Mouse Rps6kc1 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Rps6kc1 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Rps6kc1 Knockout Project (CRISPR/Cas9) Objective: To create a Rps6kc1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Rps6kc1 gene (NCBI Reference Sequence: NM_178775 ; Ensembl: ENSMUSG00000089872 ) is located on Mouse chromosome 1. 15 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 15 (Transcript: ENSMUST00000061611). Exon 2~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 3.35% of the coding region. Exon 2~3 covers 4.96% of the coding region. The size of effective KO region: ~5668 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 15 Legends Exon of mouse Rps6kc1 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 3 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(22.2% 444) | C(20.75% 415) | T(31.75% 635) | G(25.3% 506) Note: The 2000 bp section upstream of Exon 2 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(21.05% 421) | C(29.85% 597) | T(29.8% 596) | G(19.3% 386) Note: The 2000 bp section downstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr1 - 190905119 190907118 2000 browser details YourSeq 166 316 780 2000 84.7% chr11 + 22965727 22966177 451 browser details YourSeq 157 456 644 2000 92.5% chr11 + 20668378 20668568 191 browser details YourSeq 155 472 651 2000 93.9% chr14 - 31449579 31449766 188 browser details YourSeq 155 465 651 2000 92.4% chr1 - 30841301 30841489 189 browser details YourSeq 155 465 652 2000 91.5% chr11 + 4934077 4934265 189 browser details YourSeq 154 460 651 2000 91.4% chr3 + 97926093 97926296 204 browser details YourSeq 153 465 643 2000 93.9% chr18 - 84621183 84621556 374 browser details YourSeq 152 402 644 2000 92.8% chr4 - 132161483 132161906 424 browser details YourSeq 152 460 651 2000 90.0% chr13 + 54476713 54476917 205 browser details YourSeq 151 463 652 2000 90.5% chr6 - 136730605 136730801 197 browser details YourSeq 151 460 650 2000 90.0% chr8 + 114334832 114335024 193 browser details YourSeq 150 459 652 2000 90.0% chr11 - 86746545 86746751 207 browser details YourSeq 148 470 652 2000 91.2% chr6 - 38325872 38326060 189 browser details YourSeq 148 472 651 2000 91.6% chr8 + 106156533 106156721 189 browser details YourSeq 148 469 644 2000 92.7% chr2 + 155323131 155323313 183 browser details YourSeq 148 465 651 2000 90.8% chr2 + 93575482 93575676 195 browser details YourSeq 147 465 651 2000 90.8% chrX - 41968968 41969167 200 browser details YourSeq 147 471 651 2000 91.1% chr2 - 69623966 69624150 185 browser details YourSeq 147 468 651 2000 91.1% chr7 + 79991274 79991470 197 Note: The 2000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr1 - 190897451 190899450 2000 browser details YourSeq 78 1441 1583 2000 89.8% chr16 + 10020637 10020813 177 browser details YourSeq 75 1442 1561 2000 93.2% chr10 + 44395310 44395449 140 browser details YourSeq 67 1444 1583 2000 79.5% chr15 - 9278489 9278586 98 browser details YourSeq 66 1429 1531 2000 90.4% chr17 + 69024618 69024721 104 browser details YourSeq 64 1441 1525 2000 95.8% chr1 - 126498228 126498326 99 browser details YourSeq 64 1441 1522 2000 90.2% chr3 + 85437633 85437731 99 browser details YourSeq 58 1443 1523 2000 94.1% chr16 - 93680535 93680617 83 browser details YourSeq 57 1474 1606 2000 79.2% chr16 - 76003180 76003290 111 browser details YourSeq 55 1441 1515 2000 84.6% chr1 - 189961250 189961322 73 browser details YourSeq 54 1454 1519 2000 92.4% chr2 - 166301995 166302068 74 browser details YourSeq 53 1441 1516 2000 85.3% chr14 + 22603055 22603125 71 browser details YourSeq 52 1464 1523 2000 91.1% chrX - 136986048 136986105 58 browser details YourSeq 52 1441 1499 2000 94.9% chr14 + 103631164 103631226 63 browser details YourSeq 51 1463 1531 2000 94.8% chr5 + 133065354 133065428 75 browser