The Status of Estrildid Finches in North-Western Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indonesia Lesser Sundas Report
INDONESIA LESSER SUNDAS REPORT 5th July to 23rd July 2013 TOUR HIGHLIGHTS Either for rarity value, excellent views or simply a group favourite. • Spotted Harrier • Elegant Pitta • Flores Hawk-Eagle • Flores Minivet • Orange-footed Scrubfowl • Timor Figbird • Green Junglefowl • Chestnut-capped Thrush • Beach Thick-knee • Orange-sided Thrush • Australian Pratincole • Russet-capped Tesia • Mees’s Nightjar • Timor Stubtail • Black-backed Fruit-Dove • Buff-banded Thicketbird • Rose-crowned Fruit-Dove • Flores Monarch • Marigold Lorikeet • Arafura Fantail • Flores Lorikeet • Bare-throated Whistler • Yellow-crested Cockatoo • Black-winged Myna • Wallace’s Scops-Owl • Bali Myna • Sumba Boobook • Helmeted Friarbird • White-rumped Kingfisher • Black-chested Myzomela Cinnamon-banded Kingfisher Apricot-breasted Sunbird • • • Cerulean Kingfisher • Tricoloured Parrotfinch • Sumba Hornbill • Java Sparrow SUMMARY: This was the first ZOOTHERA tour to the endemic-rich, tropical paradise that is collectively known as The Lesser Sundas. We visited Timor, Sumba, Flores and Komodo in search of Indonesia’s rarest and least known species, ending up on Bali in search of the famous starlings. These islands are relatively undeveloped, thinly populated and seldom visited by birders but they gave us access to some of the rarest birds on the planet. Starting on the largest island, Timor with its dry grassland, acacia scrub and montane forest, it is home to the greatest number of endemics. We had to split our time here in two due to a last-minute rescheduling of our internal flights and this did affect our success here a little but we still managed to see most of what the island has to offer. Then we flew across to the arid island of Sumba which is the most isolated and least often visited. -
Phylogeography of Finches and Sparrows
In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls. -
Evolution of the P53-MDM2 Pathway Emma Åberg1, Fulvio Saccoccia1, Manfred Grabherr1, Wai Ying Josefin Ore1, Per Jemth1* and Greta Hultqvist1,2*
Åberg et al. BMC Evolutionary Biology (2017) 17:177 DOI 10.1186/s12862-017-1023-y RESEARCH ARTICLE Open Access Evolution of the p53-MDM2 pathway Emma Åberg1, Fulvio Saccoccia1, Manfred Grabherr1, Wai Ying Josefin Ore1, Per Jemth1* and Greta Hultqvist1,2* Abstract Background: The p53 signalling pathway, which controls cell fate, has been extensively studied due to its prominent role in tumor development. The pathway includes the tumor supressor protein p53, its vertebrate paralogs p63 and p73, and their negative regulators MDM2 and MDM4. The p53/p63/p73-MDM system is ancient and can be traced in all extant animal phyla. Despite this, correct phylogenetic trees including both vertebrate and invertebrate species of the p53/p63/p73 and MDM families have not been published. Results: Here, we have examined the evolution of the p53/p63/p73 protein family with particular focus on the p53/ p63/p73 transactivation domain (TAD) and its co-evolution with the p53/p63/p73-binding domain (p53/p63/p73BD) of MDM2. We found that the TAD and p53/p63/p73BD share a strong evolutionary connection. If one of the domains of the protein is lost in a phylum, then it seems very likely to be followed by loss of function by the other domain as well, and due to the loss of function it is likely to eventually disappear. By focusing our phylogenetic analysis to p53/p63/ p73 and MDM proteins from phyla that retain the interaction domains TAD and p53/p63/p73BD, we built phylogenetic trees of p53/p63/p73 and MDM based on both vertebrate and invertebrate species. -
Doh Multi-Page Template
Medical Entomology 2016/2017 Annual Report Environmental Health Hazards Unit Environmental Health Directorate Public Health Division Department of Health, Western Australia PO Box 8172, Perth Business Centre Perth, 6849 Acknowledgements The extensive and diverse work program undertaken by the Department of Health’s Medical Entomology team outlined in this Annual Report could not have been completed without significant assistance and collaboration from many partners and stakeholders. In particular, the Medical Entomology team wishes to thank the Department of Health for its ongoing support in regards to this important public health program including: o the Environmental Health Directorate; o the Communicable Disease Control Directorate; o Population Health Units/Area Health Services o PathWest; and o Communications Directorate. The Pathwest laboratory continued to have a significant involvement in the program through provision of laboratory services for key components of the surveillance program for detection of arboviruses of public health significance to the State. We also acknowledge and thank the Population Health Units and the Western Australian Country Health Service for their role in reporting