing the RNeasy mini kit (Qiagen) with an on column DNase treatment according to the manufacturer’s protocol. The quality of the RNA was analyzed on a 2100 Bioanalyzer (Agilent Technologies) and quantified on a ND1000 spectrophotometer (NanoDrop Technologies). cDNAsynthesisandlabelingandmicroarrayhybridization,washing,scanning,and analyzing FivegoftotalRNAofeachsamplewasusedforcDNA synthesis and labeling withbothcyanine3(Cy3)andcyanine5(Cy5)dyes.TheCyScribecDNApostlabelingkit (RPN5660;GEHealthcare)wasusedaccordingtothemanufacturer’sprotocol.Aliquotsof 0.3glabeledcDNAwereusedforhybridizationoncustommade L. monocytogenes EGD e microarrays (Agilent Technologies). These arrays (8 x 15K format) contained i n situ synthesized60meroligomerswithatheoreticalmeltingtemperatureofapproximately82 ºC (following nearest neighbor calculations (41) using 1 M Na + and 10 12 M oligo

136

nucleotides).The L. monocytogenes geneswererepresentedonthearrayby1probefor36 genes,2probesfor94genes,3probesfor2701genes,or6probesfor1geneandatotalof 23geneswasnotrepresentedonthearraysbecausenouniqueprobecouldbeselected.The labeledcDNAsampleswerehybridizedon16arraysfor17hoursat60ºCfollowingaloop design.The microarrayswere washed,scanned,and analyzed according to the protocol describedextensivelybySaulnieretal.(47).The microarraydataareavailableatGEO (http://www.ncbi.nlm.nih.gov/geo)usingaccesionnumberGSE12634. PredictionofSOSresponsegenes ThepromoterregionofputativeSOSresponsegenes(300bp)wascollected.These genes were selected based on the following criteria: 1) significant upregulation (fold change>1.5andp<0.05)inthewildtypestrainafterMMCexposure,2)nosignificantup regulation(foldchange>1.5andp<0.05)inthe recA mutantstrainafterMMCexposure, and 3) the MMC treatment resulted insignificant higher upregulation (foldchange>1.5 andp<0.05)inthewildtypestraincomparedwiththerecA mutantstrain.Thepromoter regionswereanalyzedforconservedmotifsbytheMEMEprogram(2).TheMEMEsearch criteriaweresetataminimallengthofthemotifof8ntandamaximallengthof40nt.The consensus L. monocytogenes LexAbindingmotifintheputativeSOSresponsegeneswas visualizedusingtheweblogotool(11). HeatinactivationofwildtypeandyneA strains To determine the heatresistance of the yneA mutant and the wildtype strain, culturesthatweregrownovernightwereinoculatedin10mlBHIbroth(0.5%)in100ml conicalflasksandsubsequentlygrownat37ºCuntilanabsorbance(OD 600 )ofapprox1.0 wasreached.Duringthelasthourofgrowth1mMMMCwasadded.Controlexperiments were performed without addition of 1 mM MMC. Samples were taken for microscopic imageanalysisbeforeandafterexposures.Thecultureswerecollected(10min,3720xg, roomtemperature;Heraeustypemegafuse1.0R)andwashedwith1mlPBS.Toassessthe heatresistanceofyneA andwildtypecultureswithorwithoutpretreatmentwithMMC, cellswereaddedto9mlpreheatedBHIbroth(55ºC)in100mlconicalflasksandplaced inashakingwaterbath(60%shakingspeed;GFLtype1083)at55ºC.Samplesweretaken beforeand2hafterexposureto55ºCandserialdilutedin1xPBS.Appropriatedilutions wereplatedonBHIagar,plateswereincubatedat30ºCfor35daysandcolonieswere enumerated.Allexperimentswereperformedintriplicate. MicroscopicimageanalysisofwildtypeandyneA strains Cellsizesweredeterminedusingmicroscopicimageanalysis. Culture samples of 100lwerecollectedat5000xgfor1min(Eppendorf type 5417R). The pellets were

137

dissolvedinnigrosinsolution(Sigma)and5lof a cell suspension was dried on glass slides. A Dialux 20 microscope (Leica) was used to make images of the cells at 100 x magnification.Theimageswereanalyzedineightbittypeafteradjustingthethresholdto black and white using the ImageJ program (http://rbs.info.nih.gov/ij/download.html). Distributiongraphsofcellsizes(pixels/cell)wereconstructedinExcel(Microsoft)froma minimumof500cellsofthreeindependentexperiments. MutagenesisinwildtypeandrecA strains ToinvestigatetheroleoftheSOSresponseinintroducingmutations,exponentially growingculturesofwildtypeandrecA mutantcellswereplatedon0.05g/mlrifampicin or75g/mlstreptomycin.CulturesofthewildtypestrainandtherecA mutantstrainwere grown in 10 ml BHI broth in 100 ml conical flasks at 37 ºC and 200 rpm. When an absorbance (OD 600 )of0.50.7wasreached,thecellswerecollected (10min,4300rpm, room temperature; Heraeus type megafuse 1.0R) and dissolved in 1 ml 1 x phosphate bufferedsaline(PBS;Sigma).Thecellsuspensionswereseriallydilutedin1xPBSand appropriate dilutions were plated on BHI agar and BHI agar containing 75 g/ml streptomycin(Sigma)or0.05g/mlrifampicin(Sigma).Theplateswereincubatedat37ºC for 3 days and colonies were enumerated. The complete experiment was performed in triplicate. StressresistanceofwildtypeandrecA strains CulturesofthewildtypestrainandrecA mutantstrainweregrownin10mlBHI broth at 37 ºC and 200 rpm in 100 ml conical flasks until an absorbance (OD 600 ) of approximately 0.3 was obtained. At this moment the cultures were exposed to different stresses.Theheatresistancewastestedbytransferringtheculturestoashakingwaterbath

Wt:treated/ untreated

Motifsearch 203 122 45 6 Wttreatment/ 37 25 recA :treated/ recA treatment untreated

Fig.1.ComparisonofdifferentiallyexpressedgenesafterMMCtreatmentbetweenthewildtype and recA mutantstrains.Thenumberofdifferentiallyexpressedgenesisindicatedinthecircles andtheoverlappingareasindicatethatthesamegenesweredifferentiallyexpressed.Thearrow indicatesthegroupofgenesonwhichtheLexAmotifsearchwasperformed.

138

(60%shakingspeed;GFLtype1083)setat55ºC,theoxidativestressresistancewastested byadditionof60mMH 2O2(Merck),andtheacidresistancewastestedbydissolvingthe collectedcultures(10min,3720xg,roomtemperature;Heraeustypemegafuse1.0R)in10 mlBHI(pH3.4;adjustedwith10%HCl)in100mlconicalflasks.Samplesweretaken before stress exposure and 1 hour after stress exposure and serially diluted in PBS. DilutionswereplatedonBHIagarandcolonieswereenumeratedafter35daysincubation at30ºC.Experimentswereperformedintriplicate.

Fig.2.ConsensussequenceoftheLexAbindingmotifoftheputativeSOSresponsegenes(Table 3)in L. monocytogenes . visualizedwithWebLogo(11).

Results IdentificationofSOSresponsegenes ToidentifygenesbelongingtotheSOSresponse,transcriptionalprofilesofthewildtype andrecA strainswerecomparedbeforeandafterexposuretoMMC.ALexAmotifsearch wascarriedoutfor122selectedgenesthatshowedsignificantupregulation(foldchange >1.5 and p<0.05) in the wildtype strain after MMC exposure while no significant up regulationwasfoundinthe recA mutantstrain.Furthermore,theMMCtreatmentresulted insignificanthigherupregulationofthesegenesinthewildtypestraincomparedtothe recA mutant (Fig. 1). The upstream regions of these 122 genes were collected and comparedforsimilarmotifs.Aconsensusmotifwasidentifiedin16promoterregions(E value=2.2e 13 )(Fig.2),representing29genes(Table3).Thisincludedgenesencodingthe regulatorsoftheSOSresponseRecAandLexA,thealternativeDNApolymerasesDinB andUmuDC,theexcinucleaseUvrBA,andthecelldivision inhibitor YneA. These SOS response genes were recently also found to be induced by heat stress (54). The newly identified SOS response genes encode (predicted) helicase systems (lmo0157lmo0158, lmo1759lmo1758, and lmo2268lmo2264), alternative DNA polymerases (lmo1574 and lmo2828), and exo/excinuclease systems (lmo1640lmo1638 and lmo2222lmo2220). TheseresultsshowthatthemajorityoftheSOSresponsegenesof L monocytogenes encode DNArepairsystemsandalternativeDNApolymerasesthathelpduringreplicationfork

139

the MMC treatment 1.74 0.96 1.48 4.01 2.08 0.83 1.04 1.34 2.42 2.77 2.47 1.13 0.85 3.41 MMC treated 0.75 0.11 3.06 8.22 4.98 2.38 2.27 2.53 4.00 4.31 3.94 1.27 1.01 1.54 /wt recA expressionratiosbetween Untreated 0.99 0.85 1.58 4.21 2.90 1.55 1.23 1.18 1.58 1.54 1.47 0.14 0.16 1.88 2 og recA 0.13 0.21 0.25 0.06 0.50 0.30 0.17 0.03 0.52 0.53 0.24 0.20 0.20 0.34 MMCtreatment wt 1.61 1.18 1.74 3.95 2.58 1.13 1.21 1.37 1.90 2.24 2.22 0.93 0.65 3.08 YneAprotein B. subtilis B. Descriptionproduct PredictedATPdependenthelicase Predictedhydrolase TranscriptionrepressorofSOSresponse Similarto TranscriptionactivatorofSOSresponse Osmoprotectant transport system ATP Osmoprotectant transportsystem permease DNApolymeraseIIIalphasubunit Hypotheticalprotein DNA3methyladenine glycosidase, base excisionrepair Predictedpeptidase ATPdependentDNAhelicase NADdependentDNAligase DNApolymeraseIV bindingprotein,bileresistance protein,bileresistance SOSresponse.TheputativeLexAbindingsitesandl L. monocytogenes mutantafterMMCexposurearegiven. LexAbindingsite GTTGCGAACGTAGGTTCTGTG AAAAAGAATGTATGTTCGCTT AAAGCGAACATACATTCTTTT, TGTACGAACGGTTGTTCTATA AATACGAATAAATGTTCGCTT ATATAGAACATACATTCGATT AACACGAACACACTTTCTTTT AAACAGAACATATGTTTTATC AATAAGAACAAATGTTTGTAT AATAAGAACGCTTGTTCGTTT recA Name lexA recA bilEA bilEB dnaE ligA dinB yneA yneA pcrA a lmo0157 lmo0158 lmo1302 lmo1303 lmo1398 lmo1421 lmo1422 lmo1574 lmo1640 lmo1639 lmo1638 lmo1759 lmo1758 lmo1975 Table3.Genesbelongingtothe wildtype(wt)and Gene

