8080 Data Sheet.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

8080 Data Sheet.Pdf tiT^r The 8080 is a complete 8-bit parallel, central processor bit 3-state Address Bus (A0-A15). Six timing and control unit (CPU) for use in genera! purpose digital computer sys- outputs (SYNC, DBIN, WA)T,WR, HLDA and INTE) eman- tems. It is fabricated on a single LSI chip (see Figure 2-1). ate from the 8080, while four control inputs (READY, using Intel's n-channe) silicon gate MOS process. The 8080 HOLD, INT and RESET), four power inputs (+12v, +5v, transfers data and interna) state information via an 8-bit, -5v, and GND) and two clock inputs (01 and ^2) are ac- bidirectional 3-state Data Bus (DQ-D7). Memory and peri- cepted by the 8080. pheral device addresses are transmitted over a separate 16- MIT HEADY HLDA f "ruMm GND O- -O A^ D, O- -O A^ -O A^ -O A, 5 D, O- <-0 Ag ^ -O Ag Dp O !NTEtT -O A? ..^.ysPr "t- O, O 9 -O A. O. 10 A5 '.' S L. < < .. 0 8080 -5V O- 11 -O A„ ' . =- . RESET O 12 HOLD O- 13 -O +HV INT O- 14 -O A2 ... J 15 -O Ai - . A M ', ^ . INTE O- 16 -O A„ DBIN o- 17 <-0 WAIT WR O- 18 -O READY tMaEBPWtW, ... ryWi .duamamyta. SYNC O- 19 -O #1 w- +5V O- 20 . BiUtatC^mNAti ^ - ^ . .. An A,; A,3 A„ A„ Figure 2 1. 8080 Photomicrograph With Pin Designations 2-1 ARCHtTECTURE OF THE 8080 CPU matically during every instruction fetch. The stack pointer The 8080 CPU consists of the following functional maintains the address of the next available stack location in units: memory. The stack pointer can be initialized to use any * Register array and address logic portion of read-write memory as a stack. The stack pointer * Arithmetic and logic unit (ALU) is decremented when data is "pushed" onto the stack and * Instruction register and control section incremented when data is "popped" off the stack (i.e., the * Bi-directional, 3-state data bus buffer stack grows "downward"). Figure 2-2 illustrates the functional blocks within The six general purpose registers can be used either as the 8080 CPU. single registers (8-bit) or as register pairs (16-bit). The temporary register pair, W,Z, is not program addressable and is only used for the internal execution of instructions. Registers: Eight-bit data bytes can be transferred between the The register section consists of a static RAM array internal bus and the register array via the register-select organized into six 16-bit registers: multiplexer. Sixteen-bit transfers can proceed between the register array and the address latch or the incrementer/ * Program counter (PC) decrementer circuit. The address latch receives data from * Stack pointer (SP) any of the three register pairs and drives the 16 address * Six 8-bit general purpose registers arranged in pairs, output buffers (A0-A15), as well as the incrementer/ referred to as B,C; D,E; and H,L decrementer circuit. The incrementer/decrementer circuit * A temporary register pair called W,Z receives data from the address latch and sends it to The program counter maintains the memory address the register array. The 16-bit data can be incremented or of the current program instruction and is incremented auto- decremented or simply transferred between registers. Di D„ BI-DIRECTIONAL DATA BUS DATA BUS INTERRUPT HOLD WAIT WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS INTE INT HOLDHOLDWAIT SYNC <^2 RESET ACK READY ADDRESS BUS Figure 2 2. 8080 CPU Functional Block Diagram 2 2 Arithmetic and Logic Unit (ALU): THE PROCESSOR CYCLE The ALU contains the following registers: An instruction cycte is defined as the time required to fetch and execute an instruction. During the fetch, a * An 8-bit accumulator selected instruction (one, two or three bytes) is extracted from memory and deposited in the CPU's instruction regis- * An 8-bit temporary accumulator (ACT) ter. During the execution phase, the instruction is decoded and translated into specific processing activities. * A 5-bit flag register: zero, carry, sign, parity and Every instruction cycle consists of one, two, three, auxiliary carry four or five machine cycles. A machine cycte is required each time the CPU accesses memory or an I/O port. The * An 8-bit temporary register (TMP) fetch portion of an instruction cycle requires one machine cycle for each byte to be fetched. The duration of the execu- Arithmetic, logical and rotate operations are per- tion portion of the instruction cycle depends on the kind formed in the ALU. The ALU is fed by the temporary of instruction that has been fetched. Some instructions do register (TMP) and the temporary accumulator (ACT) and not require any machine cycles other than those necessary carry flip-flop. The result of the operation can be trans- to fetch the instruction; other instructions, however, re- ferred to the internal bus or to the accumulator; the ALU quire