Functional Assignments in the Enolase Superfamily: Investigations of Two Divergent Groups of D-Galacturonate Dehydratases and Galactarate Dehydratase-Iii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of Topological Clustering Within Protein Networks Using Edge
Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity Janelle B. Leuthaeuser,1 Stacy T. Knutson,2 Kiran Kumar,2 Patricia C. Babbitt,3,4 and Jacquelyn S. Fetrow1,2* 1Department of Molecular Genetics and Genomics, Wake Forest University, Winston-Salem, North Carolina 27106 2Departments of Computer Science and Physics, Wake Forest University, Winston-Salem, North Carolina 27106 3Department of Bioengineering and Therapeutic Sciences, Institute for Quantitative Biosciences University of California San Francisco, San Francisco, California 94158 4Department of Pharmaceutical Chemistry, Institute for Quantitative Biosciences University of California San Francisco, San Francisco, California 94158 Received 10 April 2015; Accepted 10 June 2015 DOI: 10.1002/pro.2724 Published online 12 June 2015 proteinscience.org Abstract: The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annota- tion via annotation transfer, group proteins into similarity-based clusters. An underlying assump- tion is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/ function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. -
Generated by SRI International Pathway Tools Version 25.0, Authors S
An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility. -
Changes in the Sclerotinia Sclerotiorum Transcriptome During Infection of Brassica Napus
Seifbarghi et al. BMC Genomics (2017) 18:266 DOI 10.1186/s12864-017-3642-5 RESEARCHARTICLE Open Access Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus Shirin Seifbarghi1,2, M. Hossein Borhan1, Yangdou Wei2, Cathy Coutu1, Stephen J. Robinson1 and Dwayne D. Hegedus1,3* Abstract Background: Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. Results: Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. Conclusions: The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. -
Comparative Analysis of Temporal Transcriptome Reveals The
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.02.323402; this version posted October 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Comparative analysis of temporal transcriptome reveals the 2 relationship between pectin degradation and pathogenicity of 3 defoliating Verticillium dahliae to Upland cotton (Gossypium 4 hirsutum) 5 6 Fan Zhang1,2,#a, Jiayi Zhang1; Wanqing Chen3; Xinran Liu3; Cheng Li1; Yuefen Cao1; Tianlun 7 Zhao1; Donglin Lu1; Yixuan Hui1; Yi Zhang1; Jinhong Chen1; Jingze Zhang3; Alan E. 8 Pepper2*,#a; John Z. Yu4*; Shuijin Zhu1* 9 10 1 Institute of Crop Science, College of Agriculture & Biotechnology, Zhejiang University, 11 Hangzhou, Zhejiang, China 12 2 Department of Biology, College of Science, Texas A&M University, College Station, Texas, 13 United States of America 14 3 Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, 15 Hangzhou, Zhejiang, China 16 4 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 17 Southern Plains Agricultural Research Center, College Station, Texas, United States of 18 America 19 20 #a Current Address: Department of Biology, College of Science, Texas A&M University, 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.02.323402; this version posted October 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. -
The Structure of Neurospora Crassa 3-Carboxy-Cis,Cis-Muconate Lactonizing Enzyme, a  Propeller Cycloisomerase
