Establishment of Listeria Monocytogenes in the Gastrointestinal Tract
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Official Nh Dhhs Health Alert
THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected. -
Control of Listeria Monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance
Contains Nonbinding Recommendations Control of Listeria monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance This guidance is being distributed for comment purposes only. Although you can comment on any guidance at any time (see 21 CFR 10.115(g)(5)), to ensure that FDA considers your comment on this draft guidance before we begin work on the final version of the guidance, submit either electronic or written comments on the draft guidance within 180 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number FDA–2007–D–0494 listed in the notice of availability that publishes in the Federal Register. For questions regarding this draft document contact the Center for Food Safety and Applied Nutrition (CFSAN) at 240-402-1700. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition January 2017 Contains Nonbinding Recommendations Table of Contents I. Introduction II. Background A. Regulatory Framework B. Characteristics of L. monocytogenes C. L. monocytogenes in the Food Processing Environment III. How to Apply This Guidance to Your Operations Based on the Regulatory Framework That Applies to Your Food Establishment IV. Controls on Personnel A. Hands, Gloves and Footwear B. Foamers, Footbaths, and Dry Powdered Sanitizers C. Clothing D. Controls on Personnel Associated with Specific Areas in the Plant E. -
Fournier's Gangrene Caused by Listeria Monocytogenes As
CASE REPORT Fournier’s gangrene caused by Listeria monocytogenes as the primary organism Sayaka Asahata MD1, Yuji Hirai MD PhD1, Yusuke Ainoda MD PhD1, Takahiro Fujita MD1, Yumiko Okada DVM PhD2, Ken Kikuchi MD PhD1 S Asahata, Y Hirai, Y Ainoda, T Fujita, Y Okada, K Kikuchi. Une gangrène de Fournier causée par le Listeria Fournier’s gangrene caused by Listeria monocytogenes as the monocytogenes comme organisme primaire primary organism. Can J Infect Dis Med Microbiol 2015;26(1):44-46. Un homme de 70 ans ayant des antécédents de cancer de la langue s’est présenté avec une gangrène de Fournier causée par un Listeria A 70-year-old man with a history of tongue cancer presented with monocytogenes de sérotype 4b. Le débridement chirurgical a révélé un Fournier’s gangrene caused by Listeria monocytogenes serotype 4b. adénocarcinome rectal non diagnostiqué. Le patient n’avait pas Surgical debridement revealed undiagnosed rectal adenocarcinoma. d’antécédents alimentaires ou de voyage apparents, mais a déclaré The patient did not have an apparent dietary or travel history but consommer des sashimis (poisson cru) tous les jours. reported daily consumption of sashimi (raw fish). L’âge avancé et l’immunodéficience causée par l’adénocarcinome rec- Old age and immunodeficiency due to rectal adenocarcinoma may tal ont peut-être favorisé l’invasion directe du L monocytogenes par la have supported the direct invasion of L monocytogenes from the tumeur. Il s’agit du premier cas déclaré de gangrène de Fournier tumour. The present article describes the first reported case of attribuable au L monocytogenes. Les auteurs proposent d’inclure la con- Fournier’s gangrene caused by L monocytogenes. -
Naeglaria and Brain Infections
Can bacteria shrink tumors? Cancer Therapy: The Microbial Approach n this age of advanced injected live Streptococcus medical science and into cancer patients but after I technology, we still the recipients unfortunately continue to hunt for died from subsequent innovative cancer therapies infections, Coley decided to that prove effective and safe. use heat killed bacteria. He Treatments that successfully made a mixture of two heat- eradicate tumors while at the killed bacterial species, By Alan Barajas same time cause as little Streptococcus pyogenes and damage as possible to normal Serratia marcescens. This Alani Barajas is a Research and tissue are the ultimate goal, concoction was termed Development Technician at Hardy but are also not easy to find. “Coley’s toxins.” Bacteria Diagnostics. She earned her bachelor's degree in Microbiology at were either injected into Cal Poly, San Luis Obispo. The use of microorganisms in tumors or into the cancer therapy is not a new bloodstream. During her studies at Cal Poly, much idea but it is currently a of her time was spent as part of the undergraduate research team for the buzzing topic in cancer Cal Poly Dairy Products Technology therapy research. Center studying spore-forming bacteria in dairy products. In the late 1800s, German Currently she is working on new physicians W. Busch and F. chromogenic media formulations for Fehleisen both individually Hardy Diagnostics, both in the observed that certain cancers prepared and powdered forms. began to regress when patients acquired accidental erysipelas (cellulitis) caused by Streptococcus pyogenes. William Coley was the first to use New York surgeon William bacterial injections to treat cancer www.HardyDiagnostics.com patients. -