140

MMC treatment 2.42 2.60 1.36 1.73 1.65 1.62 1.55 1.67 4.05 1.53 2.66 2.53 3.44 2.44 4.43 MMC treated 2.69 2.75 1.19 1.26 1.61 1.52 1.59 1.42 2.72 1.03 1.26 1.45 2.92 2.26 1.76 recA/wt Untreated 0.26 0.15 0.17 0.47 0.05 0.11 0.04 0.26 1.34 0.50 1.40 1.08 0.52 0.19 2.67 recA 0.48 0.21 0.16 0.15 0.09 0.06 0.06 0.39 0.65 0.05 0.10 0.10 0.51 0.30 0.13 MMCtreatment wt 1.95 2.38 1.52 1.59 1.74 1.56 1.61 1.28 3.40 1.58 2.76 2.63 2.93 2.14 4.56 Descriptionproduct PredictedDNArepairexonuclease Hypotheticalprotein Predictedexonuclease PredictedATPdependenthelicase PredictedATPdependenthelicase Predictedhydrolase Hypotheticalprotein Hypotheticalprotein A118protein SitespecificDNArecombinase,integrase (BacteriophageA118) ExcinucleaseABC(subunitB) ExcinucleaseABC(subunitA) DNApolymeraseV DNApolymeraseV Similar to UmuD polymerase V subunit fromgramnegativebacteria d LexAbindingsite AATAAGAACGTATATTCGGTT AATAAAAACATATGTTCGGTG TTCAAGAACGTTTGTTCGTAT AAAAAGAACGTATGTGCGAAA AATGCGAAAATATGTTCGGTT AATAAGAACATTTGTTCGTAT TTTAAGAACGTTTGTTCGTAT Name addB int uvrB uvrA umuD umuC Thefirstgeneofaputativeoperonisgiveninbol Table3.Continued. Gene lmo2222 lmo2221 lmo2220 lmo2268 lmo2267 lmo2266 lmo2265 lmo2264 lmo2271 lmo2332 lmo2489 lmo2488 lmo2675 lmo2676 lmo2828 a

141

stalling.Furthermore,twooftheSOSresponsegenesarepartofabileresistancesystem (lmo1421lmo1422).SincebileexposuremayresultinDNAdamage(42),activationofthis systemaspartoftheSOSresponsemayprovideadditional protection of cellular DNA. Finally,thefirstandthelastgeneofthe comK integratedbacteriophageA118(lmo2271 andlmo2332)areLexAcontrolled. YneAincellelongationandheatresistance ToinvestigatetheroleoftheSOSresponsegene yneA incellelongation,cellsize distributiongraphswereconstructedfromthewildtypestrainandtheyneA strainbefore and after triggering the SOS response by MMC exposure (Fig. 3). Exposure to MMC resulted in a significant increase in cell size for the wildtype strain compared with the unexposed cells, while the yneA mutant strain did not show an increase in cell size compared with unexposed cells. Similar results were obtained after triggering the SOS responsebyexposureto48°Cfor40min(asin(54)),althoughcellelongationwasless pronounced(datanotshown).TheseresultsshowthatYneAactivityisassociatedwithcell elongationaftertriggeringoftheSOSresponse.ToinvestigatethepotentialroleofYneA mediatedcellelongationinheatresistance,heatinactivationstudieswereperformedbefore andafterMMCexposureusingthewildtypeandyneA mutantstrains(Fig4).Apre exposure to MMC resulted in increased resistance to heat inactivation for the wildtype

A1 A2

40 16

30 12

20

% 8 %

10 4

0 0 5075 76 101 126 151 176 201 226 251 276 301 326 5075 76 101 126 151 176 201 226 251 276 301 326 100 125 150 175 200 225 250 275 300 325 350 100 125 150 175 200 225 250 275 300 325 350 Cellsize(pixels) Cellsize(pixels) B1 B2

50 40

40 30

30 20 % % 20

10 10

0 0 5075 76 101 126 151 176 201 226 251 276 301 326 5075 76 101 126 151 176 201 226 251 276 301 326 100 125 150 175 200 225 250 275 300 325 350 100 125 150 175 200 225 250 275 300 325 350 Cellsize(pixels) Cellsize(pixels) Fig.3.Microscopicimageanalysisofthewildtype(A)andyneA (B)strainsbefore[1]andafter [2]exposurefor1hourtoMMC.Thegraphsshowthedistributionofcellsizesinpixelspercell; fordetailsseeMaterialsandMethods.

142

6

4

2 Reduction(logcfu/ml)

0 wildtype yneA Fig. 4. Heat inactivation of the wildtype and yneA straininBHIbrothat55ºC.Thegraph showsthereductioninviablecountsofstrainsbefore(darkgrey)andafter(lightgrey)2hours heatexposureofcellspreadaptedfor1hourwith1mMMMC. strainbutnotforthe yneA mutant.TheseresultsshowthatYneAmediatedcelldivision inhibitionorcellelongationcontributestoheatresistance. RecAdependentmutagenesis ExponentiallygrowingculturesofwildtypeandrecA mutantcellswereplatedon 0.05g/mlrifampicinor75g/mlstreptomycin.Theseconcentrationsofantibioticswere theminimalinhibitoryconcentration(MIC)forthewildtypestrain(datanotshown).The rifampicinresistantfractionofthewildtypecultures was 1.2510 7, which was 14 times higherthantheresistantfractionoftherecA cultures(Fig.5).Furthermore,therecA culturesdidnotshowaresistantfractiontostreptomycin(<10 9),whilearesistantfraction forthewildtypestrainof1.3310 8wasobserved.Theseresultsindicatethatintheabsence ofRecA,mutationratesinthecellarelowerduetotheinabilityofLexAcleavageand derepressionoftheSOSresponse. RecAdependentstressresistance Theroleof recA instressresistancewasinvestigatedbyexposingthewildtypeand

recA strainstoheat(55ºC),oxidativestress(60mMH 2O2),andacid(pH3.4).Thewild type strain showed higher resistance to these stresses than the recA strain (Fig. 6). In particular, high sensitivity of the recA straintoheatandoxidativestresswasobserved undertheconditionsused.The recA mutantstrainsshowedapproximately3loghigher reductionsincellcountsafter1hourexposureto55ºCand60mMH 2O2thanthewildtype strain.

143

1,60E07

1,20E07

8,00E08 Resistantfraction

4,00E08

0,00E+00 wildtype recA

Fig.5.RecAdependentmutagenesis.Thegraphshows the resistant fractions of exponentially growingwildtypeand recA mutantculturesafterexposureto0.05g/mlrifampicin(darkgrey) and75g/mlstreptomycin(lightgrey).

Discussion Inthisstudy,theSOSregulonof L. monocytogenes wascharacterizedanditsrolein mutagenesis and stress resistance assessed. A consensus motif for LexA binding was identified upstream of the differentially expressed genes. Sixteen putative binding sites werefoundcontrollingtheexpressionof29geneswithrolesinDNArepairandtranslesion DNAsynthesis.TheSOSresponsegene yneA wasshowntobeinvolvedincellelongation or inhibition of cell division, and contributed to heatresistance. Furthermore, a role for RecAintheintroductionofmutationsandintheresistance to stresswas established by antibioticresistanceessaysandstressresistancetests . The regulon of the SOS response in L. monocytogenes was determined by comparingthetranscriptionprofilesofwildtypeandanSOSdeficientrecA strainafter exposuretoaDNAdamagingagent.ThisapproachwaspreviouslyusedtoidentifytheSOS regulonsof E. coli (9), Staphylococcus aureus (6),and Pseudomonas aeruginosa (7).The completeSOSregulonhasfurthermorebeendeterminedfor Caulobacter crescentus (12), Pseudomonas fluorescens (28), and B. subtilis (1). The various SOS regulons in these bacteriaconsistsof43genesin E. coli ,33genesin B. subtilis ,15genesin P. aeruginosa , 37genesin C. crescentus , 17genesin P. fluorescens ,and16genesin S. aureus,andhere

144

weidentified29genesin L. monocytogenes .Only5SOSgenesarecommonlypresentin thebacteriaanalysedthusfar,namely lexA , recA , uvrBA ,and dinB .In L. monocytogenes the other SOS response genes encode proteins involved in DNA repair (excinucleases, helicases,andrecombinases)ortranslesionDNAsynthesis(alternativeDNApolymerases). Anumberoftheseproteinshavebeeninvestigatedinotherbacteriaaspartoftheirspecific SOS response (for a review see (18)). Noteworthy is that the L. monocytogenes SOS responsecontainsaLexAregulatedbileexclusionsystem(BilE).LikeseveralotherSOS responsegenesof L. monocytogenes ,thegenesencodingthissystemwereinducedduring heatshock(54).BilEhasbeenshowntoplayarolein L. monocytogenes bileresistanceand virulence;increasedsensitivitytobileandreducedvirulencewasobservedinabsenceof bilE in a murine model (50). This system is transcribed from both a SigA and a SigB promoter (50), indicating an overlap between the SOS response and the SigB regulated classIIstressresponse(23,33).For Salmonellaenterica and Escherichia coli itwasshown previouslythatexposuretobileresultedinDNAdamageandininductionofseveralLexA controlled DNA damage repair systems or errorprone DNA polymerases (29, 42, 43). Conceivably,activationoftheBilEsystemaspartoftheSOSresponsemaycontributeto thesurvivalcapacityof L. monocytogenes duringpassageofthehumanGItract.Thisnovel findingmaypointtoaroleoftheSOSresponseinthepathogenicityof L. monocytogenes . Inhibitionofcelldivisionisacommonphenomenonthathasbeenassociatedwith activationoftheSOSresponse.Celldivisioninbacteria is initiated by accumulation of FtsZatthemidcell,andisacomplexprocessinvolvingmanyproteins.Forseveralbacteria theproductsofanumberofSOSresponsegeneswerefoundtoinhibitthisprocess.Such genesinclude sulA for Escherichia coli (27), yneA for Bacillus subtilis (32),Rv2719cfor Mycobacterium tuberculosis (5), and divS for glutamicum (40). These studiesreportedtheoccurrenceofcellelongation asaconsequenceofthisprocess.Ina previousstudy,wefoundthat yneA wasupregulatedduringheatshockandthatYneAhad apotentialroleincellelongationandcelldivision(54).ThisroleofYneAwasconfirmed inthisstudy.InductionoftheSOSresponsebyMMCexposureresultedincellelongation ofwildtypecells,whilethiswasnotobservedinthe yneA strain.Notably,cellsofthe lattermutantappearedtobemoresensitivetoheatinactivationthanthewildtypestrain. The parameters involved in sensitization of the yneA mutant to heat remain to be elucidated.However,weanticipatethatitmightberelatedtopreventionoftransectionof thegenomeduringreplicationforkstallingafterheatexposure.Thisprocessallowsbacteria torescuetheirgenomebyreinitiationofchromosomalreplicationandsegregationdueto RecAdependentactivationofspecificSOSresponsegenes.

