Suppressor Screening Reveals Common Kleisin–Hinge Interaction in Condensin and Cohesin, but Different Modes of Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways. -
Building the Interphase Nucleus: a Study on the Kinetics of 3D Chromosome Formation, Temporal Relation to Active Transcription, and the Role of Nuclear Rnas
University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2020-07-28 Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs Kristin N. Abramo University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cell Biology Commons, Computational Biology Commons, Genomics Commons, Laboratory and Basic Science Research Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Systems Biology Commons Repository Citation Abramo KN. (2020). Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs. GSBS Dissertations and Theses. https://doi.org/10.13028/a9gd-gw44. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/1099 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. ABRAMO Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPOPHY July 28, 2020 Program in Systems Biology, Interdisciplinary Graduate Program BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. -
Understanding Molecular Functions of the SMC5/6 Complex
G C A T T A C G G C A T genes Review Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex Mariana Diaz 1,2 and Ales Pecinka 1,* ID 1 Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelu˚ 31, 77900 Olomouc-Holice, Czech Republic 2 Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829 Cologne, Germany; [email protected] * Correspondence: [email protected]; Tel.: +420-585-238-709 Received: 15 November 2017; Accepted: 4 January 2018; Published: 12 January 2018 Abstract: Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the maintenance of genome stability. Here we summarize recent knowledge on the composition and molecular functions of SMC5/6 complex. SMC5/6 complex was originally identified based on the sensitivity of its mutants to genotoxic stress but there is increasing number of studies demonstrating its roles in the control of DNA replication, sister chromatid resolution and genomic location-dependent promotion or suppression of homologous recombination. Some of these functions appear to be due to a very dynamic interaction with cohesin or other repair complexes. Studies in Arabidopsis indicate that, besides its canonical function in repair of damaged DNA, the SMC5/6 complex plays important roles in regulating plant development, abiotic stress responses, suppression of autoimmune responses and sexual reproduction. -
Upon Microbial Challenge, Human Neutrophils Undergo Rapid Changes in Nuclear Architecture and Chromatin Folding to Orchestrate an Immediate Inflammatory Gene Program
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Upon microbial challenge, human neutrophils undergo rapid changes in nuclear architecture and chromatin folding to orchestrate an immediate inflammatory gene program Matthew Denholtz,1,5 Yina Zhu,1,5 Zhaoren He,1 Hanbin Lu,1 Takeshi Isoda,1,4 Simon Döhrmann,2 Victor Nizet,2,3 and Cornelis Murre1 1Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA; 2Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California 92093, USA; 3Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neu- trophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program. -
Condensation of Prometaphase Chromo-Somes
Condensation of Prometaphase Chromo- somes D'Eustachio, P., Matthews, L., Orlic-Milacic, M. European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University. The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 Inter- national (CC BY 4.0) License. For more information see our license. 09/03/2019 Introduction Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross- referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics research- ers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioin- formaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways. The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program). Literature references Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway ana- lysis: a high-performance in-memory approach. BMC bioinformatics, 18, 142. ↗ Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. -
Structure of the Human Cohesin Inhibitor Wapl
Structure of the human cohesin inhibitor Wapl Zhuqing Ouyanga,1, Ge Zhenga,1, Jianhua Songb, Dominika M. Borekc, Zbyszek Otwinowskic, Chad A. Brautigamc, Diana R. Tomchickc, Susannah Rankinb, and Hongtao Yua,2 aHoward Hughes Medical Institute, Department of Pharmacology, and cDepartment of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and bProgram in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Edited by Douglas Koshland, University of California, Berkeley, CA, and approved May 23, 2013 (received for review March 11, 2013) Cohesin, along with positive regulators, establishes sister-chromatid trigger cohesin release from chromosome arms (15, 18–21). A pool of cohesion by forming a ring to circle chromatin. The wings apart-like cohesin at centromeres is protected by the shugoshin (Sgo1)–protein protein (Wapl) is a key negative regulator of cohesin and forms phosphatase 2A (PP2A) complex (22, 23), which binds to cohesin, a complex with precocious dissociation of sisters protein 5 (Pds5) to dephosphorylates sororin, and protects cohesin from Wapl promote cohesin release from chromatin. Here we report the at centromeres (24). After all sister kinetochores attach properly crystal structure and functional characterization of human Wapl. to the mitotic spindle and are under tension, separase cleaves Wapl contains a flexible, variable N-terminal region (Wapl-N) and centromeric cohesin to initiate sister-chromatid separation. The a conserved C-terminal domain (Wapl-C) consisting of eight HEAT separated chromatids are evenly partitioned into the two daughter (Huntingtin, Elongation factor 3, A subunit, and target of rapamycin) cells through their attachment to microtubules originating from the repeats. -
Ultrasound-Assisted Nonviral Gene Transfer of AQP1 to the Irradiated Minipig Parotid Gland Restores fluid Secretion