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 10, 483–492, April, 2002, 2002 Elsevier Science Ltd. All rights reserved. PII S0969-2126(02)00744-X The Structure of Neurospora crassa 3-Carboxy-cis,cis-Muconate Lactonizing Enzyme, a  Propeller Cycloisomerase Tommi Kajander,1 Michael C. Merckel,1 ing the structural basis for different alternatives for catal- Andrew Thompson,2 Ashley M. Deacon,3 ysis in MLEs could therefore aid in understanding and Paul Mazur,4 John W. Kozarich,4,6 engineering enzymes for degradation of xenobiotic pol- and Adrian Goldman1,5 lutants, such as fluoroaromatics. 1 Institute of Biotechnology MLEs convert cis,cis-muconates to muconolactones Research Program in Structural Biology in soil microbes as part of the -ketoadipate pathway. and Biophysics This aerobic catabolic pathway converts aromatics, such University of Helsinki as the breakdown products of lignin, through catechol FIN-00014 Helsinki and protocatechuate to citric acid cycle intermediates. Finland The two major branches of the -ketoadipate pathway 2 EMBL are the catechol branch, with cis,cis-muconate lactoniz- Grenoble Outstation ing enzymes, and the protocatechuate branch (Figure 38024 Grenoble 1), with carboxy-cis,cis-muconate lactonizing enzymes France (CMLEs). 3 Stanford Synchrotron Radiation Laboratory The evolutionary origins of these enzymes are surpris- Menlo Park, California 94025 ingly divergent, both in terms of sequence similarity and 4 Merck Research Laboratories functional properties (Table 1). Three different classes of Rahway, New Jersey 07065 lactonizing enzymes can be distinguished. The bacterial MLEs contain an unusual TIM barrel [3] and are closely related to mandelate racemase [4]. -
Structural Studies of Three Enzymes: Telomerase, the Methyltransferase Cobj and Pectate Lyase
Structural studies of three enzymes: Telomerase, the methyltransferase CobJ and Pectate lyase Teng Teng To Thesis submitted to the University of London for the Degree of Doctor of Philosophy 1 Abstract This thesis investigates the structure and function of three enzymes of biotechnological and biomedical interest: telomerase from Caenorhabtidis elegans , pectate lyase from Bacillus subtilis and the methyltransferase CobJ from Rhodobacter capsulatus . Telomerase is a ribonucleoprotein found in all eukaryotes and its function is to maintain telomere length, sustain chromosome integrity and circumvent the end-replication problem. The protein requires two subunits to function, telomerase reverse transcriptase (TERT), the catalytic component, and an intrinsic RNA template (TR). The TR makes telomerase a unique reverse transcriptase using the template in the synthesis of short iterative sequences which cap the ends of telomeres. This work reports the successful cloning of a small and therefore potentially crystallisable TERT from C. elegans and expression trials of this catalytic component. Cobalamin (vitamin B 12 ) is an intricate small molecule belonging to a group of compounds called cyclic tetrapyrroles. Its biosynthesis is achieved through a complex pathway encompassing over thirty different enzyme-mediated reactions. Within this pathway there are seven methyltransferases which add eight S-adenosyl-methionine (SAM) derived methyl groups to the macrocycle. CobJ catalyses the methylation of C17 and ring contraction at C20, this reaction which exudes C20 from the tetrapyrrole ring is unprecedented in nature. In this thesis I report the crystallisation of native CobJ and refinement and validation of a high resolution structure along side co-crystallisation and soaking experiments aimed at capturing an enzyme-tetrapyrrole complex. -
Supplementary Informations SI2. Supplementary Table 1
Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0 -
Functional and Physiological Discovery in the Mannonate Dehydratase Subgroup of the Enolase Superfamily