145

5.0

4.0

3.0

2.0 Reduction(logcfu/ml)

1.0

0.0 55°C 60mMH2O2 pH3.4

Fig. 6. RecA dependent stress resistance. The graph shows the reduction in cell counts of the wildtype(darkgrey)andrecA (lightgrey)straininBHIbrothafter1hourexposureat55ºC,

60mMH 2O2,orpH3.4.Cellcountsweremade after3daysincubationat30ºC. OneofthemajorfunctionsofRecAistheactivationoftranslesionDNAsynthesis polymerasesandDNArepairmechanisms(8,25).Therefore,weinvestigatedthesespecific functions of RecA in L. monocytogenes . RecAdependent mutagenesis in E. coli is dependentonthederepressionofgenesencodinganyofthealternativeDNApolymerases PolII( polB ),PolIV( dinB ),orPolV( umuDC )(22,39).For B. subtilis ,anadditionalY family polymerase DnaE was required (16, 52). The L. monocytogenes SOS response containshomologsofthesegenes,exceptfor polB ,suggestingthatmechanismsinvolvedin RecAdependent mutagenesis are similar. Our results confirmed that RecA performs an importantfunctioninmutagenesis,asshownbytherifampicinandstreptomycinresistant fractions ofwildtype and recA cultures.InthepresenceofRecA,rifampicinresistant mutants arose with a frequency of 10 7, which was similar to the frequencies that were reportedinpreviousstudiesfor L. monocytogenes (3), E. coli(45),or Streptococcus uberis (56).ThefrequencyofrifampicinresistantmutantsintherecA mutantwas14foldlower thaninthewildtypestrain.Streptomycinresistantmutantswerefoundwithafrequencyof 10 8inthewildtypestrain,whilenoresistantmutantsweredetectedinthe recA mutant strain. Streptomycin resistant mutants were found at 10fold lower frequencies than rifampicinresistantmutants.Thislowerfrequency mightberelatedtotheoccurrenceof specificmutationsinthe L. monocytogenes genes rpoB and rpsL ,whicharerequiredfor resistancetotheantibioticsrifampicinandstreptomycin,respectively(26,38).

146

AvarietyofstressescaniduceDNAdamage(oxidativestress)orreplicationfork stalling(heatstress),indicatingthatRecAmayplayanimportantroleinsurvivalduring stressexposure.Duwatetal.(17)showedthatRecAof L. lactis isinvolvedinsurvivalof oxidativeandheatstress.Furthermore,itwasshownfor E. coli thatexposuretoacidicpH couldactivatetheSOSresponse(51),indicatingapotentialfunctionoftheSOSresponsein acidresistance.OurstudyrevealedthatRecAof L. monocytogenes isinvolvedinstress resistance, because the wildtype strain showed higher survival after exposure to heat, oxidative, and acid stress than the recA mutant strain. It was shown that YneA also contributestoheatresistance,althoughitscontributionisapparentlynotasprominentas that of other RecAdependent factors (Fig. 4 and 6). The exact role of YneA in L. monocytogenes stressresistanceremainstobeelucidated. Inconclusion,theSOSregulonof L. monocytogenes wascharacterizedandshown tocontaingenesencodingalternativeDNApolymerases,DNArepairproteins,andabile resistance system. Furthermore, our results showed that the SOS response of L. monocytogenes plays an important role in stress survival, mutagenesis and conceivably pathogenesis.TheseresultsindicateanimportantrolefortheSOSresponseinpersistence of L. monocytogenes intheenvironmentandinthehost. Acknowledgements WethankMichielWelsforperformingtheLexAbindingmotifsearch. References 1. Au, N., E. KuesterSchoeck, V. Mandava, L. E. Bothwell, S. P. Canny, K. Chachu,S.A.Colavito,S.N.Fuller,E.S.Groban,L.A.Hensley,T.C.O'Brien, A. Shah, J. T. Tierney, L. L. Tomm, T. M. O'Gara, A. I. Goranov, A. D. Grossman,andC.M.Lovett. 2005.Geneticcompositionofthe Bacillus subtilis SOSsystem.JBacteriol 187: 765566. 2. Bailey, T. L., and C. Elkan. 1994. Fitting a mixture model by expectation maximizationtodiscovermotifsinbiopolymers.ProcIntConfIntellSystMolBiol 2: 2836. 3. Boisivon,A.,C.Guiomar,andC.Carbon. 1990.Invitrobactericidalactivityof amoxicillin, gentamicin, rifampicin, ciprofloxacin and trimethoprim alone or in combination against Listeria monocytogenes . Eur J ClinMicrobiolInfectDis 9: 2069. 4. Chakraborty,T.,M.LeimeisterWachter,E.Domann,M.Hartl,W.Goebel,T. Nichterlein,andS.Notermans. 1992.Coordinateregulationofvirulencegenesin Listeria monocytogenes requirestheproductoftheprfAgene.JBacteriol174: 568 74.

147

5. Chauhan,A.,H.Lofton,E.Maloney,J.Moore,M.Fol,M.V.Madiraju,andM. Rajagopalan. 2006. Interference of Mycobacterium tuberculosis cell division by Rv2719c,acellwallhydrolase.MolMicrobiol 62: 13247. 6. Cirz, R. T., M. B. Jones, N. A. Gingles, T. D. Minogue, B. Jarrahi, S. N. Peterson, and F. E. Romesberg. 2007.CompleteandSOSmediatedresponseof Staphylococcus aureus totheantibioticciprofloxacin.JBacteriol 189: 5319. 7. Cirz,R.T.,B.M.O'Neill,J.A.Hammond,S.R.Head,andF.E.Romesberg. 2006.Definingthe Pseudomonas aeruginosa SOSresponseanditsroleintheglobal responsetotheantibioticciprofloxacin.JBacteriol 188: 710110. 8. Courcelle, J., and P. C. Hanawalt. 2003. RecAdependent recovery of arrested DNAreplicationforks.AnnuRevGenet 37: 61146. 9. Courcelle,J.,A.Khodursky,B.Peter,P.O.Brown,andP.C.Hanawalt. 2001. ComparativegeneexpressionprofilesfollowingUVexposureinwildtypeandSOS deficient Escherichia coli .Genetics 158: 4164. 10. Cox,M.M.,M.F.Goodman,K.N.Kreuzer,D.J.Sherratt,S.J.Sandler,and K.J.Marians. 2000.Theimportanceofrepairingstalledreplicationforks.Nature 404: 3741. 11. Crooks,G.E.,G.Hon,J.M.Chandonia,andS.E.Brenner. 2004.WebLogo:a sequencelogogenerator.GenomeRes 14: 118890. 12. da Rocha, R. P., A. C. Paquola, V. Marques Mdo, C. F. Menck, and R. S. Galhardo. 2008.CharacterizationoftheSOSregulonof Caulobacter crescentus .J Bacteriol 190: 120918. 13. Derre,I.,G.Rapoport,andT.Msadek. 1999.CtsR,anovelregulatorofstressand heatshockresponse,controls clp andmolecularchaperonegeneexpressioningram positivebacteria.MolMicrobiol 31: 11731. 14. DiCapua, E., M. Cuillel, E. Hewat, M. Schnarr, P. A. Timmins, and R. W. Ruigrok. 1992. Activation of RecA protein. The open helix model for LexA cleavage.JMolBiol226: 70719. 15. DiCapua, E., R. W. Ruigrok, and P. A. Timmins. 1990. Activation of RecA protein:thesaltinducedstructuraltransition.JStructBiol 104: 916. 16. Duigou, S., S. D. Ehrlich, P. Noirot, and M. F. NoirotGros. 2004. Distinctive genetic features exhibitedbytheYfamilyDNApolymerases in Bacillus subtilis . MolMicrobiol 54: 43951. 17. Duwat, P., S. D. Ehrlich, and A. Gruss. 1995. The recA gene of Lactococcus lactis : characterization and involvement in oxidative and thermal stress. Mol Microbiol 17: 112131. 18. Erill, I., S. Campoy, and J. Barbe. 2007. Aeons of distress: an evolutionary perspectiveonthebacterialSOSresponse.FEMSMicrobiolRev 31: 63756. 19. Foster,P.L. 2007.Stressinducedmutagenesisinbacteria.CritRevBiochemMol Biol 42: 37397. 20. Foster, P. L. 2005.Stressresponsesandgeneticvariationinbacteria. Mutat Res 569: 311. 21. Glaser,P.,L.Frangeul,C.Buchrieser,C.Rusniok,A.Amend,F.Baquero,P. Berche,H.Bloecker,P.Brandt,T.Chakraborty,A.Charbit,F.Chetouani,E. Couve, A. de Daruvar, P. Dehoux, E. Domann, G. DominguezBernal, E.

148

Duchaud, L. Durant, O. Dussurget, K. D. Entian, H. Fsihi, F. Garciadel Portillo,P.Garrido,L.Gautier,W.Goebel,N.GomezLopez,T.Hain,J.Hauf, D.Jackson,L.M.Jones,U.Kaerst,J.Kreft,M.Kuhn,F.Kunst,G.Kurapkat, E.Madueno,A.Maitournam,J.M.Vicente,E.Ng,H.Nedjari,G.Nordsiek,S. Novella, B. de Pablos, J. C. PerezDiaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter,N.Simoes,A.Tierrez,J.A.VazquezBoland,H.Voss,J.Wehland, andP.Cossart. 2001.Comparativegenomicsof Listeria species.Science 294: 849 52. 22. Goodman, M. F. 2000.Copingwithreplication'trainwrecks'in Escherichia coli usingPolV,PolIIandRecAproteins.TrendsBiochemSci 25: 18995. 23. Hain, T., H. Hossain, S. S. Chatterjee, S. Machata, U. Volk, S. Wagner, B. Brors,S.Haas,C.T.Kuenne,A.Billion,S.Otten,J.PaneFarre,S.Engelmann, and T. Chakraborty. 2008. Temporal transcriptomic analysis of the Listeria monocytogenes EGDesigmaBregulon.BMCMicrobiol 8: 20. 24. Hanawa, T., M. Fukuda, H. Kawakami, H. Hirano, S. Kamiya, and T. Yamamoto. 1999. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4: 11828. 25. Harfe, B. D., and S. JinksRobertson. 2000. DNA mismatch repair and genetic instability.AnnuRevGenet 34: 359399. 26. Hosoya, Y., S. Okamoto, H. Muramatsu, and K. Ochi. 1998. Acquisition of certain streptomycinresistant (str) mutations enhances antibiotic production in bacteria.AntimicrobAgentsChemother 42: 20417. 27. Huisman, O., R. D'Ari, and S. Gottesman. 1984. Celldivision control in Escherichia coli :specificinductionoftheSOSfunctionSfiAproteinissufficientto blockseptation.ProcNatlAcadSciUSA 81: 44904. 28. Jin, H., D. M. Retallack, S. J. Stelman, C. D. Hershberger, and T. Ramseier. 2007. Characterization of the SOS response of Pseudomonas fluorescens strain DC206usingwholegenometranscriptanalysis.FEMSMicrobiolLett 269: 25664. 29. Joo,L.M.,L.R.MacfarlaneSmith,andI.N.Okeke.2007.ErrorproneDNA repair system in enteroaggregative Escherichia coli identified by subtractive hybridization.JBacteriol 189: 3793803. 30. Justice,S.S.,D.A.Hunstad,P.C.Seed,andS.J.Hultgren. 2006.Filamentation by Escherichia coli subvertsinnatedefensesduringurinarytractinfection.ProcNatl AcadSciUSA 103: 198849. 31. Kallipolitis, B. H., and H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 204: 1115. 32. Kawai,Y.,S.Moriya,andN.Ogasawara. 2003.Identificationofaprotein,YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis .MolMicrobiol 47: 111322. 33. Kazmierczak,M.J.,S.C.Mithoe,K.J.Boor,andM.Wiedmann. 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185: 572234.