details YourSeq 48 1454 1529 2000 81.9% chr11 + 114513777 114513842 66 browser details YourSeq 48 1452 1519 2000 87.5% chr1 + 11060661 11060726 66 browser details YourSeq 47 1429 1502 2000 71.7% chr2 - 171440572 171440624 53 browser details YourSeq 47 1461 1529 2000 94.9% chr12 - 12524563 12524631 69 browser details YourSeq 47 1460 1579 2000 87.1% chr10 + 23902883 23903000 118 Note: The 2000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Rps6kc1 ribosomal protein S6 kinase polypeptide 1 [ Mus musculus (house mouse) ] Gene ID: 320119, updated on 12-Aug-2019 Gene summary Official Symbol Rps6kc1 provided by MGI Official Full Name ribosomal protein S6 kinase polypeptide 1 provided by MGI Primary source MGI:MGI:2443419 See related Ensembl:ENSMUSG00000089872 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as C80612; Rpk118; AA682037; B130003F20Rik Expression Ubiquitous expression in cortex adult (RPKM 3.4), CNS E14 (RPKM 3.1) and 28 other tissues See more Orthologs human all Genomic context Location: 1; 1 H6 See Rps6kc1 in Genome Data Viewer Exon count: 16 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 1 NC_000067.6 (190772879..190913010, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 1 NC_000067.5 (192596758..192735649, complement) Chromosome 1 - NC_000067.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 9 transcripts Gene: Rps6kc1 ENSMUSG00000089872 Description ribosomal protein S6 kinase polypeptide 1 [Source:MGI Symbol;Acc:MGI:2443419] Gene Synonyms B130003F20Rik, RPK118 Location Chromosome 1: 190,700,202-190,911,770 reverse strand. GRCm38:CM000994.2 About this gene This gene has 9 transcripts (splice variants), 208 orthologues, 2 paralogues, is a member of 1 Ensembl protein family and is associated with 5 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Rps6kc1- ENSMUST00000061611.14 3995 1056aa ENSMUSP00000061769.8 Protein coding - E9QMX4 TSL:5 201 GENCODE basic APPRIS P1 Rps6kc1- ENSMUST00000159066.1 503 131aa ENSMUSP00000124558.1 Protein coding - E0CY13 CDS 3' 202 incomplete TSL:3 Rps6kc1- ENSMUST00000159367.7 4103 60aa ENSMUSP00000124383.1 Nonsense mediated - E0CYA1 TSL:5 203 decay Rps6kc1- ENSMUST00000159624.7 3276 336aa ENSMUSP00000125010.1 Nonsense mediated - Q8BLK9 TSL:2 204 decay Rps6kc1- ENSMUST00000160889.7 2694 22aa ENSMUSP00000123733.1 Nonsense mediated - F6VA16 CDS 5' 206 decay incomplete TSL:1 Rps6kc1- ENSMUST00000159823.7 4792 No - Retained intron - - TSL:2 205 protein Rps6kc1- ENSMUST00000162500.7 2913 No - Retained intron - - TSL:1 208 protein Rps6kc1- ENSMUST00000160891.1 518 No - Retained intron - - TSL:3 207 protein Rps6kc1- ENSMUST00000162692.1 406 No - lncRNA - - TSL:3 209 protein Page 7 of 9 https://www.alphaknockout.com 231.57 kb Forward strand 190.7Mb 190.8Mb 190.9Mb Contigs AC137146.9 > AC112675.12 > Genes (Comprehensive set... < Rps6kc1-204nonsense mediated decay < Rps6kc1-201protein coding < Rps6kc1-203nonsense mediated decay < Rps6kc1-206nonsense mediated decay < Rps6kc1-209lncRNA < Rps6kc1-205retained intron < Rps6kc1-202protein coding < Rps6kc1-208retained intron < Rps6kc1-207retained intron Regulatory Build 190.7Mb 190.8Mb 190.9Mb Reverse strand 231.57 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000061611 < Rps6kc1-201protein coding Reverse strand 138.89 kb ENSMUSP00000061... MobiDB lite Low complexity (Seg) Superfamily PX domain superfamily Protein kinase-like domain superfamily MIT domain superfamily SMART Phox homologous domain MIT Protein kinase domain Pfam Phox homologous domain MIT Protein kinase domain PROSITE profiles Phox homologous domain Protein kinase domain PANTHER PTHR15508:SF2 PTHR15508 Gene3D PX domain superfamily 1.20.58.280 1.10.510.10 CDD cd02677 RPK118-like, kinase domain Ribosomal protein S6 kinase delta-1, PX domain All sequence SNPs/i..