FUNCTIONAL AND PHYSIOLOGICAL DISCOVERY IN THE MANNONATE DEHYDRATASE SUBGROUP OF THE ENOLASE SUPERFAMILY BY DANIEL JOSEPH WICHELECKI DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor John Gerlt, Chair Professor John Cronan Professor Scott Silverman Professor Wilfred van der Donk ABSTRACT In the current post-genomic world, the exponential amassing of protein sequences is overwhelming the scientific community’s ability to experimentally assign each protein’s function. The use of automated, homology-based annotations has allowed a reprieve from this efflux of data, but has led to widespread misannotation and nonannotation in protein sequence databases. This dissertation details the functional and physiological characterization of the mannonate dehydratase subgroup (ManD) of the enolase superfamily (ENS). The outcome affirms the dangers of homology-based annotations while discovering novel metabolic pathways. Furthermore, the experimental verification of these pathways ( in vitro and in vivo ) has provided a platform to test the general strategies for improved functional and metabolic characterization being developed by the Enzyme Function Initiative (EFI). Prior to this study, one member of the ManD subgroup had been characterized and was shown to dehydrate D-mannonate to 2-keto-3-deoxy-D-gluconate. Forty-two additional members of the ManD, selected from across the sequence space of the subgroup, were screened for activity and kinetic constants were determined. The members of the once isofunctional subgroup were found to differ in both catalytic efficiency and substrate specificity: 1) high 3 4 -1 -1 efficiency (k cat /K M = 10 to 10 M s ) dehydration of D-mannonate, 2) low efficiency (k cat /K M = 10 1 to 10 2 M-1s-1) dehydration of D-mannonate and/or D-gluconate, and 3) no-activity with either D-mannonate or D-gluconate (or any other acid sugar tested). -
Bioinformatic Analysis Deciphers the Molecular Toolbox in the Endophytic/Pathogenic 2 Behavior in F
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436347; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Bioinformatic analysis deciphers the molecular toolbox in the endophytic/pathogenic 2 behavior in F. oxysporum f. sp. vanillae - V. planifolia Jacks interaction. 3 Solano De la Cruz MT1**, Escobar – Hernández EE2**, Arciniega – González JA3, Rueda 4 – Zozaya RP1, Adame – García J4, Luna – Rodríguez M5 5 ** These authors contributed equally to this work. 6 1Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N 7 anexo, Jardín Botánico exterior, Ciudad Universitaria, Ciudad de México, México. 8 2Unidad de Genómica Avanzada, Langebio, Cinvestav, Km 9.6 Libramiento Norte 9 Carretera León 36821, Irapuato, Guanajuato, México. 10 3Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 11 Ciudad de México, México. 12 4Tecnológico Nacional de México, Instituto Tecnológico de Úrsulo Galván, Úrsulo Galván, 13 Veracruz, México. 14 5Laboratorio de Genética e Interacciones Planta Microorganismos, Facultad de Ciencias 15 Agrícolas, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán s/n, Zona 16 Universitaria, Xalapa, Veracruz, México. 17 Abstract 18 Background: 19 F. oxysporum as a species complex (FOSC) possesses the capacity to specialize into host- 20 specific pathogens known as formae speciales. This with the help of horizontal gene 21 transfer (HGT) between pathogenic and endophytic individuals of FOSC. From these 22 pathogenic forma specialis, F. -
Characterization of Pectin Lyases on Pectins and Methyl Oligogalacturonates
Characterization of pectin lyases on pectins and methyl oligogalacturonates A. G. J. Voragen NN08201,530 A. G. J. Voragen Characterization of pectin lyases on pectins and methyl oligogalacturonates Proefschrift ter verkrijging van de graad van doctor in de landbouwwetenschappen, op gezag van de rector magnificus, prof. dr. ir. H. A. Leniger, hoogleraar in de technologie, in het openbaar te verdedigen op woensdag 25 oktober 1972 te 16.00 uur in de aula van de Landbouwhogeschool te Wageningen fpudoel Centrefor AgriculturalPublishing andDocumentation Wageningen -1972 ISBN 9022 0040 90 This thesiswil l also be published as Agricultural Research Reports 780. © Centre for Agricultural Publishing and Documentation, Wageningen, 1972. No part of this bookma y bereproduce d and/or published in any form, byprint , photoprint, micro film or any other means without written permission from the publishers. •,'•-•_.