149

34. Kelley,W.L. 2006.Lexmarksthespot:thevirulentsideofSOSandacloserlook attheLexAregulon.MolMicrobiol 62: 122838. 35. Maul,R.W.,andM.D.Sutton. 2005.Rolesofthe Escherichia coli RecAprotein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187: 760718. 36. McKenzie, G. J., P. L. Lee, M. J. Lombardo, P. J. Hastings, and S. M. Rosenberg. 2001.SOSmutatorDNApolymeraseIVfunctionsinadaptivemutation andnotadaptiveamplification.MolCell 7: 5719. 37. Mead,P.S.,L.Slutsker,V.Dietz,L.F.McCaig,J.S.Bresee,C.Shapiro,P.M. Griffin,andR.V.Tauxe. 1999.FoodrelatedillnessanddeathintheUnitedStates. EmergInfectDis 5: 60725. 38. Morse,R.,K.O'Hanlon,M.Virji,andM.D.Collins. 1999.Isolationofrifampin resistantmutantsof Listeria monocytogenes andtheircharacterizationby rpoB gene sequencing,temperaturesensitivityforgrowth,andinteractionwithanepithelialcell line.JClinMicrobiol 37: 29139. 39. Napolitano,R.,R.JanelBintz,J.Wagner,andR.P.Fuchs. 2000.AllthreeSOS inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis.EmboJ 19: 625965. 40. Ogino, H., H. Teramoto, M. Inui, and H. Yukawa. 2008. DivS, a novel SOS induciblecelldivisionsuppressorin Corynebacterium glutamicum . MolMicrobiol 67: 597608. 41. Peyret,N.,P.A.Seneviratne,H.T.Allawi,andJ.SantaLucia,Jr. 1999.Nearest neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G,andT.Tmismatches.Biochemistry 38: 346877. 42. Prieto, A. I., F. RamosMorales, and J. Casadesus. 2004. Bileinduced DNA damagein Salmonella enterica .Genetics 168: 178794. 43. Prieto,A.I.,F.RamosMorales,andJ.Casadesus. 2006.RepairofDNAdamage inducedbybilesaltsin Salmonella enterica .Genetics 174: 57584. 44. Rothfield, L., A. Taghbalout, and Y. L. Shih. 2005.Spatialcontrolofbacterial divisionsiteplacement.NatRevMicrobiol 3: 95968. 45. Salmelin, C., and J. Vilpo. 2002. Chlorambucilinduced high mutation rate and suicidal gene downregulation in a base excision repairdeficient Escherichia coli strain.MutatRes 500: 12534. 46. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratorymanual2nded.ColdSpringHarborLaboratoryPress,N.Y. 47. Saulnier,D.M.,D.Molenaar,W.M.deVos,G.R.Gibson,andS.Kolida. 2007. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1throughmicroarrays.ApplEnvironMicrobiol 73: 175365. 48. Schlacher,K.,M.M.Cox,R.Woodgate,andM.F.Goodman. 2006.RecAacts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442: 8837. 49. Schlacher,K.,andM.F.Goodman. 2007.Lessonsfrom50yearsofSOSDNA damageinducedmutagenesis.NatRevMolCellBiol 8: 58794.

150

50. Sleator,R.D.,H.H.WemekampKamphuis,C.G.Gahan,T.Abee,andC.Hill. 2005.APrfAregulatedbileexclusionsystem(BilE)isanovelvirulencefactorin Listeria monocytogenes .MolMicrobiol 55: 118395. 51. Sousa, F. J., L. M. Lima, A. B. Pacheco, C. L. Oliveira, I. Torriani, D. F. Almeida,D.Foguel,J.L.Silva,andR.MohanaBorges. 2006.Tetramerizationof theLexArepressorinsolution:implicationsforgeneregulationofthe E. coli SOS systematacidicpH.JMolBiol 359: 105974. 52. Sung,H.M.,G.Yeamans,C.A.Ross,andR.E.Yasbin. 2003.RolesofYqjH andYqjW,homologsofthe Escherichia coli UmuC/DinBorYsuperfamilyofDNA polymerases, in stationaryphase mutagenesis and UVinduced mutagenesis of Bacillus subtilis .JBacteriol 185: 215360. 53. Taddei,F.,I.Matic,andM.Radman. 1995.cAMPdependentSOSinductionand mutagenesisinrestingbacterialpopulations.ProcNatlAcadSciUSA 92: 11736 40. 54. vanderVeen,S.,T.Hain,J.A.Wouters,H.Hossain,W.M.deVos,T.Abee,T. Chakraborty,andM.H.WellsBennik. 2007.Theheatshockresponseof Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis,andtheSOSresponse.Microbiology 153: 3593607. 55. vanderVeen,S.,R.Moezelaar,T.Abee,andM.H.WellsBennik. 2008.The growthlimitsofalargenumberof Listeria monocytogenes strainsatcombinations ofstressesshowserotypeandnichespecifictraits.JApplMicrobiol. 56. Varhimo, E., K. Savijoki, J. Jalava, O. P. Kuipers, and P. Varmanen. 2007. IdentificationofanovelstreptococcalgenecassettemediatingSOSmutagenesisin Streptococcus uberis .JBacteriol 189: 521022. 57. Wouters, J. A., T. Hain, A. Darji, E. Hufner, H. WemekampKamphuis, T. Chakraborty, and T. Abee. 2005. Identification and characterization of Di and tripeptide transporter DtpT of Listeria monocytogenes EGDe. Appl Environ Microbiol 71: 57718.

151

8.Generaldiscussionandconclusions StijnvanderVeen,TjakkoAbee,MarjonH.J.WellsBennik

153

Introduction Listeria monocytogenes isubiquitouslyfoundintheenvironmentandasaresultraw materials used in the food industry could be contaminated with this bacterium. Furthermore, L. monocytogenes is able to form biofilms on surfaces of processing equipment,whichcouldresultincontaminationoffoodproducts.Foodmanufacturershave toensurethat L. monocytogenes isabsentin25goffoodproductsthatsupportgrowth,or thatthefoodcontainsamaximumof100cfu/gatthemomentofconsumption.Whenthe productsdonotsupportgrowth,alevelof100cfu/gistolerated(18).Duetoconsumer trendstowardconvenientfreshfoodproductswithanaturalflavourandtexture,arangeof productsrelyonminimalpreservationstrategies,oftenreferredtoas“hurdletechnology”. L. monocytogenes might be able to survive some preservation steps used by the food industrytocontrolfoodbornepathogens,posinganincreasedriskforextendedsurvival and/or growth of L. monocytogenes during storage. For this reason it is important to investigatethediversityinstressresistanceandgrowthpotentialofthe L. monocytogenes population during exposure to commonly used preservation conditions. It is known that mild stress conditions can trigger stress responses that might lead to increased survival duringsubsequentpreservationsteps.Thereforeinsightinthediversityandrelevanceof specificstressresponsesisrequired.Inthisthesisseveralapproacheswereusedtostudythe diversityofthestressresponseof L. monocytogenes strains.Thisincludedacomparisonof a large collection of wildtype strains for diversity in stress resistance, construction and screeningofamutantlibraryforstresssensitivemutants,andtranscriptionprofilingofcells beforeandafterstressexposure.Therolesofvariousgenesandregulationmechanismsina numberofstressresponseswereestablished.Inparticular,onemechanismreferredtoasthe “SOSresponse”wasinvestigatedinmoredetail,becauseofitsabilitytogenerategenetic diversity.TheroleoftheSOSresponsein L. monocytogenes stressresistance,generationof geneticdiversityandvirulenceisdiscussed. Diversityinstressresistanceandgrowthlimits The complete genome sequences of Listeria monocytogenes strains with various serotypeshavebeendetermined.HighsyntenywasobservedatboththeDNAandprotein level(27,50).Despitethishighsynteny,thestressresistanceofdifferentstrainscanvary significantly upon exposure to (combinations of) different stresses. Variation in stress resistancehasbeenreporteduponexposuretoheat(Chapter3),exposuretocombinations ofheatandlacticacid(35,40),exposuretocombinationsofheatandbacteriocins(8),and exposuretocombinationsofacidandhighsaltconcentrations(Chapter2and(4,41)).The

154

differences in stress resistance of strains should be considered during selection of conditions and strains used in challenge testing. Strains from specific origins or with specific serotypes might be better able to grow and survive during exposure to certain stressfulconditions.AsshowninChapter3,experimentsperformedwiththemostresistant strainsundercertainstressconditionwillprovideinsightinworstcasegrowthandsurvival conditionsfor L. monocytogenes . It still remains a challenge to relate phenotypic differences in stress resistance betweencertainserotypesandstrainstothepresenceofspecificgenesandtheirexpression levels.Severalattemptshavebeenmadetoidentifysuchgenesortheirproducts,asthese couldbeusedasindicatorsor“biomarkers”forthepresenceofcertain Listeria strainswith particularstressresistancephenotypes.StrainsoflineageI(serotypes1/2a,3a,1/2c,and3c) contain a specific heatshock system that increases their heatresistance (60). Approximately50%oftheserotype1/2strainscontain a specific decarboxylase system, whichenhancestheabilityofgrowthatpH5.1(13)andlowersthegrowthlimitsatlowpH inthepresenceof1.0MNaClat7ºC(Chapter2).This study also reveals the unique presenceofaspecificserineproteaseinallserotype4bstrains,whichmightenhancethe abilityofthesestrainstogrowatlowpH,highsaltconcentrations,andhightemperatures. Furtherstudiesonthisserineproteaseusinggeneticknockoutmutantsindicatedarolefor thisproteaseingrowthathightemperatures.Thetemperatureatwhichthismutantceased to grow was 0.5 ºC lower than that ofthe wildtype strain (unpublished data). Another serotype specific gene is bsh , which encodes a bile salt hydrolase that favours gastrointestinal persistence (3, 55). This gene is specific for serotype 1/2 strains and is presentatthesamelocusastheserotype1/2specificdecarboxylasesystem(3). L. monocytogenes likelyharboursvariousothersofarunidentifiedgenetictraitsthat result in diversity in stress resistance. Such traits could for instance be introduced by plasmidsor.Approximately41%ofthe L. monocytogenes strainscontaina plasmid (pLM80) of 82 kb (Chapter 2) and all strains sequenced up to date, appear to containonetofiveprophageregions(7).Twoserotypespecificphageswereisolatedthus farfrom L. monocytogenes (29).PhageA118andphagePSAshowspecificityforserotype 1/2aandserotype4b,respectively,andhavebeencompletelysequenced(44,61).Phages couldinfluencestressresistanceeitherdirectlybytheirencodedproductsorindirectlyby changingthegeneticstructureaftergenomicinsertion.Theeffectofphageinsertionson stressresistancewasexemplifiedbythefindingthatamutantcontainingavectorinsertion inthephageA118region(lmo2302)waslessabletogrowatelevatedtemperaturesand wasmoresensitivetoheatinactivation(Chapter5).Thismightindicatethatthepresenceof someofthephageA118productsenhancegrowthathightemperaturesandinduceheat resistance. Targets for phage insertion in L. monocytogenes include the gene comK and several tRNA genes (27, 50). ComK is an important regulator in many bacteria, which

