The Electrochemical Oxidation of Crotonic Acid
Total Page:16
File Type:pdf, Size:1020Kb
Scholars' Mine Masters Theses Student Theses and Dissertations 1965 The electrochemical oxidation of crotonic acid John L. Cannaday Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemical Engineering Commons Department: Recommended Citation Cannaday, John L., "The electrochemical oxidation of crotonic acid" (1965). Masters Theses. 5707. https://scholarsmine.mst.edu/masters_theses/5707 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE ELECTRCCEEMICAL OXIDATION OF CROTCNIC ACID BY JOHN L • CANNADAY A THESIS submitted to the faculty of THE UNIVERSITY OF iiiSSOURI AT RCLLA in )artial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN CHE~li CAL ENGINEERING 1965 Aupr oved by ii ABSTRACT The purpose of this investigation ·,:as to ex::~lain the mechanism of the electrochemical oxidation of crotonic acid on platinized-olatinu.m anodes at 80°C. A current-potential study was conducted using the parameters of pH and crotonic acid concentration. Faradaic efficiency was determined by measurement of C02 production. Oxidation occurred both in acidic and basic solutions. The Faradaic efficiency was a;Jproximately 100 per cent. The results were internreted in terms of a mechanism having the following characteristics. (a) The first charge transfer is the rate deter mining step. (b) The rate is the sum of the rates for two parallel reactions. In strongly acidic solutions, water discharge is the rate determining sten. In basic solutions, hydroxyl ion discharge is the rate determining sten. (c) Oxidation occurs under Langmuir conditions. iii ACKNOv1LE00]:\1ENTS The author wishes to the.nk Dr. J. W. Johnson, Professor of Chemical Engineering, for his advice, guidance, and encouragement during the course of this investigation. The author is also grateful to the National Science Foundation for the financial assistance which he received. 1v TABLE OF CONTENTS Page ABSTRACT • • • • • • • • • • • • • • • • • • • • • • • ii ACKNOWLEOOMENT • • • • • • • • • • • • • • • • • • • • iii LIST OF FIGURES. • • • • • • • • • • • • • • • • • • • vi LIST OF TABLES • • • • • • • • • • • • • • • • • • • • vii I. I NTRODUCTION . • • • • • • • • • • • • • • • • • 1 II. LITERATURE REVIEW • • • • • • • • • • • • • • • 3 Formic Acid. • • • • • • • • • • • • • • • 4 Paraffins •• • • • • • • • • • • • • • • • 6 Olefins . • • • • • • • • • • • • • • • • • 6 Oxalic Acid. • • • • • • • • • • • • • • • 8 Acetylene •• • • • • • • • • • • • • • • • 9 III. EXPERIMENTAL •• • • • • • • • • • • • • • • • • 11 Materials. • • • • • • • • • • • • • • • • 11 Apparatus • • • • • • • • • • • • • • • • • 11 The Cell • • • • • • • • • • • • • • • • 11 The Electrodes • • • • • • • • • • • • • 13 Electronic Equipment • • • • • • • • • • 13 Carbon Dioxide Absorber ••••• • • • • 14 Method of Procedure •••••••• • • • • 14 Potentiostatic Experiments • • • • • • • 14 Galvanostatic Experiments •••• • • • • 17 Carbon Dioxide Determination • • • • • • 17 Anode Activation •••• ••••• • • • • 18 Data and Results ••••••••• • • • • 18 Concentration Effect • • • • • • • • • • 18 Temperature Effect • • • • • • • • • • • 25 Sample Calculations •••••••• • • • • 25 Anode Po ten ti a1 • • • • • • • • • • • • • 25 pH of Solution • • • • • • • • • • • • • 28 Faradaic Efficiencies •••••• • • • • 29 Reversible Potential • • • • • • • • • • 30 IV. DISCUSSION 34 Faradaic Efficiency for the Oxidation. • • 34 Exchange Current Densities •••••• • • 34 v Page Cur~ent-Potential Relationship • • • • • • 35 Eff~ct of Crotonic Acid Concentration. • • )6 Eff~ct of pH • • • • • • • • • • • • • • • 38 ~ctt~ation Energy. • • • • • • • • • • • • 38 ~e Re~ction Mechanism • • • • • • • • • • 40 v. RECo:M:MEN:OAT! ONS • • • • • • • • • • • • • • • • 50 Bast c Solution Studies • • • • • • • • • • 50 Chro~atograohic Analysis • • • • • • • • • 50 Data Treatment Using the Temkin Isotherm • 50 _BIBL! OC!UJ>IfY. • • • • • • • • • • • • • • • • • 51 • • • • • • • • • • • • • • • • • • • • • 53 j.J?l'E!