-*.• Stellingen I Het aandeel van pectine lyasen in de werking van pectinasen in de groente- en fruit- technologiema gnie tonderscha tworden . Dit proefschrift, Hoofdstuk 5. II Het isonjuis t teveronderstelle n (zoalsNage ldoet) ,da t0-(a-D-galactopyranosyluron - zuur)-(l-»4)-D-galactopyranuronzuur ten gevolge van sterische effecten bij voorkeur opd eniet-reducerend euronzuurres tword tveresterd . C. W. Nagel, Carbohydrate Res. 18(1971) : 453-458. Dit proefschrift, Hoofdstuk 4. Ill Dedoo rNeuko mgegeve nclassificati eva npectin e splitsendeenzyme ndien tt eworde n herzien. H. Neukom, Schweiz. Landwirtsch. Forsch. 2 (1963): 112-121. IV Het probleem bij de bepaling van het sappercentage in vruchtendranken is niet de analysemethode maar de keuze van de populatie waaraan de standaardanalyse uitgevoerd wordt. Hieraan is door Koch &Hes s onvoldoende aandacht besteed. -
Novel Non-Phosphorylative Pathway of Pentose Metabolism from Bacteria
www.nature.com/scientificreports OPEN Novel non-phosphorylative pathway of pentose metabolism from bacteria Received: 22 March 2018 Seiya Watanabe1,2,3, Fumiyasu Fukumori4, Hisashi Nishiwaki1,2, Yasuhiro Sakurai5, Accepted: 30 September 2018 Kunihiko Tajima5 & Yasuo Watanabe1,2 Published: xx xx xxxx Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodorof pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identifed on the genome of Herbaspirillum huttiense IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, difered from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea. Te breakdown of D-glucose is central for energy and biosynthetic metabolism throughout all domains of life. Te most common glycolytic routes in bacteria are the Embden-Meyerhof-Parnas, the Entner-Doudorof (ED), and the oxidative pentose phosphate pathways. Te distinguishing diference between the two former glyco- lytic pathways lies in the nature of the 6-carbon metabolic intermediates that serve as substrates for aldol cleav- age. -
Crystal Structure Analysis of a Bacterial Lysozyme at Very High Resolution
The crystal structure of a bacterial lysozyme at atomic resolution Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Diplom-Chemikerin Astrid Rau geboren am 01.06.1974 in Saalfeld Gutachter: 1. Prof. Dr. R. Hilgenfeld 2. Prof. Dr. D. Klemm Tag der öffentlichen Verteidigung: 01.06.2005 TABLE OF CONTENTS 1. INTRODUCTION 1 1.1 Milestones in lysozyme research 1 1.2 Definition and classification of lysozymes 5 1.3 Catalytic mechanisms of lysozymes 7 1.4 Chalaropsis-type lysozymes 9 1.5 Cellosyl – a Ch-type lysozyme from Streptomyces coelicolor 12 1.7 Aim of the project 13 2. MATERIALS AND METHODS 14 2.1 Materials 14 2.1.1 Proteins 14 2.1.2 Carbohydrates 14 2.1.3 Chemicals 15 2.1.4 Crystallisation screens 15 2.1.5 Dialysing tools, assays, crystallisation materials and cryo-tools 15 2.1.6 Laboratory equipment and synchrotron facilities 16 2.2 Methods 17 2.2.1 Determination of protein purity 17 2.2.2 Determination of protein concentration 18 2.2.3 Dialysis 18 2.2.4 Sample concentration 18 2.2.5 Crystallisation 18 2.2.6 Heavy atom and polysaccharide soaks 19 2.2.7 Cryocooling 20 2.2.8 Data acquisition and processing 20 2.2.8.1 Native data collection on the monoclinic crystal form 21 2.2.8.2 Native data collection on the hexagonal crystal form 22 2.2.8.3 MAD data collection 22 2.2.8.4 Data collection on heavy-atom derivatised crystals 24 2.2.8.5 Collection and processing of atomic-resolution data 25 I 2.2.9 Phase determination 27 2.2.9.1 Molecular replacement 28 2.2.9.2 Multiple wavelength anomalous dispersion 29 2.2.9.3 Multiple isomorphous replacement with anomalous scattering 29 2.2.10 Model building and electron-density maps 31 2.2.11 Structure refinement 33 2.2.12 Validation of model quality 35 3.