155

controls the expression of many genes involved in competence development, cell wall synthesis,andstressresponse(30).For B. subtilis itwasshownthattheSOSresponsewas activated by ComK in a LexA independent manner (26). The role of ComK in L. monocytogenes remainstobeelucidated.BacteriophageA118wasfurthermore found to harbourtwogenesthatareregulatedbythe L. monocytogenes SOSresponse(Chapter7). Thisindicatesthatthesespecificphagegenesmaybefunctionalduringthespecificstress conditionsthatresultinactivationoftheSOSresponseandprovideadditionalprotectionor stimulatetheincreaseofgeneticdiversity. Anothergroupofgenesthatshowdiversepresencebetweenstrainsandserotypes aregenesencodingcellwallmodifyingenzymesandcellwallcomponents.Thebacterial cell wall can play an important role as part of the primary defence during exposure to various stresses (Chapter 4 and (24, 32)). A high proportion of predicted proteins in L. monocytogenes areexpressedassurfaceexposedproteins(7)andthisbacteriumcontains thehighestnumberofLPXTGsurfaceproteinsofallGrampositivebacteriasequencedto date (5). Many of these surface proteins are internalins and the diversity of internalin distributionoverthestrainsandserotypesishigh(7,27).Manyoftheinternalinencoding genesshowtemperaturedependentexpressionandbothSigBandPrfAhavebeenshownto regulate several of these (Chapter 4 and (46)), suggesting specific roles of the different internalinsinspecificconditionsand/orenvironmentssuchasthehumanhost.Whetherthe diversityininternalinsbetweenstrainsandserotypescanbelinkedtofunctionaldifferences instressresistanceandpathogenesisremainstobeelucidated.However,amoredetailed characterization of these genetic differences may allow for the use in strain or serotype identificationorforselectionofstrainstobeusedinchallengetests. Genemutationsandstressresistance Over a hundred years agoDarwin postulatedhis evolution theory of selection of species (14). He suggested that variability was generated by stress and that the natural environment selects for beneficial mutations. However, this statement remains controversial,sinceitisdifficulttodeterminewhetherstressgeneratesvariabilityoronly allows for selection of mutants that arise independent of stress (53). The majority of mutationsareharmfulornonfavourable,andbacteriahaveevolvedrepairsystemstocope with DNA damage (16). Bacteria are regularly exposed to adverse conditions that may induceDNAdamage,suchashightemperatures,highorlowpH,UVlight,andnutrient starvation. In response to such conditions, transcription patterns change to relieve unfavourableeffectsofthesestresses.OneoftheseresponsesistheSOSresponse,which encodesDNArepairmechanisms(45)andalternativelesionbypassDNApolymerasesthat couldintroducemutationsduetotheirsomewhatlowerspecificity(51).Increasinggenetic

156

variationcouldbebeneficialtoobtainphenotypesthatallowsurvival(20).Thisprocessof “mutagenesis”,referredtoas“adaptivemutagenesis”,hasbeendefinedasaprocessthat producesadvantageousmutationsduringexposuretononlethalstress,eventhoughother, nonbeneficial,mutationsoccuratthesametime(9,21). Nowadays, more and more mechanisms are being identified that induce genetic changesunderinfluenceofstressfulconditions,includingstarvationinducedorstationary phasemutagenesis(22,37,52,54,56),mutagenesisinagingcoloniesorrestingorganisms (6, 57, 58), and mutagenesis after exposure to antibiotics (10). Furthermore, adaptive mutagenesisornaturalselectionofresistantcellsmayoccurinbacterialbiofilmsandsome evidenceexiststhatthesebiofilmsareresponsibleforthepersistenceofadaptedstrainsin the industry or in human infections (1, 12, 36). While the underlying mechanism of adaptationisnotknownexactly,biofilmsareasourceofnaturaldiversitywithinbacterial populations(11). Allofthemechanismsleadingtoadaptivemutagenesisrequireoneormorefactors oftheSOSresponse,inparticularRecAoroneofthealternativeDNApolymerases(PolII, PolIV,orPolV).StressesthatresultinDNAdamageorreplicationforkstalling(heat shock, UV, high hydrostatic pressure, radiation) activate the SOS response, resulting in increasedmutagenesisduetoerrorpronepolymerases(Chapter7and(23,34)).However, factorsandmechanismsinvolvedintheclassIIstressresponseandtheclassIandclassIII heatshock response have been described to induce adaptive mutagenesis as well. For Escherichia coli , it was shown that the alternative sigma factor RpoS (SigB for Gram positives),whichistheregulatoroftheclassIIstressresponse(28,31,33),activatesthe geneencodingPolIV( dinB )inthelatestationaryphase(38).Acloserlookatthepromoter regionof dinB in L. monocytogenes revealedthepresenceoftwopotentialSigBdependent promotersaswell(unpublisheddata).InteractionbetweentheSOSresponseandtheheat shockresponsehasalsobeenestablishedin L. monocytogenes (Chapters4and7).Previous studies in E. coli have shown that the heatshock chaperone system GroE ( groESL ) interactswiththealternativeDNApolymerasesPolIV(DinB)(39)andPolV(UmuDC) (15,43)andprotectsthemfromdegradation.GroEdeficientmutantsonlyretained10%of thewildtypePolIVpool,resultinginreducedmutations (39). Furthermore, many SOS products showed instability and quick degradation by the heatshock dependent Clp proteases (4749), resulting in active control of the SOS response by the heatshock response.Mutationscanalsobeinducedbyheatshockproteinsdirectly.Rearrangementsof DNArepeatsaredependentontheheatshockchaperoneDnaK(25).Theseresultsshow thattheclassIandclassIIIheatshockresponsesandtheclassIIstressresponse,whichare inducedduringexposuretovariousstresses(Chapter4and(2,17,19,42,59)),couldplay an important role in adaptive mutagenesis. Induction of these responses or the SOS

157

responseduringmildfoodpreservationcouldthereforepotentiallyresultinadaptedstrains whicharemoredifficulttoeradicateorhaveincreasedvirulencepotential. Concludingremarks Thisthesisdescribesseveralapproachestoelucidatethefunctionofstressresistance genes and mechanisms and their diversity in L. monocytogenes strains and serotypes, including a comparative analysis of wildtype strains and random and targeted deletion mutants.Toobtaininsightinthenaturaldiversityof L. monocytogenes strainswithrespect tooutgrowthunderdifferentstressconditions,acollectionof138wildtypestrainswith diverseoriginswastestedundertemperaturestress,saltstress,lactatestressandpHstress. Importantly, serotype and nichespecific traits for the growthlimits were identified, indicating that certain strains or serotypes might have adapted to their environment. Furthermore, the EuropeanUnionregulation forRTE food products that do not support growthof L. monocytogenes wasadequateforallofthe138testedstrains,sincenoneof thesestrainswasabletogrowattheconditionssetinthisregulation.Alsoanewcriterion was identified. Based on our results a combination of sodium lactate and low pH, i.e., sodium lactate ≥ 2% and pH ≤ 5.2, efficiently prevented growth of all 138 L. monocytogenes isolatestested.However,morecombinationsoflowpHandsodiumlactate shouldbetestedtoelucidatetheconcentrationof(undissociated)acidthatpreventsgrowth of L. monocytogenes beforethiscriterioncanbeimplemented.Thecompletecollectionwas subsequentlyscreenedforthepresenceofgenesinstrainsandserotypeswithalinktostress resistance,whichresultedintheidentificationofthetwoputativebiomarkersORF2110and gadD1T1 . Furthermore, a large collection of L. monocytogenes strains was screened for thermalinactivationat55ºC.Morethan3logunitsdifferenceininactivationbetweenthese strainswasfoundafter3hoursincubationinBHIbroth.Thermalinactivationparameters weredeterminedfortwooftheseheatresistantstrainsandareferencestraininBHIbroth andinmilkinthesocalled“microheater”,which mimics heatinactivation in industrial heatexchangers.Theheatresistantstrainsstillshowedsignificantlyhigherheatresistance than the reference strain, but it should be noted that even the most heatresistant L. monocytogenes strain was inactivated fully when applying normal and well performed pasteurizationprocesses. Screeningofarandominsertionmutantlibraryof L. monocytogenesEGDeforhigh temperaturesensitivemutantsresultedintheidentificationof28genesinvolvedingrowth at high temperatures. The relevance of two of the identified genes ( mogR & clpB ) was verified by constructing specific knockout mutants. Experiments showed that clpB expression(classIIIheatshock)isrepressedbyMogR(Mo tilitygeneRepressor).Inshort, thisworkestablishedMogRasthefirstmotilityregulatorthatcontrolsastressresponse

158

gene with a direct role in stress survival. These results established yet another overlap between different pathways of L. monocytogenes and showed the complex nature and coherenceoftheseregulatoryunits. Finally,toobtaininsightinthestressresponsemechanismsthatareimportantfor heatexposurewholegenomeexpressionprofileswereanalyseduponheatstress.Numerous differentiallyexpressedgeneswereidentifiedincludingthewellknownclassIandclassIII heatshock genes, the SigB regulated class II stress genes, SOSresponse genes, and numerous cell wall and cell division related genes. Additional experiments involving specificknockoutmutantsofgenesinvolvedintheSOSresponse( recA and yneA )were performed. These experiments identified a role for the SOS response in adaptive mutagenesis,stresssurvival,andvirulence.Theseresultsareimportantbecauseinduction oftheSOSresponseduringfoodpreservationmight resultingenerationandsubsequent selectionofpersistent L. monocytogenes variantsinfoodprocessingenvironments. Inconclusion,thisthesisdescribesthefunctionandrelevanceofspecificgenesand stressresponsemechanismsforstresssurvivalandprovidesinsightinthediversityofstress resistanceandgrowthlimitsof L. monocytogenes .Theseresultsincreaseourunderstanding oftheactivationandfunctionofthecomplexstressresponsenetworkin L. monocytogenes andhowstrainsandserotypesadapttoconditionsencounteredduringfoodpreservationor inthehumanhost. References 1. Banas,J.A.,J.D.Miller,M.E.Fuschino,K.R.Hazlett,W.Toyofuku,K.A. Porter,S.B.Reutzel,M.A.Florczyk,K.A.McDonough,andS.M.Michalek. 2007.Evidencethataccumulationofmutantsinabiofilmreflectsnaturalselection ratherthanstressinducedadaptivemutation.ApplEnvironMicrobiol 73: 35761. 2. Becker,L.A.,M.S.Cetin,R.W.Hutkins,andA.K.Benson. 1998.Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes anditsroleinosmotolerance.JBacteriol 180: 454754. 3. Begley,M.,R.D.Sleator,C.G.Gahan,andC.Hill.2005.Contributionofthree bileassociated loci, bsh , pva , and btlB , to gastrointestinal persistence and bile toleranceof Listeria monocytogenes .InfectImmun 73: 894904. 4. Bereksi,N.,F.Gavini,T.Benezech,andC.Faille. 2002.Growth,morphologyand surface properties of Listeria monocytogenes ScottAandLO28undersalineand acidenvironments.JApplMicrobiol 92: 55665. 5. Bierne, H., and P. Cossart. 2007. Listeria monocytogenes surfaceproteins:from genomepredictionstofunction.MicrobiolMolBiolRev 71: 37797. 6. Bjedov, I., O. Tenaillon, B. Gerard, V. Souza, E. Denamur, M. Radman, F. Taddei, and I. Matic. 2003. Stressinduced mutagenesis in bacteria. Science 300: 14049.