and follow-up of human cases of disease, and especially the role of Local Governments in the management of mosquitoes and the diseases they transmit. These organisations play an active role in the provision of data, case follow up investigations, care and bleeding of chickens for the sentinel chicken program, trapping of mosquitoes, mosquito control treatments and advice to the Western Australian community about disease risk through the media. In particular we thank Environmental Health Officers from the 139 Local Governments across WA, especially those within Contiguous Local Authority Groups (CLAGs), who respond to public complaints, undertake larval and adult mosquito surveys, and undertake mosquito control activities as part of their complex, integrated programs to manage the risks to public health and amenity within their regions. -
East Kimberley Impact Assessment Project
East Kimberley Impact Assessment Project HISTORICAL NOTES RELEVANT TO IMPACT STORIES OF THE EAST KIMBERLEY Cathie Clement* East Kimberley Working Paper No. 29 ISBN O 86740 357 8 ISSN 0816...,6323 A Joint Project Of The: Centre for Resource and Environmental Studies Australian National University Australian Institute of Aboriginal Studies Anthropology Department University of Western Australia Academy of the Social Sciences in Australia The aims of the project are as follows: 1. To compile a comprehensive profile of the contemporary social environment of the East Kimberley region utilising both existing information sources and limited fieldwork. 2. Develop and utilise appropriate methodological approaches to social impact assessment within a multi-disciplinary framework. 3. Assess the social impact of major public and private developments of the East Kimberley region's resources (physical, mineral and environmental) on resident Aboriginal communities. Attempt to identify problems/issues which, while possibly dormant at present, are likely to have implications that will affect communities at some stage in the future. 4. Establish a framework to allow the dissemination of research results to Aboriginal communities so as to enable them to develop their own strategies for dealing with social impact issues. 5. To identify in consultation with Governments and regional interests issues and problems which may be susceptible to further research. Views expressed in the Projecfs publications are the views of the authors, and are not necessarily shared by the sponsoring organisations. Address correspondence to: The Executive Officer East Kimberley Project CRES, ANU GPO Box4 Canberra City, ACT 2601 HISTORICAL NOTES RELEVANT TO IMPACT STORIES OF THE EAST KIMBERLEY Cathie Clement* East Kimberley Working Paper No. -
Birdquest Australia (Western and Christmas
Chestnut-backed Button-quail in the north was a bonus, showing brilliantly for a long time – unheard of for this family (Andy Jensen) WESTERN AUSTRALIA 5/10 – 27 SEPTEMBER 2017 LEADER: ANDY JENSEN ASSISTANT: STUART PICKERING ! ! 1 BirdQuest Tour Report: Western Australia (including Christmas Island) 2017 www.birdquest-tours.com Western Shrike-tit was one of the many highlights in the southwest (Andy Jensen) Western Australia, if it were a country, would be the 10th largest in the world! The BirdQuest Western Australia (including Christmas Island) 2017 tour offered an unrivalled opportunity to cover a large portion of this area, as well as the offshore territory of Christmas Island (located closer to Indonesia than mainland Australia). Western Australia is a highly diverse region with a range of habitats. It has been shaped by the isolation caused by the surrounding deserts. This isolation has resulted in a richly diverse fauna, with a high degree of endemism. A must visit for any birder. This tour covered a wide range of the habitats Western Australia has to offer as is possible in three weeks, including the temperate Karri and Wandoo woodlands and mallee of the southwest, the coastal heathlands of the southcoast, dry scrub and extensive uncleared woodlands of the goldfields, coastal plains and mangroves around Broome, and the red-earth savannah habitats and tropical woodland of the Kimberley. The climate varied dramatically Conditions ranged from minus 1c in the Sterling Ranges where we were scraping ice off the windscreen, to nearly 40c in the Kimberley, where it was dust needing to be removed from the windscreen! We were fortunate with the weather – aside from a few minutes of drizzle as we staked out one of the skulkers in the Sterling Ranges, it remained dry the whole time. -
Java Sparrow Care