Diagnostic Code Descriptions (ICD9)
INFECTIONS AND PARASITIC DISEASES INTESTINAL AND INFECTIOUS DISEASES (001 – 009.3) 001 CHOLERA 001.0 DUE TO VIBRIO CHOLERAE 001.1 DUE TO VIBRIO CHOLERAE EL TOR 001.9 UNSPECIFIED 002 TYPHOID AND PARATYPHOID FEVERS 002.0 TYPHOID FEVER 002.1 PARATYPHOID FEVER 'A' 002.2 PARATYPHOID FEVER 'B' 002.3 PARATYPHOID FEVER 'C' 002.9 PARATYPHOID FEVER, UNSPECIFIED 003 OTHER SALMONELLA INFECTIONS 003.0 SALMONELLA GASTROENTERITIS 003.1 SALMONELLA SEPTICAEMIA 003.2 LOCALIZED SALMONELLA INFECTIONS 003.8 OTHER 003.9 UNSPECIFIED 004 SHIGELLOSIS 004.0 SHIGELLA DYSENTERIAE 004.1 SHIGELLA FLEXNERI 004.2 SHIGELLA BOYDII 004.3 SHIGELLA SONNEI 004.8 OTHER 004.9 UNSPECIFIED 005 OTHER FOOD POISONING (BACTERIAL) 005.0 STAPHYLOCOCCAL FOOD POISONING 005.1 BOTULISM 005.2 FOOD POISONING DUE TO CLOSTRIDIUM PERFRINGENS (CL.WELCHII) 005.3 FOOD POISONING DUE TO OTHER CLOSTRIDIA 005.4 FOOD POISONING DUE TO VIBRIO PARAHAEMOLYTICUS 005.8 OTHER BACTERIAL FOOD POISONING 005.9 FOOD POISONING, UNSPECIFIED 006 AMOEBIASIS 006.0 ACUTE AMOEBIC DYSENTERY WITHOUT MENTION OF ABSCESS 006.1 CHRONIC INTESTINAL AMOEBIASIS WITHOUT MENTION OF ABSCESS 006.2 AMOEBIC NONDYSENTERIC COLITIS 006.3 AMOEBIC LIVER ABSCESS 006.4 AMOEBIC LUNG ABSCESS 006.5 AMOEBIC BRAIN ABSCESS 006.6 AMOEBIC SKIN ULCERATION 006.8 AMOEBIC INFECTION OF OTHER SITES 006.9 AMOEBIASIS, UNSPECIFIED 007 OTHER PROTOZOAL INTESTINAL DISEASES 007.0 BALANTIDIASIS 007.1 GIARDIASIS 007.2 COCCIDIOSIS 007.3 INTESTINAL TRICHOMONIASIS 007.8 OTHER PROTOZOAL INTESTINAL DISEASES 007.9 UNSPECIFIED 008 INTESTINAL INFECTIONS DUE TO OTHER ORGANISMS -
Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected. -
Listeriosis (“Circling Disease”) Extended Version
Zuku Review FlashNotesTM Listeriosis (“circling disease”) Extended Version Classic case: Silage-fed adult cow, head tilt, circling, asymmetric sensation loss on face Presentation: Signalment and History Adult cattle, sheep, goats, (possibly camelids) . Indoors in winter with feeding of silage . Extremely rare in horses Poultry and pet birds Human listeria outbreaks Clinical signs (mammals) Head tilt Circling Dullness Sensory and motor dysfunction of trigeminal nerve . Asymmetric sensory loss on face . Weak jaw closure Purulent ophthalmitis Exposure keratitis Isolation from rest of herd Ocular and nasal discharge Listeriosis in a Holstein. Food remaining in mouth Note the head tilt and drooped ear Bloat Marked somnolence Tetraparesis, ataxia Poor to absent palpebral reflexes Difficulty swallowing/poor gag reflex Tongue paresis Obtundation, semicoma, death Clinical signs (avian listeriosis) Often subclinical Older birds and poultry (septicemia) . Depression, lethargy . Sudden death Younger birds and poultry (chronic form) . Torticollis . Paresis/paralysis DDX: Listeriosis in an ataxic goat Mammals Brainstem abscess, basilar empyema, otitis media/interna, Maedi-Visna, rabies, caprine arthritis-encephalitis, Parelaphostrongylus tenuis, scrapie Avian Colibacillosis, pasteurellosis, erysipelas, velogenic viscerotropic Newcastle disease 1 Zuku Review FlashNotesTM Listeriosis (“circling disease”) Extended Version Test(s) of choice: Mammals-Clinical signs and Cerebrospinal fluid (CSF) analysis . Mononuclear pleocytosis, -
Prevalence of Listeria Monocytogenes, Yersinia Enterocolitica, Staphylococcus Aureus, and Salmonella Enterica Typhimurium In
Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.10/August-2017/16.pdf Open Access Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction C. Latha, C. J. Anu, V. J. Ajaykumar and B. Sunil Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur - 680 651, Kerala, India. Corresponding author: C. Latha, e-mail: [email protected] Co-authors: CJA: [email protected], VJA: [email protected], BS: [email protected] Received: 28-03-2017, Accepted: 11-07-2017, Published online: 16-08-2017 doi: 10.14202/vetworld.2017.927-931 How to cite this article: Latha C, Anu CJ, Ajaykumar VJ, Sunil B (2017) Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction, Veterinary World, 10(8): 927-931. Abstract Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. -
Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet). -
Listeriosis (Listeria Monocytogenes)