159

7. Buchrieser, C. 2007. Biodiversity of the species Listeria monocytogenes and the genus Listeria .MicrobesInfect 9: 114755. 8. Buncic,S.,S.M.Avery,J.Rocourt,andM.Dimitrijevic. 2001.Canfoodrelated environmentalfactorsinducedifferentbehaviourintwokeyserovars,4band1/2a, of Listeria monocytogenes ?IntJFoodMicrobiol 65: 20112. 9. Cairns, J., J. Overbaugh, and S. Miller. 1988. The origin of mutants. Nature 335: 1425. 10. Cirz, R. T., M. B. Jones, N. A. Gingles, T. D. Minogue, B. Jarrahi, S. N. Peterson, and F. E. Romesberg. 2007.CompleteandSOSmediatedresponseof Staphylococcus aureus totheantibioticciprofloxacin.JBacteriol 189: 5319. 11. Costerton, J. W., K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta,andT.J.Marrie. 1987.Bacterialbiofilmsinnatureanddisease.Annu RevMicrobiol 41: 43564. 12. Costerton,J.W.,P.S.Stewart,andE.P.Greenberg. 1999.Bacterialbiofilms:a commoncauseofpersistentinfections.Science 284: 131822. 13. Cotter, P. D., S. Ryan, C. G. Gahan, and C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated withanabilitytogrowatlowpH.ApplEnvironMicrobiol 71: 28329. 14. Darwin,C. 1859.OntheOriginofSpeciesbyMeansofNaturalSelection,orthe Preservation of Favoured Races in the Struggle for Life, 1 st ed. John Murray, London. 15. Donnelly, C. E., and G. C. Walker. 1989. groE mutants of Escherichia coli are defectivein umuDC dependentUVmutagenesis.JBacteriol 171: 611725. 16. Drake, J. W. 1991. A constant rate of spontaneous mutation in DNAbased microbes.ProcNatlAcadSciUSA 88: 71604. 17. Duche, O., F. Tremoulet, P. Glaser, and J. Labadie. 2002. Salt stress proteins inducedin Listeria monocytogenes .ApplEnvironMicrobiol 68: 14918. 18. EuropeanUnion,T.E.P.a.t.C.o.t. 2005.RegulationEC/2073/2005.Official JournaloftheEuropeanUnion L338: 126. 19. Ferreira, A., C. P. O'Byrne, and K. J. Boor. 2001. Role of sigma(B) in heat, ethanol,acid,andoxidativestressresistanceandduringcarbonstarvationin Listeria monocytogenes .ApplEnvironMicrobiol 67: 44547. 20. Foster,P.L. 2007.Stressinducedmutagenesisinbacteria.CritRevBiochemMol Biol 42: 37397. 21. Foster, P. L. 2005.Stressresponsesandgeneticvariationinbacteria. Mutat Res 569: 311. 22. Foster, P. L., and J. Cairns. 1994.TheoccurrenceofheritableMuexcisionsin starvingcellsofEscherichiacoli.EmboJ 13: 52404. 23. Friedman, N., S. Vardi, M. Ronen, U. Alon, and J. Stavans. 2005. Precise temporalmodulationintheresponseoftheSOSDNArepairnetworkinindividual bacteria.PLoSBiol 3: e238. 24. Giotis,E.S.,A.Muthaiyan,I.S.Blair,B.J.Wilkinson,andD.A.McDowell. 2008.GenomicandproteomicanalysisoftheAlkaliToleranceResponse(AlTR)in Listeria monocytogenes 10403S.BMCMicrobiol 8: 102.

160

25. Goldfless,S.J.,A.S.Morag,K.A.Belisle,V.A.Sutera,Jr.,andS.T.Lovett. 2006. DNA repeat rearrangements mediated by DnaKdependent replication fork repair.MolCell 21: 595604. 26. Haijema,B.J.,D.vanSinderen,K.Winterling,J.Kooistra,G.Venema,andL. W. Hamoen. 1996. Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis . Mol Microbiol 22: 7585. 27. Hain,T.,S. S.Chatterjee,R.Ghai,C.T.Kuenne, A.Billion,C.Steinweg,E. Domann,U.Karst,L.Jansch,J.Wehland,W.Eisenreich,A.Bacher,B.Joseph, J.Schar,J.Kreft,J.Klumpp,M.J.Loessner,J.Dorscht,K.Neuhaus,T.M. Fuchs,S.Scherer,M.Doumith,C.Jacquet,P.Martin,P.Cossart,C.Rusniock, P.Glaser,C.Buchrieser,W.Goebel,andT.Chakraborty. 2007.Pathogenomics of Listeria spp.IntJMedMicrobiol 297: 54157. 28. Hain, T., H. Hossain, S. S. Chatterjee, S. Machata, U. Volk, S. Wagner, B. Brors,S.Haas,C.T.Kuenne,A.Billion,S.Otten,J.PaneFarre,S.Engelmann, and T. Chakraborty. 2008. Temporal transcriptomic analysis of the Listeria monocytogenes EGDesigmaBregulon.BMCMicrobiol 8: 20. 29. Hain, T., C. Steinweg, and T. Chakraborty. 2006. Comparative and functional genomicsof Listeria spp.JBiotechnol 126: 3751. 30. Hamoen,L.W.,G.Venema,andO.P.Kuipers. 2003.Controllingcompetencein Bacillus subtilis :shareduseofregulators.Microbiology 149: 917. 31. HenggeAronis,R. 2002.Signaltransductionandregulatorymechanismsinvolved incontrolofthesigma(S)(RpoS)subunitofRNApolymerase.MicrobiolMolBiol Rev 66: 37395. 32. Jordan,S.,M.I.Hutchings,andT.Mascher. 2008.Cellenvelopestressresponse inGrampositivebacteria.FEMSMicrobiolRev 32: 10746. 33. Kazmierczak,M.J.,S.C.Mithoe,K.J.Boor,andM.Wiedmann. 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185: 572234. 34. Kelley,W.L. 2006.Lexmarksthespot:thevirulentsideofSOSandacloserlook attheLexAregulon.MolMicrobiol 62: 122838. 35. Koutsoumanis,K.P.,L.V.Ashton,I.Geornaras,K.E.Belk,J.A.Scanga,P.A. Kendall, G. C. Smith, and J. N. Sofos. 2004. Effect of single orsequential hot water and lactic acid decontamination treatments on the survival and growth of Listeria monocytogenes andspoilagemicrofloraduringaerobicstorageoffreshbeef at4,10,and25degreesC.JFoodProt 67: 270311. 36. Krasovec,R.,andI.Jerman. 2003.Bacterialmulticellularityasapossiblesource ofantibioticresistance.MedHypotheses 60: 4848. 37. Lamrani,S.,C.Ranquet,M.J.Gama,H.Nakai,J.A.Shapiro,A.Toussaint, and G. MaenhautMichel. 1999. Starvationinduced Mucts62mediated coding sequencefusion:aroleforClpXP,Lon,RpoSandCrp.MolMicrobiol 32: 32743. 38. Layton, J. C., and P. L. Foster. 2003. Errorprone DNA polymerase IV is controlled by the stressresponse sigma factor, RpoS, in Escherichia coli . Mol Microbiol 50: 54961.

161

39. Layton, J. C., and P. L. Foster. 2005. Errorprone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli . J Bacteriol 187: 44957. 40. Lianou, A., J. D. Stopforth, Y. Yoon, M. Wiedmann, and J. N. Sofos. 2006. Growth and stress resistance variation in culture broth among Listeria monocytogenes strainsofvariousserotypesandorigins.JFoodProt 69: 26407. 41. Liu,D.,M.L.Lawrence,A.J.Ainsworth,andF.W.Austin. 2005.Comparative assessmentofacid,alkaliandsalttolerancein Listeria monocytogenes virulentand avirulentstrains.FEMSMicrobiolLett 243: 3738. 42. Liu,S.,J.E.Graham,L.Bigelow,P.D.Morse,2nd,andB.J.Wilkinson. 2002. Identificationof Listeria monocytogenes genesexpressedinresponsetogrowthat lowtemperature.ApplEnvironMicrobiol 68: 1697705. 43. Liu,S.K.,andI.Tessman. 1990. groE genesaffectSOSrepairin Escherichia coli . JBacteriol 172: 61358. 44. Loessner, M. J., R. B. Inman, P. Lauer, and R. Calendar. 2000. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118of Listeria monocytogenes :implicationsforphageevolution.MolMicrobiol 35: 32440. 45. Lusetti, S. L., and M. M. Cox. 2002. The bacterial RecA protein and the recombinationalDNArepairofstalledreplicationforks.AnnuRevBiochem 71: 71 100. 46. McGann, P., R. Ivanek, M. Wiedmann, and K. J. Boor. 2007. Temperature dependentexpressionof Listeria monocytogenes internalinandinternalinlikegenes suggests functional diversity of these proteins among the listeriae. Appl Environ Microbiol 73: 280614. 47. Neher, S. B., J. M. Flynn, R. T. Sauer, and T. A. Baker. 2003. Latent ClpX recognition signals ensure LexA destruction after DNA damage. Genes Dev 17: 10849. 48. Neher,S.B.,R.T.Sauer,andT.A.Baker. 2003.Distinctpeptidesignalsinthe UmuDandUmuD'subunitsofUmuD/D'mediatetetheringandsubstrateprocessing bytheClpXPprotease.ProcNatlAcadSciUSA 100: 1321924. 49. Neher,S.B.,J.Villen,E.C.Oakes,C.E.Bakalarski,R.T.Sauer,S.P.Gygi, andT.A.Baker. 2006.ProteomicprofilingofClpXPsubstratesafterDNAdamage revealsextensiveinstabilitywithinSOSregulon.MolCell 22: 193204. 50. Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay,D.A.Rasko,S.V.Angiuoli,S.R.Gill,I.T.Paulsen,J.Peterson,O. White, W. C. Nelson, W. Nierman, M. J. Beanan, L. M. Brinkac, S. C. Daugherty,R.J.Dodson,A.S.Durkin,R.Madupu,D.H.Haft,J.Selengut,S. VanAken,H.Khouri,N.Fedorova,H.Forberger,B.Tran,S.Kathariou,L.D. Wonderling, G. A. Uhlich, D. O. Bayles, J. B. Luchansky, and C. M. Fraser. 2004.Wholegenomecomparisonsofserotype4band1/2astrainsofthefoodborne pathogen Listeria monocytogenes reveal new insights into the core genome componentsofthisspecies.NucleicAcidsRes 32: 238695. 51. Nohmi,T. 2006.EnvironmentalstressandlesionbypassDNApolymerases.Annu RevMicrobiol 60: 23153.