Java Sparrow Care The Java Sparrow (Padda oryzivora) is a commonly available cage bird. Originally from the islands of Indonesia, it is now found in feral populations throughout the world – usually due to escapees. In it’s homeland it is now becoming very scarce due to farmers protecting their crops of Rice. In the UK, this species is quite hardy and may live perfectly well in outside aviaries all year round, as long as they have shelter from wind and rain. Java Sparrows are popular exhibition birds as they nearly always look smart. On the rare occasion that they look untidy or ruffled, this indicates that they are not being kept in ideal conditions and/or indicates illness. Javas also are on the whole nice and steady in the show cage and this allows them to show themselves off to the optimum. After many generations of intense selective breeding and there are now several colour variants – the most common of these is the White where the whole feathering of the bird is a brilliant white. Pied and Fawn birds are also becoming more popular. However the original “wild type” is the most attractive to me – it has a head and tail that is black, the cheeks are white and the body is a grey with a lovely silky finish. Around the eye there is an ring of red, bare skin. This can appear more intense and larger in a breeding cock bird. The Beak is quite large and bulky and is coloured mainly pink with some pale white. Javas have long, pinkish-beige legs. -
A Review of the Distribution, Status and Ecology of the Star Finch Neochmia Ruficauda in Queensland
AUSTRALIAN 278 BIRD WATCHER AUSTRALIAN BIRD WATCHER 1998, 17, 278-289 A Review of the Distribution, Status and Ecology of the Star Finch Neochmia ruficauda in Queensland by GLENN H.OLMES, P.O. Box 1246, Atherton, Queensland 4883 Summary The Star Finch Neochmia ruficauda has been recorded in 35-37 one-degree blocks in Queensland. Most records concern the Edward River, Princess Charlotte Bay and Rockharnpton districts. Viable populations are probably now restricted to Cape York Peninsula. Typical habitat comprises grasslands or grassy open woodlands, near permanent water or subject to regular inundation. Some sites support shrubby regrowth caused by the clearing of formerly unsuitable denser woodlands. Recorded food items are all seeds, of five grass species and one sedge. Precise nest records are few, but large numbers of juveniles have been observed during the last two decades at Aurukun, Pormpuraaw, Kowanyarna and Princess Charlotte Bay. Threatening processes are discussed; livestock grazing in riparian situations is considered the most deleterious. Introduction The distribution, status and ecology of the Star Finch Neochmia ruficauda in Queensland require urgent review. Endemic to northern and eastern Australia, its populations have declined in most regions. Available evidence suggests that the greatest contraction in its distribution has occurred in Queensland (e.g. Blakers et al. 1984). It is extinct in New South Wales, but its distribution there was only oflirnited extent (Holmes 1996). The Star Finch is protected stringently in Queensland because it is gazetted as Endangered under the Nature Conservation Act 1992. This categorisation takes due account of 'biological vulnerability, extent of current knowledge ... and management needs'. -
Seasonal Stress Physiology and Body Condition Differ Among Co-Occurring Tropical Finch Ps Ecies Kimberly L
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health 2013 Seasonal stress physiology and body condition differ among co-occurring tropical finch ps ecies Kimberly L. Maute University of Wollongong, [email protected] Kristine French University of Wollongong, [email protected] Sarah Legge Australian Wildlife Conservancy Lee Astheimer University of Wollongong, [email protected] Publication Details Maute, K. L., French, K., Legge, S. & Astheimer, L. (2013). Seasonal stress physiology and body condition differ among co-occurring tropical finch species. Journal of Comparative Physiology B: biochemical, systemic, and environmental physiology, 183 (8), 1023-1037. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Seasonal stress physiology and body condition differ among co-occurring tropical finch ps ecies Abstract Seasonal changes in avian hormonal stress responses and condition are well known for common species found at temperate and arctic latitudes, but declining and tropical species are poorly studied. This study compares stress and condition measures of co-occurring declining and non-declining tropical grass finch species in Australia. We monitored declining Gouldian finches (Erythrura gouldiae) and non-declining long-tailed and masked finches (Poepila acuticauda and P. personata) during two seasons that are potentially stressful: peak breeding (early dry season when food is plentiful) and moult (late dry to early wet season when food may be scarce). We measured body condition (muscle and fat), haematocrit, and stress response to capture using plasma corticosterone and binding globulin concentrations. -
Appendix to National Recovery Plan for the Gouldian Finch (Erythrura