additional machine cycles to write or read data to/ also feeds the flag register. from memory or I/O devices. The DAD instruction is an exception in that it requires two additional machine cycles The temporary register (TMP) receives information to complete an internal register-pair add (see Chapter 4). from the internal bus and can send all or portions of it to Each machine cycle consists of three, four or five the ALU, the flag register and the internal bus. states. A state is the smallest unit of processing activity and The accumulator (ACC) can be loaded from the ALU is defined as the interval between two successive positive- and the internal bus and can transfer data to the temporary going transitions of the 01 driven clock pulse. The 8080 accumulator (ACT) and the internal bus. The contents of isdriven by a two-phase clock oscillator. All processing activ- the accumulator (ACC) and the auxiliary carry flip-flop can ities are referred to the period of this clock. The two non- be tested for decimal correction during the execution of the overlapping clock pulses, labeled 01 and 02. are furnished DAA instruction (see Chapter 4). by external circuitry. It is the 01 clock pulse which divides each machine cycle into states. Timing logic within the 8080 uses the clock inputs to produce a SYNC pulse, tnstruction Register and Contro!: which identifies the beginning of every machine cycle. The SYNC pulse is triggered by the low-to-high transition of 02, During an instruction fetch, the first byte of an in- as shown in Figure 2-3. struction (containing the OP code) is transferred from the internal bus to the 8-bit instruction register. The contents of the instruction register are, in turn, FIRST STATE OF available to the instruction decoder. The output of the 'EVERY MACHINE CYCLE decoder, combined with various timing signals, provides the control signals for the register array, ALU and data ^ — / \ buffer blocks. In addition, the outputs from the instruction decoder and external control signals feed the timing and state control section which generates the state and cycle / \ / \ timing signals. SYNC / \ Data Bus Buffer: 'SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE This 8-bit bidirectional 3-state buffer is used to CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES isolate the CPU's internal bus from the external data bus. ARE USED FOR AN INTERNAL REGISTER-PAIR ADD. (Do through Dy). In the output mode, the internal bus content is loaded into an 8-bit latch that, in turn, drives the Figure 2 3.01,02 And SYNC Timing data bus output buffers. The output buffers are switched off during input or non-transfer operations. There are three exceptions to the defined duration of a state. They are the WAIT state, the hold (HLDA) state During the input mode, data from the external data bus and the halt (HLTA) state, described later in this chapter. is transferred to the internal bus. The internal bus is pre- Because the WAIT, the HLDA, and the HLTA states depend charged at the beginning of each internal state, except for upon external events, they are by their nature of indeter- the transfer state (T3—described later in this chapter). minate length. Even these exceptional states, however, must 2-3 be synchronized with the pulses of the driving clock. Thus, the contents of its H and L registers. The eight-bit data the duration of all states are integral multiples of the clock word returned during this MEMORY READ machine cycle period. is placed in a temporary register inside the 8080 CPU. By now three more clock periods (states) have elapsed. In the To summarize then, each ctock period marks a state; seventh and final state, the contents of the temporary regis- three to five states constitute a machine cycle; and one to ter are added to those of the accumulator. Two machine five machine cycles comprise an instruction cycte. A full cycles, consisting of seven states in all, complete the instruction cycle requires anywhere from four to eight- "ADD M" instruction cycle. teen states for its completion, depending on the kind of in- struction involved. At the opposite extreme is the save H and L registers (SHLD) instruction, which requires five machine cycles. Machine Cycte tdentification: During an "SHLD" instruction cycte, the contents of the With the exception of the DAD instruction, there is processor's H and L registers are deposited in two sequen- just one consideration that determines how many machine tially adjacent memory locations; the destination is indi- cycles are required in any given instruction cycle: the num- cated by two address bytes which are stored in the two ber of times that the processor must reference a memory memory locations immediately following the operation code address or an addressable peripheral device, in order to byte.