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Expressed Gene Fusions As Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer
    Published OnlineFirst December 14, 2017; DOI: 10.1158/2159-8290.CD-17-0535 RESEARCH ARTICLE Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer Karina J. Matissek1,2, Maristela L. Onozato3, Sheng Sun1,2, Zongli Zheng2,3,4, Andrew Schultz1, Jesse Lee3, Kristofer Patel1, Piiha-Lotta Jerevall2,3, Srinivas Vinod Saladi1,2, Allison Macleay3, Mehrad Tavallai1,2, Tanja Badovinac-Crnjevic5, Carlos Barrios6, Nuran Beşe7, Arlene Chan8, Yanin Chavarri-Guerra9, Marcio Debiasi6, Elif Demirdögen10, Ünal Egeli10, Sahsuvar Gökgöz10, Henry Gomez11, Pedro Liedke6, Ismet Tasdelen10, Sahsine Tolunay10, Gustavo Werutsky6, Jessica St. Louis1, Nora Horick12, Dianne M. Finkelstein2,12, Long Phi Le2,3, Aditya Bardia1,2, Paul E. Goss1,2, Dennis C. Sgroi2,3, A. John Iafrate2,3, and Leif W. Ellisen1,2 ABSTRACT We sought to uncover genetic drivers of hormone receptor–positive (HR+) breast cancer, using a targeted next-generation sequencing approach for detecting expressed gene rearrangements without prior knowledge of the fusion partners. We identified inter- genic fusions involving driver genes, including PIK3CA, AKT3, RAF1, and ESR1, in 14% (24/173) of unselected patients with advanced HR+ breast cancer. FISH confirmed the corresponding chromo- somal rearrangements in both primary and metastatic tumors. Expression of novel kinase fusions in nontransformed cells deregulates phosphoprotein signaling, cell proliferation, and survival in three- dimensional culture, whereas expression in HR+ breast cancer models modulates estrogen-dependent growth and confers hormonal therapy resistance in vitro and in vivo. Strikingly, shorter overall survival was observed in patients with rearrangement-positive versus rearrangement-negative tumors. Cor- respondingly, fusions were uncommon (<5%) among 300 patients presenting with primary HR+ breast cancer.
    [Show full text]
  • Expressed Gene Fusions As Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer
    Published OnlineFirst December 14, 2017; DOI: 10.1158/2159-8290.CD-17-0535 RESEARCH ARTICLE Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer Karina J. Matissek1,2, Maristela L. Onozato3, Sheng Sun1,2, Zongli Zheng2,3,4, Andrew Schultz1, Jesse Lee3, Kristofer Patel1, Piiha-Lotta Jerevall2,3, Srinivas Vinod Saladi1,2, Allison Macleay3, Mehrad Tavallai1,2, Tanja Badovinac-Crnjevic5, Carlos Barrios6, Nuran Beşe7, Arlene Chan8, Yanin Chavarri-Guerra9, Marcio Debiasi6, Elif Demirdögen10, Ünal Egeli10, Sahsuvar Gökgöz10, Henry Gomez11, Pedro Liedke6, Ismet Tasdelen10, Sahsine Tolunay10, Gustavo Werutsky6, Jessica St. Louis1, Nora Horick12, Dianne M. Finkelstein2,12, Long Phi Le2,3, Aditya Bardia1,2, Paul E. Goss1,2, Dennis C. Sgroi2,3, A. John Iafrate2,3, and Leif W. Ellisen1,2 ABSTRACT We sought to uncover genetic drivers of hormone receptor–positive (HR+) breast cancer, using a targeted next-generation sequencing approach for detecting expressed gene rearrangements without prior knowledge of the fusion partners. We identified inter- genic fusions involving driver genes, including PIK3CA, AKT3, RAF1, and ESR1, in 14% (24/173) of unselected patients with advanced HR+ breast cancer. FISH confirmed the corresponding chromo- somal rearrangements in both primary and metastatic tumors. Expression of novel kinase fusions in nontransformed cells deregulates phosphoprotein signaling, cell proliferation, and survival in three- dimensional culture, whereas expression in HR+ breast cancer models modulates estrogen-dependent growth and confers hormonal therapy resistance in vitro and in vivo. Strikingly, shorter overall survival was observed in patients with rearrangement-positive versus rearrangement-negative tumors. Cor- respondingly, fusions were uncommon (<5%) among 300 patients presenting with primary HR+ breast cancer.
