EJSM-Laplace Why Are Ganymede and Europa Habitable Worlds ?
Total Page:16
File Type:pdf, Size:1020Kb
Exploring icy satellites for their Astrobiological potential from an astronomical point of view Athena Coustenis LESIA, Paris-Meudon Observatory France Galileo Cassini-Huygens Quelques points de considération Aspects astrobiologiques: chimie organique, eau liquide (en surface ou à l’intérieur), sources d’énergie (activité interne), stabilité Les satellites de glace avec organiques : Titan, Encelade, Triton. avec une activité évidente : Encelade, Triton, Io, (Titan?) avec de l’eau liquide à l’intérieur (à confirmer): Europe, Ganymède, Encelade, Titan A l’exception de Titan, les satellites de glace avec des océans subsurfaciques possibles (Europe, Ganymède, Callisto) ou une activité cryovolcanique évidente (Encelade, Triton) résident à l’intérieur des magnétosphères des planètes géantes, mais les deux derniers ne sont pas dans la partie avec l’irradiation surfacique extrême et destructive pour les organiques. Quel est le potentiel astrobiologique de chacun de ces satellites? Exploring the Habitability of Icy Worlds: The Europa Jupiter System Mission (JUICE) The EJSM Science Study Team 2009 All rights reserved. EJSM Theme: The Emergence of Habitable Worlds Around Gas Giants • Goal 1: Determine if the Jupiter system harbors habitable worlds • Goal 2: Characterize Jupiter system processes – Ocean characteristics (for Europa and Ganymede and perhaps other satellites) – Satellite system – Ice shells and subsurface water – Jupiter atmosphere – Deep internal structure, and (for – Magnetodisk/magnetosphere Ganymede) intrinsic magnetic field – Jovian system Interactions – External environments – Jovian system origin – Global surface compositions – Surface features and future landing sites Emphasis on icy moon habitability and Jupiter system processes 5 JGO Science: Overview • Key JGO science phases – Ganymede: Detailed orbital study . Elliptical orbit first, then circular orbit – Jupiter system: In-depth exploration . From Jupiter orbit, synergistically with JEO – Callisto: In-depth study and mapping . Multiple flybys using a resonant orbit • Science Objectives: – Ganymede: Characterize Ganymede as a planetary object, including its potential habitability – Satellite System: Study the Jovian satellite system – Jupiter: Study the Jovian atmosphere – Magnetosphere: Study the Jovian magnetodisk / magnetosphere – Jupiter system: Study the interactions occurring in the Jovian system 6 Ganymede studies with JUICE Tidal deformation Geology and Topography • Presence and extent of a subsurface ocean • Ice shell and subsurface water • Deep internal structure, dynamo, magnetic field • Coupling among surface, exosphere, Deep Interior and Magnetic Field and magnetosphere • Surface composition and chemistry • Surface features, tectonic processes • Thermal evolution, geology, and the Magnetosphere and Laplace resonance Environment Structure and topography of Mars' Polar Cap Compositional Differences 7 1. Why is Ganymede an habitable world Theme 2: Habitability of the icy moons EJSM-Laplace Why are Ganymede and Europa habitable worlds ? Liquid water The habitable zone is not restricted to the Earth’s orbit… Stable environment Essential elements Energy Surface habitats Deep habitats Deep habitats Europa: Ocean • Ice • Chemistry • Geology Determine global surface compositions and chemistry, especially as related to habitability Composition is key to understanding ocean habitability 9 Europa: Ocean • Ice • Chemistry • Geology Global surface composition & chemistry: • Organic & inorganic chemistry • Relation to geologic processes • Radiation effects • Exogenic materials Composition is key to understanding Europa’s habitability 6/29/2011 10 Europa: Ocean • Ice • Chemistry • Geology Understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration mosaic by Orion 11 Europa: “Ingredients” for Life? e-, O+, S+, … • Water: – Warm salty H2O ocean. radiation-produced oxidants: O2, H2O2, CH2O • Essential elements: – Accretion of CO2? – Impactors. – But radiation destroys organics in upper ~10s cm of ice. • Chemical energy: – Radiation of H2O ⇒ oxidants. – Mantle contact: serpentinization and possible hydrothermal activity. • Relatively stable environment: hydrothermally produced reductants: H2S, H2, CH4, Fe – Large satellite retains heat. – But activity might not be steady-state. [after Stevenson, 2000] Europa: Ocean • Ice • Chemistry • Geology Ice shell & subsurface water: • Shallow water • Ice-ocean interface • Material exchange • Heat flow variations SHARAD, Mars north polar cap [Seu, Phillips, and the SHARAD team] Radar sounding can characterize the ice shell 6/29/2011 8 Liquid water Theme 2: Habitability of the icy moons LIQUID WATER EJSM-Laplace