Recommended publications
  • System Buses EE2222 Computer Interfacing and Microprocessors
    System Buses EE2222 Computer Interfacing and Microprocessors Partially based on Computer Organization and Architecture by William Stallings Computer Electronics by Thomas Blum 2020 EE2222 1 Connecting • All the units must be connected • Different type of connection for different type of unit • CPU • Memory • Input/Output 2020 EE2222 2 CPU Connection • Reads instruction and data • Writes out data (after processing) • Sends control signals to other units • Receives (& acts on) interrupts 2020 EE2222 3 Memory Connection • Receives and sends data • Receives addresses (of locations) • Receives control signals • Read • Write • Timing 2020 EE2222 4 Input/Output Connection(1) • Similar to memory from computer’s viewpoint • Output • Receive data from computer • Send data to peripheral • Input • Receive data from peripheral • Send data to computer 2020 EE2222 5 Input/Output Connection(2) • Receive control signals from computer • Send control signals to peripherals • e.g. spin disk • Receive addresses from computer • e.g. port number to identify peripheral • Send interrupt signals (control) 2020 EE2222 6 What is a Bus? • A communication pathway connecting two or more devices • Usually broadcast (all components see signal) • Often grouped • A number of channels in one bus • e.g. 32 bit data bus is 32 separate single bit channels • Power lines may not be shown 2020 EE2222 7 Bus Interconnection Scheme 2020 EE2222 8 Data bus • Carries data • Remember that there is no difference between “data” and “instruction” at this level • Width is a key determinant of performance • 8, 16, 32, 64 bit 2020 EE2222 9 Address bus • Identify the source or destination of data • e.g. CPU needs to read an instruction (data) from a given location in memory • Bus width determines maximum memory capacity of system • e.g.
    [Show full text]
  • Control Bus System and Application of Building Electric Zhai Long1*, Tan Bin2, Ren Min3 1.Xi’An Changqing Technology Engineering Co., Ltd., Xi'an 710018 ,China 2
    ORIGINAL ARTICLE Control Bus System And Application of Building Electric Zhai Long1*, Tan Bin2, Ren Min3 1.Xi’an Changqing Technology Engineering Co., Ltd., Xi'an 710018 ,China 2. Xi'an Changqing Technology Engineering Co., Ltd., Xi'an 710018,China 3.The Fifth Oil Production Plant of Changqing Oilfield Company, Xi'an 710018,China ABSTRACT As the most important part of Building construction, the KEYWORDS electric part 's intelligent control is particularly important. the most Building electric important sign of The intelligent intelligent control is the application of Control Bus System control bus system, only select the appropriate control bus system, and CAN protocol achieve intelligent applications in buildings, elevators, fire, visualization, etc., can meet the household needs. Firstly, the design principle of the electrical control system will be described, and then the CAN - based bus system control principle and application are discussed, only used for reference. 1.Design Principles of Electric Control System Introduction As a primary prerequisite for intelligent building, For construction, the electric bus control technology is a Design of electrical control system should meet the relatively new technology. under the trend of the following principles: development of intelligent building in the future, application (1) It is needed to ensure meeting the needs under of control bus system has become the most important normal production environment . the mainstay of component of intelligent building . In the construction of the electrical system is designed to meet the production machinery and production process requirements. (2) building, the control bus system can not only make The overall design concept should be clear.