LISTERIOSIS Responsibilities: Hospital: Report invasive disease by phone or mail, send isolate to State Hygienic Lab (SHL) - (319) 335-4500 Lab: Report invasive disease by IDSS, phone or mail, send isolate to SHL - (319) 335-4500 Physician: Report by IDSS, facsimile, mail, or phone Local Public Health Agency (LPHA): Follow up required Hospital Infection Preventionist: Follow up required Iowa Department of Public Health Disease Reporting Hotline: (800) 362-2736 Secure Fax: (515) 281-5698 1) THE DISEASE AND ITS EPIDEMIOLOGY A. Agent Listeriosis is caused by the bacterium Listeria monocytogenes. B. Clinical Description Listeriosis is typically manifested as meningoencephalitis or bacteremia in newborns and adults. It may cause fever and spontaneous abortion in pregnant women. Symptoms of meningoencephalitis include fever, headache, stiff neck, nausea and vomiting. The onset may be sudden or, in the elderly and in those who are immunocompromised, it may be more gradual. Delirium and coma may occur. Newborns, the elderly, immunocompromised persons, and pregnant women are most at risk for severe symptoms. Infections in healthy persons may be asymptomatic or only amount to a mild flu- like illness. Papular lesions on hands and arms may occur from direct contact with infectious material. The case-fatality rate in infected newborn infants is about 30% and approaches 50% when onset occurs in the first 4 days of life. C. Reservoirs Principal reservoir for L. monocytogenes is in soil, forage, water, mud and silage. Other reservoirs include mammals, fowl and people. Soft cheeses may support the growth of Listeria during ripening and have caused outbreaks. Unlike most other foodborne pathogens, Listeria can multiply at refrigerator temperatures. -
COI Estimates of Listeriosis
COI Estimates of Listeriosis women, newborn/fetal cases, and other adults (i.e., adults who are not pregnant women)(Roberts and Listeriosis is the disease caused by the infectious bac- Pinner 1990). Listeriosis in pregnant women is usual- terium, Listeria monocytogenes. Listeriosis may have ly relatively mild and may be manifested as a flu-like a bimodal distribution of severity with most cases syndrome or placental infection. They are hospital- being either mild or severe (CAST 1994, p. 51). ized for observation. Because of data limitations, the Milder cases of listeriosis are characterized by a sud- less severe cases are not considered here. den onset of fever, severe headache, vomiting, and other influenza-type symptoms. Reported cases of lis- Infected pregnant women can transmit the disease to teriosis are often manifested as septicemia and/or their newborns/fetuses either before or during deliv- meningoencephalitis and may also involve delirium ery. Infected newborns/fetuses may be stillborn, and coma (Benenson 1990, p. 250). Listeriosis may develop meningitis (inflammation of the tissue sur- cause premature death in fetuses, newborns, and some rounding the brain and/or spinal cord) in the neonatal adults or cause developmental complications for fetus- period, or are born with septicemia (syndrome of es and newborns. decreased blood pressure and capillary leakage) (Benenson 1990, p. 250).74 Septicemia and meningi- Listeria can grow at refrigeration temperatures (CAST tis can both be serious and life-threatening. A portion 1994, p. 32; Pinner et al. 1992, p. 2049). There is no of babies with meningitis will go on to develop chron- consensus as to the infectious dose of Listeria, though ic neurological complications. -
Evaluation and Determination of the Sensitivity and Specificity of a Treponema Pallidum Dried Blood Spot Method for Serologic Diagnosis of Syphilis
Georgia State University ScholarWorks @ Georgia State University Public Health Theses School of Public Health Fall 12-20-2012 Evaluation and Determination of the Sensitivity and Specificity of a Treponema Pallidum Dried Blood Spot Method for Serologic Diagnosis of Syphilis David K. Turgeon Follow this and additional works at: https://scholarworks.gsu.edu/iph_theses Recommended Citation Turgeon, David K., "Evaluation and Determination of the Sensitivity and Specificity of a rT eponema Pallidum Dried Blood Spot Method for Serologic Diagnosis of Syphilis." Thesis, Georgia State University, 2012. https://scholarworks.gsu.edu/iph_theses/239 This Thesis is brought to you for free and open access by the School of Public Health at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Public Health Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. Institute of Public Health Public Health Thesis Georgia State University Year 2012 EVALUATION AND DETERMINATION OF THE SENSITIVITY AND SPECIFICITY OF A Treponema pallidum DRIED BLOOD SPOT METHOD FOR SEROLOGIC DIAGNOSIS OF SYPHILIS David K. Turgeon Georgia State University, [email protected] ii ABSTRACT EVALUATION AND DETERMINATION OF THE SENSITIVITY AND SPECIFICITY OF A Treponema pallidum DRIED BLOOD SPOT (DBS) METHOD FOR SEROLOGIC DIAGNOSIS OF SYPHILIS Background: Syphilis is a sexually transmitted infection (STI) caused by Treponema pallidum subspecies pallidum. Syphilis is known as the “great imitator" due to the similarity of clinical signs and symptoms to other infectious diseases. The primary diagnosis of syphilis relies on clinical findings, including the examination of treponemal lesions, and/or serologic tests.