    [Show full text]
  • LIM and Cysteine-Rich Domains 1 (LMCD1) Regulates Skeletal Muscle Hypertrophy, Calcium Handling, and Force Duarte M
    Ferreira et al. Skeletal Muscle (2019) 9:26 https://doi.org/10.1186/s13395-019-0214-1 RESEARCH Open Access LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force Duarte M. S. Ferreira1, Arthur J. Cheng2,3, Leandro Z. Agudelo1,4, Igor Cervenka1, Thomas Chaillou2,5, Jorge C. Correia1, Margareta Porsmyr-Palmertz1, Manizheh Izadi1,6, Alicia Hansson1, Vicente Martínez-Redondo1, Paula Valente-Silva1, Amanda T. Pettersson-Klein1, Jennifer L. Estall7, Matthew M. Robinson8, K. Sreekumaran Nair8, Johanna T. Lanner2 and Jorge L. Ruas1* Abstract Background: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia. Methods: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1- calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling.
    [Show full text]
  • Human Kinases Info Page
    Human Kinase Open Reading Frame Collecon Description: The Center for Cancer Systems Biology (Dana Farber Cancer Institute)- Broad Institute of Harvard and MIT Human Kinase ORF collection from Addgene consists of 559 distinct human kinases and kinase-related protein ORFs in pDONR-223 Gateway® Entry vectors. All clones are clonal isolates and have been end-read sequenced to confirm identity. Kinase ORFs were assembled from a number of sources; 56% were isolated as single cloned isolates from the ORFeome 5.1 collection (horfdb.dfci.harvard.edu); 31% were cloned from normal human tissue RNA (Ambion) by reverse transcription and subsequent PCR amplification adding Gateway® sequences; 11% were cloned into Entry vectors from templates provided by the Harvard Institute of Proteomics (HIP); 2% additional kinases were cloned into Entry vectors from templates obtained from collaborating laboratories. All ORFs are open (stop codons removed) except for 5 (MST1R, PTK7, JAK3, AXL, TIE1) which are closed (have stop codons). Detailed information can be found at: www.addgene.org/human_kinases Handling and Storage: Store glycerol stocks at -80oC and minimize freeze-thaw cycles. To access a plasmid, keep the plate on dry ice to prevent thawing. Using a sterile pipette tip, puncture the seal above an individual well and spread a portion of the glycerol stock onto an agar plate. To patch the hole, use sterile tape or a portion of a fresh aluminum seal. Note: These plasmid constructs are being distributed to non-profit institutions for the purpose of basic
    [Show full text]
  • Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM 014911.2 KIAA1048, Dkfzp686k16132 AP2 Associated Kinase 1
    Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM_014911.2 KIAA1048, DKFZp686K16132 AP2 associated kinase 1 (AAK1) AATK NM_001080395.2 AATYK, AATYK1, KIAA0641, LMR1, LMTK1, p35BP apoptosis-associated tyrosine kinase (AATK) ABL1 NM_007313.2 ABL, JTK7, c-ABL, p150 v-abl Abelson murine leukemia viral oncogene homolog 1 (ABL1) ABL2 NM_007314.3 ABLL, ARG v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-related gene) (ABL2) ACVR1 NM_001105.2 ACVRLK2, SKR1, ALK2, ACVR1A activin A receptor ACVR1B NM_004302.3 ACVRLK4, ALK4, SKR2, ActRIB activin A receptor, type IB (ACVR1B) ACVR1C