    [Show full text]
  • PDP-11 Bus Handbook (1979)
    The material in this document is for informational purposes only and is subject to change without notice. Digital Equipment Corpo­ ration assumes no liability or responsibility for any errors which appear in, this document or for any use made as a result thereof. By publication of this document, no licenses or other rights are granted by Digital Equipment Corporation by implication, estoppel or otherwise, under any patent, trademark or copyright. Copyright © 1979, Digital Equipment Corporation The following are trademarks of Digital Equipment Corporation: DIGITAL PDP UNIBUS DEC DECUS MASSBUS DECtape DDT FLIP CHIP DECdataway ii CONTENTS PART 1, UNIBUS SPECIFICATION INTRODUCTION ...................................... 1 Scope ............................................. 1 Content ............................................ 1 UNIBUS DESCRIPTION ................................................................ 1 Architecture ........................................ 2 Unibus Transmission Medium ........................ 2 Bus Terminator ..................................... 2 Bus Segment ....................................... 3 Bus Repeater ....................................... 3 Bus Master ........................................ 3 Bus Slave .......................................... 3 Bus Arbitrator ...................................... 3 Bus Request ....................................... 3 Bus Grant ......................................... 3 Processor .......................................... 4 Interrupt Fielding Processor .........................
    [Show full text]
  • PCI/104-Express & Pcie/104 Specification
    PCI/104-Express™ & PCIe/104™ Specification Including OneBank™ and Adoption on 104™, EPIC™, and EBX™ Form Factors Version 3.0 February 17, 2015 Please Note: This specification is subject to change without notice. While every effort has been made to ensure the accuracy of the material contained within this document, the PC/104 Consortium shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this specification. If errors are found, please notify the PC/104 Consortium. The PC/104 logo, PC/104, PC/104-Plus, PCI-104, PCIe/104, PCI/104-Express, 104, OneBank, EPIC and EBX are trademarks of the PC/104 Consortium. All other marks are the property of their respective companies. Copyright 2007 - 2015, PC/104 Consortium IMPORTANT INFORMATION AND DISCLAIMERS The PC/104 Consortium (“Consortium”) makes no warranties with regard to this PCI/104-Express and PCIe/104 Specifications (“Specifications”) and, in particular, neither warrant nor represent that these Specifications or any products made in conformance with them will work in the intended manner. Nor does the Consortium assume responsibility for any errors that the Specifications may contain or have any liabilities or obligations for damages including, but not limited to, special, incidental, indirect, punitive, or consequential damages whether arising from or in connection with the use of these Specifications in any way. This specification is subject to change without notice. While every effort has been made to ensure the accuracy of the material contained within this document, the publishers shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this specification.
    [Show full text]
  • The System Bus
    ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 1998/99 WINTER SESSION, TERM 1 The System Bus This lecture describes system buses. These are buses used to interface the CPU with memory and peripherals on separate PC cards. The ISA and PCI buses are used as examples. Introduction characteristics. We will look briefly at two examples of system To increase their flexibility, most general-purpose buses. The ISA (Industrial Standard Architecture) microcomputers include a system bus that allows bus is commonly used in IBM-PC compatibles and printed circuit boards (PCBs) containing memory or is one of the most widely-used system busses. The I/O devices to be connected to the CPU. This allows PCI (Peripheral Component Interconnect) bus is a microcomputer systems to be customized for differ- flexible high-performance peripheral bus that can ef- ent applications. The use of a standard bus also al- ficiently interconnect peripherals and processors of lows manufacturers to produce peripherals that will widely different speeds. work properly with other manufacturers’ computer systems. The system bus consists of a number of parallel Mechanical Characteristics conductors on a backplane or motherboard. There are a number of connectors or “slots” into which Low-cost consumer-grade buses use card-edge con- other PCBs containing memory and I/O devices can nectors to minimize the cost of the peripheral. The be plugged in. plug-in card has contact pads along the edges of the PCB. The motherboard has connectors on the moth- In most cases the system bus is very similar to the erboard that contact these pads.
    [Show full text]
  • AMD Processor Performance Evaluation Guide
    AMD Processor Performance Evaluation Guide Mark W. Welker ADVANCED MICRO DEVICES One AMD Place Sunnyvale, CA 94088 Publication # 30579 Revision: 3.71 Issue Date: June 2005 © 2003 - 2005 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no repre- sentations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or oth- erwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environ- mental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD Arrow logo, AMD Athlon, and combinations thereof, Cool’n’Quiet and 3DNow!, are trademarks of Advanced Micro Devices, Inc.