Galileo evidence of liquid layers Geologic activity Induced magnetic field Production of a ±3˚ tilt of internal dipole moment over a 10 hour period. marginally demonstrated but more data needed Credits: Kivelson Thermal modelling Science questions - Existence of the liquid layer - Spatial distribution - Relationship with geology/surface - Physical characteristics Credits: Bland Liquid water Theme 2: Habitability of the icy moons LIQUID WATER EJSM-Laplace Ganymede’s ocean: what EJSM-Laplace will do… Induced magnetic field at multiple frequencies Magnetometer Radio and Plasma Waves Tidal deformation of the surface Radio science laser altimetry MR and HR imaging Libration amplitudes Radio science laser altimetry Hydrostatic equilibrium Radio science laser altimetry Jupiter System ~2.5 y Elliptical Circular 500 Circular 200 15 moon flybys 40 days 80 days 60 days Liquid water Theme 2: Habitability of the icy moons ESSENTIAL ELEMENTS EJSM-Laplace Galileo evidences for an outstanding complexity Complex chemistry Complex dynamics Credits: Khurana Specific albedo distribution Brines and Alteration on open field lines hydrates are good candidates Water ice abundance – NIMS data Science questions • What are the non–water ice chemical compounds ? • What is the endogeneous and the exogeneous repartition of this surface material ? • What is the effect of radiation weathering on these materials ? • How can we correlate the surface compounds with the sub-surface composition ? Essential elements Theme 2: Habitability of the icy moons ESSENTIAL ELEMENTS EJSM-Laplace Surface composition of the moons: what EJSM-Laplace will do… What are the surface chemical compounds ? Exogeneous versus endogeneous ? Volatiles Near-IR imaging spectrometer Ion and Neutral mass spectrometry • Major volatiles UV imaging spectrometer Particles and plasma instrument • Stable isotopes C,H,O • Noble gases Ar, Kr, Xe • Mapping of oxygen species Ions and Neutrals • Identification • Surface 2D distribution How does the surface relate to the subsurface ? Subsurface radar sounding Spatial coverage Sub-mm wave sounding • > 80 % at a few km/pxl • X 100 m/pxl on a few % • X10 m/pxl if needed MARSIS: South Polar Deposits Spectral coverage • > 5 times better at regional scale • Lab data quality when needed Global scale Regional / Local scales Jupiter System ~2.5 y Elliptical Circular 500 Circular 200 15 moon flybys 40 days 80 days 60 days Energy-Galileo Theme 2: Habitability of the icy moons ENERGY EJSM-Laplace What are the energy sources? External sources Internal sources Impactors Particles Tidal Radiogenic Secular ? Science questions - What is the evolution of the impactor population in the Jovian system through time? - What is the amount of heat that is expelled through the surface of the moons? - How much tidal heating is distributed within the moons? Enceladus E-ring source Old Faithful by Starlight (Credit: Tyler Nordgren) Hidden Energy Sources ? Radiolytic Chemistry vs Solar & Tidal Heating ? Triton cryovolcanism (dark streaks) Energy Fluxes mW/m2 Mimas 2.5 Enceladus 0.73 Tethys 0.48 Dione 0.44 Rhea 0.29 Callisto 0.19 Ganymede 5.4 Europa 99 Triton ~ 5 Cooper et al., PSS, 2009 Energy - external sources Theme 2: Habitability of the icy moons ENERGY EJSM-Laplace How much energy remains from the early stages ? Impact cratering Surface heat flux Ganymede possesses the widest range in crater morphology Thermal IR mapper Low and High resolution imaging Subsurface radar sounding Vis-IR spectro imaging Sub-mm wave instrument Sub-surface radar sounding Credits: Schenk Distribution: Nearly global coverage at 200-400 m/px resolutions + HR target areas (5-50 m/px) Present activity: monitoring on a timescale x 100 days up to years to identify potentially newly formed craters Buto Facula Jupiter System ~2.5 y Elliptical Circular 500 Circular 200 15 moon flybys 40 days 80 days 60 days Energy - internal sources Theme 2: Habitability of the icy moons ENERGY EJSM-Laplace How much heat is available in the interior of the moons ? Intrinsic magnetic field Magnetometer Radio and Plasma Waves Constraints on the core size and dynamics Gravitational field Radio science Laser altimetry Equilibrium state Averaged density profiles Mass anomalies determination Tidal deformation Radio science Laser altimetry MR and HR imaging Equilibrium state Jupiter System ~2.5 y Elliptical Circular 500 Circular 200 15 moon flybys 40 days 80 days 60 days Stability - Galileo Theme 2: Habitability of the icy moons STABILITY EJSM-Laplace How stable are the present states? Geology as a witness of moon’s evolution Stability of the system Science questions -What do geologic features tell us about the past and present internal activity ? -How did the habitable zone evolve through time ? Stability - resonnance