NM_145259.2 ACVRLK7, ALK7 activin A receptor, type IC (ACVR1C) ACVR2A NM_001616.3 ACVR2, ACTRII activin A receptor ACVR2B NM_001106.2 ActR-IIB activin A receptor ACVRL1 NM_000020.1 ACVRLK1, ORW2, HHT2, ALK1, HHT activin A receptor type II-like 1 (ACVRL1) ADCK1 NM_020421.2 FLJ39600 aarF domain containing kinase 1 (ADCK1) ADCK2 NM_052853.3 MGC20727 aarF domain containing kinase 2 (ADCK2) ADCK3 NM_020247.3 CABC1, COQ8, SCAR9 chaperone, ABC1 activity of bc1 complex like (S. pombe) (CABC1) ADCK4 NM_024876.3 aarF domain containing kinase 4 (ADCK4) ADCK5 NM_174922.3 FLJ35454 aarF domain containing kinase 5 (ADCK5) ADRBK1 NM_001619.2 GRK2, BARK1 adrenergic, beta, receptor kinase 1 (ADRBK1) ADRBK2 NM_005160.2 GRK3, BARK2 adrenergic, beta, receptor kinase 2 (ADRBK2) AKT1 NM_001014431.1 RAC, PKB, PRKBA, AKT v-akt murine thymoma viral oncogene homolog 1 (AKT1) AKT2 NM_001626.2 v-akt murine thymoma viral oncogene homolog 2 (AKT2) AKT3 NM_181690.1
    [Show full text]
  • Multi-Targeted Kinase Inhibition Alleviates Mtor Inhibitor
    Breast Cancer Research and Treatment https://doi.org/10.1007/s10549-019-05380-z PRECLINICAL STUDY Multi‑targeted kinase inhibition alleviates mTOR inhibitor resistance in triple‑negative breast cancer Jichao He1 · Ronan P. McLaughlin1 · Vera van der Noord1 · John A. Foekens2 · John W. M. Martens2 · Gerard van Westen1 · Yinghui Zhang1 · Bob van de Water1 Received: 21 February 2019 / Accepted: 27 July 2019 © The Author(s) 2019 Abstract Purpose Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for efective treatment of the refractory TNBC subtype. Methods A broad kinase inhibitor screen was applied to profle the proliferative responses of TNBC cells, revealing resist- ance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/ HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation. Results The combination treatment with AEE788 and rapalog efectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment. Conclusions mTOR signaling is highly activated in TNBC tumors.
    [Show full text]
  • Koch Shrna Gene Webpage
    Symbol SEPT9 ADAM30 AEN AMBP ARHGEF12 ATG16L2 BCAS3 A1CF ADAM32 AFF3 AMBRA1 ARHGEF17 ATG2A BCKDK AAK1 ADAM33 AGAP2 AMHR2 ARHGEF2 ATG3 BCL10 AATK ADAM7 AGER AMPH ARHGEF4 ATG4B BCL11A ABCA1 ADAM8 AGK ANAPC2 ARHGEF6 ATG4C BCL11B ABCA3 ADAM9 AGL ANG ARHGEF7 ATG4D BCL2 ABCB1 ADAMDEC1 AGPAT9 ANGPT2 ARID1A ATG5 BCL2L1 ABCB4 ADAMTS1 AGR3 ANGPTL4 ARID1B ATG7 BCL2L11 ABCC1 ADAMTS10 AHR ANKK1 ARID2 ATM BCL2L2 ABCC10 ADAMTS12 AIMP2 ANKRD30A ARID3A ATMIN BCL3 ABCC2 ADAMTS13 AIP ANO1 ARID3B ATP1B3 BCL6 ABCG2 ADAMTS14 AJAP1 ANXA1 ARID4B ATP2B4 BCL7A ABI1 ADAMTS15 AK1 ANXA2 ARID5A ATP7A BCL9 ABL1 ADAMTS16 AK2 ANXA6 ARID5B ATP7B BCR ABL2 ADAMTS17 AK3 ANXA7 ARL11 ATR BECN1 ACIN1 ADAMTS18 AK4 APAF1 ARNT ATRX BFAR ACP1 ADAMTS19 AK5 APC ARSB ATXN1 BIK ACPP ADAMTS2 AK7 APCDD1 ARSG ATXN2 BIN1 ACSL4 ADAMTS20 AK8 APEX1 ASAP1 AURKA BIN2 ACTN1 ADAMTS3 AKAP1 APOBEC1 ASAP3 AURKB BIRC2 ACVR1 ADAMTS4 AKAP13 APOBEC2 ASB15 AURKC BIRC3 ACVR1B ADAMTS5 AKAP3 APOBEC3G ASCC1 AXIN1 BIRC5 ACVR1C ADAMTS7 AKAP8L AQP1 ASCC3 AXIN2 BIRC7 ACVR2A ADAMTS8 AKR1B10 AQP5 ASCL1 AXL BLCAP ACVR2B ADAMTS9 AKR1C1 AQP7 ASCL2 AZGP1 BLK ACVRL1 ADAR AKR1C3 AR ASF1A BACE1 BLM AD026 ADARB1 AKT1 ARAF ASH1L BAD BMI1 ADAM10 ADARB2 AKT2 AREG ASH2L BAG1 BMP2 ADAM11 ADAT2 AKT3 ARF1 ASNS BAG4 BMP2K ADAM12 ADCK1 ALCAM ARF4 ASPH BANF1 BMP2KL ADAM15 ADCK2 ALDH18A1 ARF5 ASPSCR1 BAP1 BMPR1A ADAM17 ADCK3 ALK ARF6 ASS1 BARD1 BMPR1B ADAM18 ADCK4 ALKBH2 ARHGAP12 ASTE1 BAX BMPR2 ADAM19 ADCK5 ALKBH3 ARHGAP22 ASXL1 BAZ1A BMX ADAM2 ADCY6 ALKBH8 ARHGAP25 ATF1 BAZ1B BNIP3 ADAM20 ADK ALOX15 ARHGAP26 ATF2 BAZ2A BPTF ADAM21