    [Show full text]
  • The Computer Control System for the CESR B Factory C. R. Strohman, D
    The Computer Control System for the CESR B Factory C. R. Strohman, D. H. Rice and S. B. Peck Laboratory of Nuclear Studies Cornell University Ithaca, New York 14853' Abstract the strengths and weaknesses of our system and the different needs of the new system. Part of this process was defining the B factories present unique requirements for controls and scope of the control system, instrumentation systems. High reliability is critical to achiev­ ing the integrated luminosity goals. The CESR-B upgrade at A. Boundaries of the Control System Cornell University will have a control system based on the architecture of the successful CESR control system, which uses For a large design project, well defined boundaries are a centralized database/message routing system in a multi- essential. At the boundaries, the needs of other people must be ported memory, and VAXstations for all high-level control taken into consideration, and the design process requires functions. The implementation of this architecture will address communication between the designers and the users of the the deficiencies in the current implementation while providing control system. Within the boundaries, the control system the required performance and reliability. designers can do whatever is needed. We have defined the scope of the control system by defining interfaces for applica- I. INTRODUCTION tion programmers, instrumentation designers, and operators. Application programmers must be provided a complete, CESR-B is an upgrade to the existing CESR facility.1 well documented, set of functions which meet their needs. The major part of the upgrade is the addition of a second Programmers are not allowed to bypass these functions by storage ring in the existing tunnel.
    [Show full text]
  • DMA, System Buses and Peripheral Buses
    EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 2000/2001 WINTER SESSION, TERM 1 DMA, System Buses and Peripheral Buses Direct Memory Access is a method of transferring data between peripherals and memory without using the CPU. After this lecture you should be able to: identify the advantages and disadvantages of using DMA and programmed I/O, select the most appropriate method for a particular application. System buses are the buses used to interface the CPU with memory and peripherals on separate PC cards. The ISA and PCI buses are used as examples. You should be able to state the most important specifications of both buses. Serial interfaces are typically used to connect computer systems and low-speed external peripherals such as modems and printers. Serial interfaces reduce the cost of interconnecting devices because the bits in a byte are time-multiplexed onto a single wire and connector. After this lecture you should be able to describe the operation and format of data and handshaking signals on an RS-232 interface. Parallel ports are also used to interface the CPU to I/O devices. Two common parallel port standards, the “Centron- ics” parallel printer port and the SCSI interface are described. After this lecture you should be able to design simple input and output I/O ports using address decoders, registers and tri-state buffers. Programmed I/O Approximately how many bus cycles will be required? Programmed I/O (PIO) refers to using input and out- put (or move) instructions to transfer data between Direct Memory Access (DMA) memory and the registers on a peripheral interface.
    [Show full text]
  • Computer Architecture.Pdf
    National 5 Computer Architecture What we need to know! The Processor – ALU, Control Unit, Registers Memory – Main Memory, RAM, ROM, Memory Sizes Buses – Address, Data, Control Interfaces – Data Conversion, Speed of Operation, Temporary Storage, Different Voltage Levels 4 Box Diagram Input Devices Processor Output Devices Mouse, Keyboard, Printer, Monitor, Scanner, Digital Speakers, Camera, Webcam, Main Memory Headset Trackball, Trackpad RAM and ROM Backing Storage Device CD-ROM, DVD, ROM, CD-RW, DVD-RW, USB Flash Drive Basic Computer Structure Control Bus Control Unit Backing Storage Main Memory ALU Address Bus Registers Data Bus The purpose of the ALU • The Arithmetic and Logic Unit (ALU) is the part of the Central Processing Unit (CPU) where the following take place: – Calculations (+, -, /, *) – Logical Decisions (AND, OR, NOT) – Comparisons (<,=, >, <=, >=) The purpose of the Control Unit • The main functions of the control unit are: – to control the timing of operations within the processor – to send out signals that fetch instructions from the main memory – to decode these instructions – to carry out these decoded instructions The purpose of the Registers • These are very fast temporary storage locations on the processor, they provide temporary storage places for data being manipulated. This data could be an address in memory, data being read or written, or instructions waiting to be decoded. • They are used to: – Hold data that is being transferred to or from memory. – Hold the address of the location in memory which the processor is accessing to read or write data. – Hold the instructions that are being carried out. Complete Exercise 1 and get your teacher to check the answers.