~lJIX A. • • • • • • • • • • • • • • • • • • • • • 54 ~:PE;~biX B· • • • • • • • • • • • • • • • • • • • • • 55 • • • • • • • • • • • • • • • • • • • • 57 vi LIST OF TABLES Table Page I. Current-Potential Relationships for Crotonic Aci'd Oxidation in 1.0 N H2S 04 (pH = O.J) at sooc on Platinized Platinum Electrodes (crotonic acid concentrations of 1.0, 0.3 and 0.1 M) • • • • II. Current-Potential Relationships for Crotonic Acid Oxidation in 1.0 N H2so4 (pH = O.J) at sooc on Platinized Platinum Electrodes (crotonic acid concentrations of 0.03, 0.01 and 0.001 M) • • 61 III. Current-Potential Relationships for Crotonic Acid Oxidation in Solutions of H2S04-K2S04 mixtures (pH = 2.0) at 80°C on Platinized-Platinum Electrodes (crotonic acid concentrations of 1.0, 0.3 and 0 .1 M) • • • • • • • • • • • • • • • • • • 64 IV. Current-Potential Relationshins for Crotonic Acid Oxidation in Solutions of H2S04-K2S04 mixtures (pH = 2.0) at 80°C on Platinized-Platinum Electrodes (crotonic acid concentrations of 0.03, 0.01 and 0.001 M) ••••••••••• • • • 67 v. Current-Potential Relationships for Crotonic Acid Oxidation in Solutions of H2S04-K2S04 mixtures (pH = 4.0) at 80°C on Platinized-Platinum Electrodes (crotonic acid concentrations of 0.1, 0.03 and 0.01 M) •••••••••••• • • • 70 VI. Current-Potential Relationships for Crotonic Acid Oxidation in 1.0 N KOH at sooc on Platinized-Platinum Electrodes (crotonic acid concentrations of 0.1 and 0.01 M) ••••••••••••••••• • • 73 vii LIST OF FIGURES Fi gure Page 1. Sketch of the pyrex glass cell used in the oxidation of crot onic acid at 80° C •••• • • 12 2. Diagram of apparatus used for potentiostatic studies in the oxidation of crotonic acid at 80°C ••••••••••••••• • • 15 3. Diagram of a9uaratus used for galvanostatic studi es in the oxidation of crot onic acid at 80° C • • • • • • • • • • • • • • • • • • • 16 4. Tafel curves f or crotonic acid oxidation in 1.0 N H2 S04 (pH = 0.3) at 80°C (crotonic acid concentrations of 1.0 and 0.1 M) •• • • 19 Tafel curves for crotonic acid oxidation in 1.0 N H2S04 (pH = 0.3) at 80°C ~ (crotonic ao1d concentrations of O.J and 0.03 M) •• • • 20 6. Tafel curves f or crot onic acid oxidation in 1.0 N H2S04 (pH = 0.3) at 80°C (crot onic acid concentrations of 0.01 and 0.001 M). • • 21 7. Tafel curves for crotonic acid oxidation in mixtures of K2S04-H2S04(pH • 2.0) at 80°C (crotonic acid concentrations of 1.0, 0.1, and 0.01 M). • • • • • • • • • • • • • • 22 8. Tafel curves f or crot onic acid oxidation in mixtures of K2S04-H2S04 (pH a 2.0) at 80° C (crot onic acid concentrations of 0.3, 0.03, and 0 .001 M). • • • • • • • • • • • • • 23 9. Tafel curves for crot onic acid oxidation in mixture s of K2S04-H2S04 (pH= 4.0) at 80°C (crotonic acid concentrations of 0.1, 0.03, and 0.01 M) • • • • • • • • • • • • • • 24 10. Tafel curves f or crot onic acid oxidation in 1.0 N KOH at aooc •••••••••••• • • 26 viii Figure Page 11. Dependence of current on tem1)erature for 0.1 M crotonic acid in 1.0 N H2S04 ••• • • • 27 12. Dependence of current on total crotonic acid concentration at constant uotential (0.43 volts) and ')Hat 80°C • • • • • • • • • 37 13. Dependence of current on pH at constant potential (0.4J volts) and constant total crotonic acid concentration (0.1 M) at sooc ••••••••••• • • • • 39 14. Dependence of current on total crotonic acid concentration at constant potential (0.43 volts) and pH= 0.3 at aooc • • • • • • 46 15. Depencence of current on total crotonic acid concentration at constant potential (0.43 volts) and pH = 2.0 at 80°C • • • • • • 47 16. Dependence of current on total crotonic acid concentration at constant notential (0.43 volts) and pH = 4.0 at 80°C • • • • • • 48 1 I. INTRODUCTION Investigations into o uter space have created needs f or a reliabl e and efficient source of electrical power. The fuel cell met these and other desirable requirements, thus creating interest in its application. Prior to 1959 the fuel cell was a laboratory curiosity. Over the past decade, research into fuel cell tech nology has increased greatly. The application of fuel cells as a source of power for industry, the military, and the general public has many advantages. In addition to their efficiency and reliability, they are sources of energy with no obnoxious fumes. At the present time, f uels and catalysts used in fuel cells for aerospace applications are t oo costly and dif ficult to handle for general applications. For example, platinum is extensively used as an electrode material, and hydrogen and oxygen are u sed as fuels. From an economic standpoint, s imple hydrocarbons, being pl entiful and l ow in cost, have an advantage over other possible fuels. Liquid fuels or fuels in solution have the further advantage of being easily handled and of occupying relativel y small vol umes. Fuel cells for general applications must operate at moderate temperatures. When investigations were begun into the feasibility of using oxygenated-aliphatic and aliphatic hydrocarbons 2 as possible fuels, little was known about the kinetics of their reaction in solution at low temperatures. Each com pound has different reaction characteristics which depend, among other things, upon the fundamental groups present in the compound and the nature of the electrode. The