162

52. Ross, C., C. Pybus, M. PedrazaReyes, H. M. Sung, R. E. Yasbin, and E. Robleto. 2006. Novel role of mfd: effects on stationaryphase mutagenesis in Bacillus subtilis .JBacteriol 188: 751220. 53. Roth,J.R.,E.Kugelberg,A.B.Reams,E.Kofoid,andD.I.Andersson. 2006. Originofmutationsunderselection:theadaptivemutationcontroversy.AnnuRev Microbiol 60: 477501. 54. Saumaa, S., K. Tarassova, M. Tark, A. Tover, R. Tegova, and M. Kivisaar. 2006.InvolvementofDNAmismatchrepairinstationaryphasemutagenesisduring prolongedstarvationof Pseudomonas putida .DNARepair(Amst) 5: 50514. 55. Sue, D., K. J. Boor, and M. Wiedmann. 2003. Sigma(B)dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes . Microbiology 149: 324756. 56. Sung,H.M.,G.Yeamans,C.A.Ross,andR.E.Yasbin. 2003.RolesofYqjH andYqjW,homologsofthe Escherichia coli UmuC/DinBorYsuperfamilyofDNA polymerases, in stationaryphase mutagenesis and UVinduced mutagenesis of Bacillus subtilis .JBacteriol 185: 215360. 57. Taddei,F.,J.A.Halliday,I.Matic,andM.Radman.1997.Geneticanalysisof mutagenesisinaging Escherichia coli colonies.MolGenGenet 256: 27781. 58. Taddei,F.,I.Matic,andM.Radman. 1995.cAMPdependentSOSinductionand mutagenesisinrestingbacterialpopulations.ProcNatlAcadSciUSA 92: 11736 40. 59. WemekampKamphuis, H. H., J. A. Wouters, P. P. de Leeuw, T. Hain, T. Chakraborty,andT.Abee. 2004.IdentificationofsigmafactorsigmaBcontrolled genesandtheirimpactonacidstress,highhydrostaticpressure,andfreezesurvival in Listeria monocytogenes EGDe.ApplEnvironMicrobiol 70: 345766. 60. Zhang, C., J. Nietfeldt, M. Zhang, and A. K. Benson. 2005. Functional consequences of genome evolution in Listeria monocytogenes : the lmo0423 and lmo0422genesencodesigmaCandLstR,alineageIIspecificheatshocksystem.J Bacteriol 187: 724353. 61. Zimmer, M., E. Sattelberger, R. B. Inman, R. Calendar,andM.J.Loessner. 2003.Genomeandproteomeof Listeria monocytogenes phagePSA:anunusualcase forprogrammed+1translationalframeshiftinginstructuralproteinsynthesis.Mol Microbiol 50: 30317.

163

Samenvatting De voedselpathogeen Listeria monocytogenes is een Grampositieve facultatief anaerobebacteriediedeziektelisteriosiskanveroorzaken.Desymptomendiemetdeze ziektegepaardgaanzijnonderanderemeningitis,encefalitis,sepsisenspontaneabortus.In verscheideneEuropeselandenneemtdeincidentietoe. L. monocytogenes komtoveralin het milieu voor en is daarom instaat om ingredienten en procesapparatuur die gebruikt worden in de voedingsindustrie te besmetten. Omdat de vraag van consumenten naar minder geconserveerde en verse producten toeneemt worden de toegepaste conserveringscondities milder. L. monocytogenes kan zich aanpassen aan deze milde conditiesendaarnauitgroeientijdensopslagvanhetvoedsel.Uitbrakenvanlisteriosiszijn geassocieerd met verschillende categorieën voedselproducten, zoals nietgepasteuriseerde zuivelproducten,schaalenschelpdieren,versegroentesenkantenklarevleesproducten. Metnamevoedselproductendienietmeerverderbehandeldofgekooktdienenteworden voor consumptie of producten met een verlengde houdbaarheidsdatum die bereikt wordt door opslag onder gekoelde condities zijn geassocieerd met een verhoogd risico op L. monocytogenes besmettingenuitgroei.Verderkandezebacterierelatiefgoedoverlevenen zelfs groeien onder conserveringsomstandigheden die afdoende zijn voor andere voedselpathogenen. Zo kan groei optreden bij lage pH, hoge zout concentraties en lage temperaturen. L. monocytogenes stammen worden getypeerd op basis van aanwezigheid van bepaalde eiwitten in de celwand van de bacterie. Tot op heden zijn 13 verschillende serotypes van L. monocytogenes geïdentificeerd.Deserotypen1/2a,1/2ben4bzijn het meestgevonden,enmeerdan95%vandeisolatenuitvoedselenpatiëntenbehoorttotdeze serotypes. Doorgaans zijn serotype 4b stammen het meest prominent aanwezig onder klinischeisolatenterwijldeserotype1/2aen1/2bstammenmeerwordenaangetroffenin kantenklarevoedselproducten.Dezeverschillenzijnmogelijkgerelateerdaangenetische verschilleninstresstolerantie(mechanismen). Inditproefschriftismeerinzichtverkregenindefunctievanstressresistentiegenen enstressmechanismenenindediversiteittussen L. monocytogenes stammen.Dediversiteit instressresistentievoordeL. monocytogenes populatieisonderzochtdoordegroeilimieten onderverschillendestressconditiesvooreengrotecollectie L. monocytogenes stammente bepalen.Ominzichtteverkrijgenindegenenenmechanismendieeenrolspeleninstress overlevingisgebruikgemaaktvaneenspecifiekestam(EGDe)waarvaneengenetische blauwdruk van het complete genoom bekend is. Van deze stam is een mutantenbank gecreëerd welke vervolgens is gescreend op stress gevoelige mutanten. Verder zijn transcriptieprofielenindezestamvergelekenvoorennaeenstressblootstellingomvastte

165

stellen welke mechanismen specifiek worden geactiveerd tijdens blootstelling aan een bepaaldestress.Enkelespecifiekemechanismendiebelangrijkzijnvoorstressoverleving zijnvervolgensinmeerdetailbestudeerd. Ominzichttekrijgeninhetvermogentotgroeivan L. monocytogenes stammenbij combinaties van verschillende zuurgraden en natriumlactaatconcenraties, hoge zoutconcentraties,enverschillendetemperatureniseencollectievan138stammengetest. Deze collectie bevatte klinische isolaten en stammen geïsoleerd uit verschillende voedselbronnenwaarvandeserotypeswarenbepaald.Geenvandestammenwasinstaat om te groeien bij een pH ≤ 4,4, bij een a w ≤ 0,92 (ongeveer 13 % NaCl) of bij een combinatievanpH≤5,0eneena w≤0,94(+/10%NaCl).Dezeresultatenkomenovereen met de criteria die door de Europese Unie zijn vastgesteld ten aanzien van L. monocytogenes voorkantenklarevoedselproductenwaarindezebacterienietkangroeien. Voorvoedselproductendievoldoenaandezeeisenwordt 100 cfu/g product getolereerd, terwijlvoorproductenwaarin L. monocytogenes welkangroeienafwezigheidin25gwordt geëist.Verderisinditproefschrifteennieuwcriteriumgeïdentificeerd:bijeencombinatie vanminimaal2%natriumlactaateneenpH≤5,2wasgeenvande138getestestammenin staat om te groeien. Na clustering van de groeilimieten van stammen op basis van specifieke serotypes of op basis van de isolatiebron (bepaalde voedselproducten of de menselijke gastheer) zijn verschillen in groeilimieten geïdentificeerd. Deze verschillen kunnenbelangrijkzijnvoorhetselecterenvandejuistestamvoorhetuitvoerenvanstress experimenten.Verderisdehelecollectiegetestopdeaanwezigheidvangenendieeenrol spelenbijstressresistentie.Zozijntweemogelijke“biomarkers”geïdentificeerd,namelijk een bepaald serotype 4b specifiek protease (ORF2110) en een glutamaat decarboxylase systeem(gadD1T1 )dateenrolspeeltbijhethandhavenvaneenhogeintracelulairpHin zure omgevingen. Ten slotte is de hitteresistentie van een uitgebreide stammencollectie getestdoorblootstellingaaneentemperatuurvan55ºC.Na3uurblootstellingwasmeer dan3log 10 unitsverschilininactivatietussendeverschillendestammenwaarneembaar.De hitteinactivatie van de twee meest hitte resistente stammen en een referentie stam zijn vervolgens nauwkeurig bepaald in een modelsysteem. Hieruit bleek dat niet alleen de referentiestammaarookdemeesthitteresistentestammennietinstaatzijnomeengoed uitgevoerdepasteurisatiestapteoverleven.Hetisechterwelbelangrijkomdetemperatuur tijdenshetpasteurizatieprocesgoedtebewaken,aangezienbijeendalingvanenkelegraden (>4°C)ereenmogelijkheidbestaatdatdemeesthitteresistentestammennietvoldoende geinactiveerdwordenendusdebehandelingoverleven. Inditproefschriftzijn28genengeïdentificeerddie belangrijk zijn voor groei bij verhoogdetemperaturendooreenmutantenbankvan L. monocytogenes EGDetescreenen opgevoeligheidvoorgroeibijverhoogdetemperaturen.Dezegenencoderenvooreiwitten met een functie in celwand synthese, in translatie en in stress resistentie. Sommige