    [Show full text]
  • Melsecwincpu Module Q-Bus Interface Driver User's Manual (Utility Operation, Programming)
    MELSECWinCPU Module Q-Bus Interface Driver User's Manual (Utility Operation, Programming) -Q10WCPU-W1-E -Q10WCPU-W1-CFE -SW1PNC-WCPU-B SAFETY PRECAUTIONS (Read these precautions before using this product.) Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly. The instructions given in this manual are concerned with this product. For the safety instructions of the programmable controller system, please read the programmable controller CPU module user's manual. In this manual, the safety precautions are classified into two levels: " WARNING" and " CAUTION". Indicates that incorrect handling may cause hazardous conditions, resulting in WARNING death or severe injury. Indicates that incorrect handling may cause hazardous conditions, resulting in CAUTION minor or moderate injury or property damage. Under some circumstances, failure to observe the precautions given under " CAUTION" may lead to serious consequences. Observe the precautions of both levels because they are important for personal and system safety. Make sure that the end users read this manual and then keep the manual in a safe place for future reference. 1 [Design Instructions] WARNING - When changing data and controlling status upon an operating sequencer from the MELSECWinCPU module, safety operation of the total system must always be maintained. For that purpose, configure an interlock circuit externally to the sequencer system. Countermeasures against communication errors caused by cable connection failure, etc. must be specified by means of on- line operation of programmable controller CPU from the MELSECWinCPU module. CAUTION - Read the manual thoroughly and carefully, and verify safety before running the online operations with connected MELSECWinCPU module, and with an operating programmable controller CPU (especially when performing forcible output and changing operation status).
    [Show full text]
  • Chapter 13: Direct Memory Access and DMA-Controlled
    Chapter 13: Direct Memory Access and DMA-Controlled I/O Introduction • The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled. • This chapter also explains the operation of disk memory systems and video systems that are often DMA-processed. • Disk memory includes floppy, fixed, and optical disk storage. Video systems include digital and analog monitors. The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc. Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 • All rights reserved. Barry B. Brey Chapter Objectives Upon completion of this chapter, you will be able to: • Describe a DMA transfer. • Explain the operation of the HOLD and HLDA direct memory access control signals. • Explain the function of the 8237 DMA controller when used for DMA transfers. • Program the 8237 to accomplish DMA transfers. The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc. Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 • All rights reserved. Barry B. Brey 13–1 BASIC DMA OPERATION • Two control signals are used to request and acknowledge a direct memory access (DMA) transfer in the microprocessor-based system. – the HOLD pin is an input used to request a DMA action – the HLDA pin is an output that acknowledges the DMA action • Figure 13–1 shows the timing that is typically found on these two DMA control pins.
    [Show full text]
  • PCI/104-Express and Pcie/104 Specification
    PCI/104-Express™ & PCIe/104™ Specification Including Adoption on 104™, EPIC™ and EBX™ Form Factors Version 2.0 February 10, 2011 Please Note This specification is subject to change without notice. While every effort has been made to ensure the accuracy of the material contained within this document, the PC/104 Embedded Consortium shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this specification. If errors are found, please notify the PC/104 Embedded Consortium. The PC/104 logo, PC/104, PC/104-Plus, PCI-104, PCIe/104, PCI/104-Express, 104, EPIC and EBX are trademarks of the PC/104 Embedded Consortium. All other marks are the property of their respective companies. Copyright 2007 - 2011, PC/104 Embedded Consortium IMPORTANT INFORMATION AND DISCLAIMERS The PC/104 Embedded Consortium (“Consortium”) makes no warranties with regard to this PCI/104- Express and PCIe/104 Specifications (“Specifications”) and, in particular, neither warrant nor represent that these Specifications or any products made in conformance with them will work in the intended manner. Nor does the Consortium assume responsibility for any errors that the Specifications may contain or have any liabilities or obligations for damages including, but not limited to, special, incidental, indirect, punitive, or consequential damages whether arising from or in connection with the use of these Specifications in any way. This specification is subject to change without notice. While every effort has been made to ensure the accuracy of the material contained within this document, the publishers shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this specification.
    [Show full text]