Appendix to National Recovery Plan for the Gouldian Finch (Erythrura gouldiae) Background information Acknowledgments Additional to those people mentioned in the Acknowledgment section of the Recovery Plan itself the following people provided valuable sightings data or information about distribution or ecology of Gouldian Finches. We are very grateful for their input into this Recovery Plan and to the ongoing recovery program. Milton Lewis; Reg Birch; Gordon Graham; David Donato; Allan Thomson, Jenny Wilksh; Jonny Schoenjahn, Frank O’Connor; Ron Stanton; Chris Hassell; Steve Murphy; Stephen Turley; Kevin Coate; George Swann; Geoff Lodge, Rachel O’Shea; Maureen and Andrew Farrell, Save Endangered East Kimberley Species members; Mike Reed; Arthur and Sheryl Keats; Bruce Michael; Gary Wright; Denise Goodfellow; Michael Mathieson; Klaus Uhlenhut; Don Hadden; Phil Maher; Frank Lambert; Julie Moore; Richard Jordan; Stuart Robertson; David Stuart. 2 Appendix contents Acknowledgments 2 Gouldian Finch recovery program progress reviewed 4 Species information Conservation status 7 Genetic variability 7 Distribution, abundance and population trends 8 Food resources 10 Breeding ecology 12 Habitat characteristics and habitat utilisation patterns 13 Threats to Gouldian Finch populations Historical threats 13 Current threats 14 Significant populations and existing conservation measures 16 Affected interests and potential economic or social impacts of proposed recovery actions 17 Additional Resources 19 Abbreviations used 19 References and Selected bibliography 20 3 Gouldian Finch recovery program progress reviewed The national Gouldian Finch recovery program has been in progress since 1993 guided by information from Gouldian-focussed research and adaptive management projects, actions identified in the previous versions of the national recovery plan (Baker-Gabb et al. -
Java Sparrow Padda Oryzivora in Quindío, Colombia Una Especie Exótica Y Amenazada, En Vida Silvestre: Padda Oryzivora En Quindío, Colombia
An escaped, threatened species: Java Sparrow Padda oryzivora in Quindío, Colombia Una especie exótica y amenazada, en vida silvestre: Padda oryzivora en Quindío, Colombia Thomas Donegan c/o Fundación ProAves, Cra. 20 #36–61, Bogotá, Colombia. Email: [email protected] Abstract captive populations may have conservation value in addition A photograph and sound recording of an escaped Java to raising conservation concerns. This short note includes Sparrow are presented from Quindío, Colombia. Although observations of an escapee in depto. Quindío. the species is previously reported in the upper Cauca valley, no prior confirmed photographic record exists nor records in On 17-19 December 2012, I spent three mornings sound this department. recording birds in secondary habitats in the grounds of Hotel Campestre Las Camelias, mun. Armenia, Quindío Key words New record, Java Sparrow, photograph, (c.04°31’N, 75°47’W). On the first of these days at escaped species, Colombia. approximately 7 am, I came across a Java Sparrow hopping along a path in the hotel grounds (Fig. 1). The bird was seen at very close quarters (down to 2 m) and identified Resumen immediately due to its distinctive plumage. I knew the Se presentan fotos y grabaciones de Padda oryzivora especie species previously from zoos and aviaries in Europe and the exótica en vida silvestre en Quindío, Colombia. Aunque la plate in McMullan et al. (2010). As I approached the bird especie se ha reportado antes en el valle del río Cauca, no over a period of 5-10 minutes, it flushed various times, but existen registros confirmados por fotografía ni registros en el was only capable of flying short distances (up to 5m) and a departamento. -
NESTLING MOUTH Marklngs It '" "' of OLD WORLD FINCHES ESTLLU MIMICRY and COEVOLUTION of NESTING
NESTLING MOUTH MARklNGS It '" "' OF OLD WORLD FINCHES ESTLLU MIMICRY AND COEVOLUTION OF NESTING r - .. ;.-; 5.i A&+.FINCHES .-. '4 AND THEIR VIDUA BROOD PARASITES - . , , . :.. - i ' -, ,' $*.$$>&.--: 7 -.: ',"L dt$=%>df;$..;,4;x.;b,?b;.:, ;.:. -, ! ,I Vt .., . k., . .,.-. , .is: 8, :. BY ERT B. PAYNE MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 194 Ann ntwi day, 2005 lSSN 0076-8405 PUBLICATIONS OF THE MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 194 J. B. BLJR(.H,Editor JI.:NNIFERFBLMLEE, Assistcint Editor The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series-the Mi.scel/aneous Pziblications and the Occa.siona1 Papers. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W.W. Newcomb. Occasionally thc Museum publishes contributions outside of these series; beginning in 1990 thcsc arc titled Special Publications and arc numbered. All submitted manuscripts to any of the Museum's publications receive external review. The Occasional Papers, begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They arc issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneotls Pt~hlication.~,initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are published separately. It is not intended that they be grouped into volurnes. Each number has a title page and, when necessary, a table of contents.