166

mutantenlateneenveranderdemorfologiezienzoalsverlengdecellen,kleinerecellen,of cellen met een sikkel vorm. De meeste mutanten zijn ook meer gevoelig voor hitte inactivatie.Derelevantievantweespecifiekegenen( mogR en clpB )isverderonderzocht door het maken van specifieke deletie mutanten. Deze experimenten lieten zien dat de expressie van het klasse III hitte schok gen clpB wordt onderdrukt door de mobiliteitsregulatorMogR.VerderisaangetoonddatClpBessentieelisvoordeoverleving vanhitteenzeerbelangrijkisvoordeoverlevingvaneenblootstellingaanhogedruk. Ominzichtteverkrijgenindestressadaptatiemechanismenvan L. monocytogenes naeenhitteblootstellingzijndetranscriptieprofielenvancellengeanalyseerdvoorenna een blootstelling. Verschillende genen en stress mechanismen vertoonden verhoogde expressienadehitteblootstelling,waaronderdeklasseIenklasseIIIhitteschokrespons, deSigBgereguleerdeklasseIIstressrespons,deSOSresponsenveelgenendiecoderen vooreiwittendiedeeluitmakenvandecelwandofdieeenrolspelenbijcelwandsynthese oftijdensceldeling.Verdereexperimentenzijnuitgevoerdmetspecifiekedeletiemutanten vangenenuitdeSOSresponse.DeSOSresponseiseenmechanismedatoverhetalgemeen wordtgeactiveerdnaDNAbeschadigingofbijhetoptredenvanproblemenmetdeDNA replicatie vork. De SOS response bevat DNA herstel eiwitten en alternatieve DNA polymerasesdiebeschadigdDNAkunnenherstellenenrepliceren.Deexperimentenlaten ziendatdeSOSresponseeenrolheeftinstressoverleving,virulentieenhetinducerenvan genetische diversiteit. Deze resultaten zijn belangrijk omdat de inductie van de SOS response tijdens blootstelling aan stress mogelijk resulteert in het genereren van stress resistenteL. monocytogenes mutanten. Ditproefschriftheeftnieuweinzichtenopgeleverdindediversiteitingroeilimieten vanL. monocytogenes stammenendestressresistentievandezebacterie.Deverschillenin groeilimieten kunnen mogelijk verklaren waarom bepaalde serotypes meer worden aangetroffenonderklinischeisolatenterwijlanderemeerwordengeïsoleerduitspecifieke voedselproducten. Daarnaast heeft dit werk meer inzicht opgeleverd in de functie en de complexiteitvanhetstressresponsenetwerkvan L. monocytogenes .

167

Nawoord Navierjaarhardwerkenishetdaneindelijkzover,mijnboekjeisaf!Detijdisecht voorbij gevlogen. Als ik terug kijk naar de afgelopen jaren is er echt ontzettend veel gebeurd, zowel in mijn privé leven als werkgerelateerd. Zo ben ik getrouwd met mijn allerliefsteJingjie,verhuisdnaareenleukappartementjeinhetcentrumvanWageningenen hebzoongeveerallecontinentenbezochttijdensdeveleprivéenwerkgerelateerdereisjes, waarvannietdeminstemijntweedebezoekaanChinaomonzebruiloftnogeensdunnetjes over te doen. Verder heb ik echt genoten van de vrijheid die ik kreeg om interessante resultatenbinnenmijnonderzoekverderindetailuittepluizen.Ikkandaaromookiedereen die afstudeerd en wetenschappelijke interesse heeft aanraden om promotieonderzoek te doen. Natuurlijkhebiknietalleswatinditboekjestaatalleenvoorelkaargekregen.Ikwil beginnenmethetbedankenvanMarjon,mijnbegeleiderophetNIZO.Ikbenzeerblijdat jijdeplekhebopgevulddieJeroenachterlietnazijnvertreknaardeUSA.Decontacten metjou,inhetbeginbijnaopdagelijksebasisaangezienjoubureauopongeveer3meter van die van mij stond, heeft zeer stimulerend gewerkt in de ontwikkeling van mijn wetenschappelijke denken.Ook heb ik heel veel geleerd van jou over het schrijven van wetenschappelijkeartikelen.Verderbenikjezeerdankbaarvoorjekritischeblikopmijn schrijfwerk. OokwilikSaskiabedankenvoorhaarbijdrageinmijnonderzoek.Metnamejou werkinhetoptimaliserenvande Listeria protocollenendeextrahandentijdensenkelevan deuitgebreidereexperimentenheeftmijenormveeltijdenmoeitebespaard.Verderbenik jouookzeerdankbaardatjemijwegwijshebtgemaaktophetNIZO.Enikbennatuurlijk blijdatjemijnparanimfwilzijn. Zonder promotoren valt er niet te promoveren. Ik ben Tjakko en Willem zeer erkentelijk dat ze mij de mogelijkheid hebben gegeven om te promoveren. Tjakko, je positieveblikendefeedbacktijdenswerkdiscussieshebbenzeerinspirerendgewerkten hebbenertoebijgedragendatikhebgeprobeerdhetdiepsteuitdekantehalen.Ikbenblij datikookdekomende2jaarmetjouzalsamenwerken.Willem,jekritischeblikopmijn manuscriptenwarenzeerwelkomenzijndekwaliteitzekertengoedegekomen. DitpromotieonderzoekisuitgevoerdbinnenTIFNprojectC009.Daaromwilikalle teamleden van C009 bedanken voor hun input bij mijn onderzoek tijdens de vele projectbijeenkomsten.VerderwilikmetnameRoybedankenvoorzijninspirerendeleiding vanditteam.JijhebtC009opdekaartgezetenonderjouleidingzijnwijgegroeidtoteen hechtteam.Ikzieonzesamenwerkingdekomende2jaarinhetnieuweprojectC1056met veelvertrouwentegemoet.

169

VerderwiliknatuurlijkJeroenbedankenvoorzijnbegeleidinginheteerstehalve jaarvanmijnpromotieonderzoek.Jeroen,ikvondhetjammerdatjevertroknaardeVS wanthetwasprettigommetjousamentewerken. VanhetNIZOwilikverderiedereenvanhetKluyverlab(denaamisnatuurlijknooit juistgeweest)endelunchmeetinggroepbedankenvoordesamenwerkingendedagelijkse aanspraakendebacteriologischekeukenomdatzemeveelwerkentijdhebbenbespaard methetbereidenvanallerleimedia.OokwilikArjenenDouwespecifiekbedankenvoor jullieinputinmijnpapers. EnnatuurlijkFilipe,mijnandereparanimf.Ikvindhetleukdatjemijnparanimfwil zijn.IkhebveelpleziermetjebeleefdinhetlabeninhetbusjeinCalifornia.Alsjenog eensietsmistdanhoorikhetwel. DekaftvanditproefschriftisontworpendoorJingjie’sjeugdvriendinKun.Ikben echtontzettenddankbaarvoordetijddiejehierinhebtgestoken. Verder wil ik natuurlijk mijn vrienden en familie bedanken voor de support en belangstelling. Entotslot,Jingjie,ikbenjedankbaarvoorjesteunenliefde.Ikzieonslevenmet veelpleziertegemoet.

170

ListofPublications van der Veen, S. , T. Hain, J. A. Wouters, H. Hossain, W. M. de Vos, T. Abee, T. Chakraborty, and M. H. WellsBennik. 2007. The heatshock response of Listeria monocytogenes comprisesgenesinvolvedinheatshock,celldivision,cellwallsynthesis, andtheSOSresponse.Microbiology 153: 35933607. vanderVeen,S. ,R.Moezelaar,T.Abee,andM.H.J.WellsBennik. 2008Thegrowth limitsofalargenumberof Listeria monocytogenes strainsatcombinationsofstressesshow serotypeandnichespecifictraits.JApplMicrobiol 105: 12461258. van der Veen, S. , T.Abee,W.M.deVos,andM. H.J.WellsBennik.Genomewide screen for Listeria monocytogenes genes important for growth at high temperatures. Submittedforpublication. van der Veen, S. , A. Wagendorp, T. Abee, and M. H. J. WellsBennik. Diversity assessment of heat resistance of Listeria monocytogenes strains in a continuous flow heatingsystem.Submittedforpublication van der Veen, S. ,I.K.H.VanBoeijen,W.M.deVos,T.Abee,andM. H. J. Wells Bennik.The Listeria monocytogenes motilityregulatorMogRcontrolsexpressionof clpB andaffectsstressresistance.Submittedforpublication. vanderVeen,S. ,S.vanSchalkwijk,D.Molenaar,W.M.deVos,T.Abee,andM.H.J. WellsBennik.TheSOSresponseof Listeria monocytogenes isinvolvedinstressresistance andmutagenesis.Submittedforpublication.

171

CurriculumVitae StijnvanderVeenwerdop23oktober1978geboreninhetplaatsjeGoirle,eventen zuiden van Tilburg. Hij heeft het VWO gedaan in Tilburg aan het Koning Willem II College. In 1997 is hij de studie bioprocestechnologie gaan volgen aan de Wageningen Universiteit met als specialisatie cellulairmoleculair. Hij heeft tijdens deze studie afstudeervakkengedaanaandevakgroepVirologieenbijhetRikilt.Verderheefthijeen stagegedaanbijdeUniversityofOtagoinNieuwZeeland.In2003voltooidehijzijnstudie waarnahijin2004isbegonnenmetzijnpromotieonderzoek.Ditonderzoekisbeschreven inditproefschriftenwerduitgevoerdvoorTIFoodandNutrition(voorheenWCFS)ophet NIZO in samenwerking met de vakgroep Levensmiddelenmicrobiologie van de WageningenUniversiteit.HetonderzoekwerdbegeleidophetNIZOdoorDr.Ir.M.H.J. WellsBennikenaandeWageningenUniversiteitdoorProf.Dr.T.AbeeenProf.Dr.W. M.deVos.Aansluitendaanhetpromotieonderzoekishijin2008begonnenalspostdoc aan de vakgroep Levensmiddelenmicrobiologie van de Wageningen Universiteit voor TI FoodandNutritiononderdeleidingvanProf.Dr.T.AbeeenDr.R.Moezelaar.

173

VLAGgraduateschoolactivities Disciplinespecificactivities Courses Geneticsandphysiologyoffoodassociatedmicroorganisms,VLAG,2004 Systemsbiology:“Principlesof~omicsdataanalysis”,VLAG,2005 Radiationexpert5B,Larenstein,Wageningen,2004 GFP&Lucworkshop,EPS,2005 WorkingvisitatUniversityofGiessen,UniversityofGiessen,Germany,2005 Meetings Isopolconference,Uppsala,Sweden,2004 FoodMicrobiologyconference,Bologna,Italy,2006 IDFdairyconference,Quebec,Canada,2008 GRCconferenceonMicrobialstressresponse,MountHolyoke,USA,2008 Generalcourses VLAGPhDweek,2004 TechniquesforWritingandPresentingaScientificPaper,WGS,2006 Optionals PreparationPhDresearchproposal,2004 PhDstudytour,SouthAfrica,2005 PhDstudytour,California,USA,2006 Microbiology/molecularbiologydiscussiongroup,Nizo,20042008 WCFS/TIFNdays,20042008 WCFS/TIFNC009projectmeetings,20042008

175

CoverdesignbyKunZhang PrintedbyPonsen&LooijenB.V.