    [Show full text]
  • Multi-Targeted Kinase Inhibition Alleviates Mtor Inhibitor
    Breast Cancer Research and Treatment (2019) 178:263–274 https://doi.org/10.1007/s10549-019-05380-z PRECLINICAL STUDY Multi‑targeted kinase inhibition alleviates mTOR inhibitor resistance in triple‑negative breast cancer Jichao He1 · Ronan P. McLaughlin1 · Vera van der Noord1 · John A. Foekens2 · John W. M. Martens2 · Gerard van Westen1 · Yinghui Zhang1 · Bob van de Water1 Received: 21 February 2019 / Accepted: 27 July 2019 / Published online: 6 August 2019 © The Author(s) 2019 Abstract Purpose Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for efective treatment of the refractory TNBC subtype. Methods A broad kinase inhibitor screen was applied to profle the proliferative responses of TNBC cells, revealing resist- ance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/ HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation. Results The combination treatment with AEE788 and rapalog efectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment.
    [Show full text]
  • Targeting CDK4 Overcomes EMT-Mediated Tumor Heterogeneity and Therapeutic Resistance in KRAS Mutant Lung Cancer
    Targeting CDK4 overcomes EMT-mediated tumor heterogeneity and therapeutic resistance in KRAS mutant lung cancer Aparna Padhye1,2, Jessica M. Konen1, B. Leticia Rodriguez1, Jared J. Fradette1, Joshua K. Ochieng1, Lixia Diao3, Jing Wang3, Wei Lu4, Luisa S. Solis4, Harsh Batra4, Maria G. Raso4, Michael D. Peoples5, Rosalba Minelli5, Alessandro Carugo5, Christopher A. Bristow5, Don L. Gibbons1,6* 1. Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 2. University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA. 3. Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 4. Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 5. TRACTION Platform, Division of Therapeutics Development, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 6. Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. *Corresponding author. Email: [email protected] Supplemental Methods Plasmids, Transfections, and Lentiviral Generation and Transduction Transfections of si-RNAs werr performed using the Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific). Constitutive Cdkn1a overexpression cell lines were generated by using Cdkn1a mouse Tagged ORF Clone (Origene (NM_007669)). Cdkn1a ORF was also subcloned into dox-inducible pTRIPZ-GFP vector to generate doxycycline inducible cell lines using EcoRI and AgeI restriction cut sites. Constitutive Cdkn1a shRNAs were purchased from Milipore sigma. The sequences used in the experiments are listed in table S11. Dox- inducible shRNAs were expressed in Tet-pLKO-puro vector with a scramble sequence as the non-targeting control.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]