Gene Therapy (2015) 22, 739–749 © 2015 Macmillan Publishers Limited All rights reserved 0969-7128/15 www.nature.com/gt ORIGINAL ARTICLE Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion Z Wang1, L Zourelias1,CWu1, PC Edwards2, M Trombetta3 and MJ Passineau1 Xerostomia is a common side effect of ionizing radiation used to treat head and neck cancer. A groundbreaking Phase I human clinical trial using Adenoviral gene transfer of Aquaporin-1 (AQP1) to a single salivary gland of individuals suffering from radiation- induced xerostomia has recently been reported. Unfortunately, the limitations of the Adenoviral vector system used in this pioneering trial preclude its advancement to a Phase II trial, and we have thus undertaken to evaluate the therapeutic potential of ultrasound-assisted nonviral gene transfer (UAGT) as an alternative means of delivering AQP1 gene therapy to the salivary gland by comparing head-to-head with the canonical Adenoviral vector in a swine model. Swine irradiated unilaterally with a 10-Gy electron beam targeted at the parotid gland suffered from significant, sustained hyposalivation that was bilateral, despite irradiation being confined to the targeted gland. Unilateral AQP1 gene therapy with UAGT resulted in bilateral restoration of stimulated salivary flow at 48 h and 1 week post treatment (1.62 ± 0.48 ml and 1.87 ± 0.45 ml) to preinjury levels (1.34 ± 0.14 ml) in a manner comparable to Adenoviral delivery (2.32 ± 0.6 ml and 1.33 ± 0.97 ml). UAGT can replace the Adenoviral vector as a means of delivering AQP1 gene therapy in the irradiated swine model, and it is a candidate for advancement to a Phase I human clinical trial. -
Condensins, Chromatin Remodeling and Gene Transcription
Chapter 4 Condensins, Chromatin Remodeling and Gene Transcription Laurence O. W. Wilson and Aude M. Fahrer Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55732 1. Introduction Condensin complexes condense chromosomes during mitosis, turning the diffuse interphase chromosomes into the familiar X-shaped compact chromosomes that segregate during cell division. More recently a second role for condensins has emerged, in the epigenetic regulation of interphase gene transcription. This second fascinating role is very difficult to study since defects in condensin will usually interfere with mitosis and result in cell death. While several excellent reviews of condensin function have recently been published (see [1-3]), in this article we concentrate on the epigenetic functions of condensins and how they can be studied. We also provide the first summary of condensin protein splice forms, a largely overlooked contributor to condensin variation. The DNA within a cell is too large to fit inside if left in its unwound state. In order to accom‐ modate the genetic material, a cell packages this DNA as chromati:, a combination of DNA bound to protein. The DNA is wound around protein complexes known as histones to form nucleosomes, which form a “beads-on-a-string” structure. These nucleosomes can be com‐ pacted further to produce a highly condensed structure that fits inside the nucleus of a cell. The regulation of this structure is vital for cell growth and survival. During mitosis, chromatin must be unwound so that it can be properly replicated and then repackaged into sister chromosomes that must then be segregated into the dividing cells. -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
A Requirement for STAG2 in Replication Fork Progression Creates a Targetable Synthetic Lethality in Cohesin-Mutant Cancers
ARTICLE https://doi.org/10.1038/s41467-019-09659-z OPEN A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers Gourish Mondal1, Meredith Stevers1, Benjamin Goode 1, Alan Ashworth2,3 & David A. Solomon 1,2 Cohesin is a multiprotein ring that is responsible for cohesion of sister chromatids and formation of DNA loops to regulate gene expression. Genomic analyses have identified that 1234567890():,; the cohesin subunit STAG2 is frequently inactivated by mutations in cancer. However, the reason STAG2 mutations are selected during tumorigenesis and strategies for therapeutically targeting mutant cancer cells are largely unknown. Here we show that STAG2 is essential for DNA replication fork progression, whereby STAG2 inactivation in non-transformed cells leads to replication fork stalling and collapse with disruption of interaction between the cohesin ring and the replication machinery as well as failure to establish SMC3 acetylation. As a con- sequence, STAG2 mutation confers synthetic lethality with DNA double-strand break repair genes and increased sensitivity to select cytotoxic chemotherapeutic agents and PARP or ATR inhibitors. These studies identify a critical role for STAG2 in replication fork procession and elucidate a potential therapeutic strategy for cohesin-mutant cancers. 1 Department of Pathology, University of California, San Francisco, CA 94143, USA. 2 UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA. 3 Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94158, USA. Correspondence and requests for materials should be addressed to D.A.S. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1686 | https://doi.org/10.1038/s41467-019-09659-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09659-z ohesin is a multi-protein complex composed of four core transcriptional dysregulation22,23. -
Blocking the Short Isoform of Augmenter of Liver Regeneration Inhibits Proliferation of Human Multiple Myeloma U266 Cells Via T
ONCOLOGY LETTERS 21: 197, 2021 Blocking the short isoform of augmenter of liver regeneration inhibits proliferation of human multiple myeloma U266 cells via the MAPK/STAT3/cell cycle signaling pathway WENQI HUANG1,2, HANG SUN1, TING HU1, DONGJU ZHU3,4, XIANLI LONG1, HUI GUO1 and QI LIU1 1Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, 2Department of Intensive Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010; 3Department of Nephrology, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan 617000; 4Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China Received April 29, 2020; Accepted November 20, 2020 DOI: 10.3892/ol.2021.12458 Abstract. Multiple myeloma (MM) is the second most anti‑ALR McAb decreased cell proliferation via the MAPK, common haematological malignancy and remains an incur‑ STAT3 and cell cycle signaling pathways without increasing able disease, with most patients relapsing and requiring apoptosis. Thus, 15‑kDa‑ALR may be a new therapeutic further treatment. Augmenter of liver regeneration (ALR) is a target for myeloma. vital protein affecting fundamental processes such as energy transduction, cell survival and regeneration. Silencing ALR Introduction inhibits cell proliferation and triggers apoptosis in human MM U266 cells. However, little is known about the role Multiple myeloma (MM) accounts for ~13% of hematological of 15‑kDa‑ALR on MM. In the present study, the role of cancers, with an estimated 24,280 to 30,330 new cases and 15‑kDa‑ALR in human MM cells was investigated. -
The Genome of Schmidtea Mediterranea and the Evolution Of
OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5.