A First Total Synthesis of (L)-Erythro-Ceramide C6 from Natural

Total Page:16

File Type:pdf, Size:1020Kb

A First Total Synthesis of (L)-Erythro-Ceramide C6 from Natural A First Total Synthesis of ( L)-erythro -Ceramide C6 from Natural ( L)-Serine Aurora Sganappa Dissertação para obtenção do grau de Mestre em Química Júri Presidente: Prof. Armando José Latourette de Oliveira Pombeiro Orientadores: Profª. Maria Matilde Soares Duarte Marques Prof. Enrico Marcantoni Vogal: Prof. Pedro Paulo de Lacerda e Oliveira Santos Outubro de 2012 SSSCHOOL OF SCIENCE AND TECHNOLOGY CHEMISTRY DIVISION Master Degree in Chemistry and Advanced Chemical Methodologies (Class LMLM----54)54)54)54) A First Total Synthesis of (L)-erythro -Ceramide C6 from Natural ( L)-Serine Experimental Thesis in Organic Chemistry CHIM/06 Candidate Supervisor Sganappa Aurora Prof. Enrico Marcantoni Co-Supervisors Prof. Matilde Marques Dott.ssa Roberta Properzi Academic Year 2011-2012 - 2 - Acknowledgments In these few lines I would like to thank all the people who contributed to this project. The first one is my Supervisor the Professor Enrico Marcantoni who gave me the opportunity to do my thesis in his research group, showing his confidence and availability. I would also to thank my Co-Supervisors Prof. Matilde Marques and Dr. Roberta Properzi for their help and unlimited patience. Another thank you is for the other Doctors and Researchers of the work group: Stefano Lancianesi, Matteo Di Nicola, Alessandro Palmieri and Serena Gabrielli. In the end I would like to thank my family and friends for their immense support. Thank to everyone. - 3 - RESUMO A Química de Síntese é a ciência que permite construir moléculas complexas a partir de outras mais simples. Uma das vertentes provavelmente mais interessantes desta área científica é a síntese total de moléculas de interesse biológico. Em química orgânica de síntese o termo “síntese total” corresponde ao planeamento, passo a passo, da síntese química de uma molécula a partir de materiais de partida relativamente simples e, desejavelmente, disponíveis comercialmente a baixo custo. Em anos recentes, a investigação tem vindo a ser dirigida para a síntese de moléculas pequenas, devido à sua capacidade de ligação com afinidade elevada a uma grande variedade de biopolímeros, incluindo proteínas, ácidos nucleicos ou polissacáridos, alterando a estrutura destes e, consequentemente, a sua função. As moléculas pequenas podem ter uma grande variedade de funções biológicas, sendo a sua versátil aplicabilidade devida à pequena dimensão e baixo peso molecular (< 2000 Da), que lhes permitem uma difusão rápida através das membranas celulares de modo a atingir alvos intracelulares. O grupo do professor Marcantoni tem explorado ambos os campos da síntese orgânica: a síntese total e o desenvolvimento de novas metodologias sintéticas. Está, na verdade, interessado na síntese total de moléculas pequenas com actividade biológica e de blocos moleculares de construção úteis na síntese de produtos naturais; foca-se também no desenvolvimento de novas metodologias envolvendo o uso do ácido de Lewis CeCl 3 como promotor da formação de ligações carbono-carbono. Dá ainda atenção ao uso mais eficiente dos materiais, tendo em conta que o desenvolvimento de fontes de energia limpas e renováveis representa uma contribuição essencial da comunidade química para um desenvolvimento verdadeiramente sustentável. Nesta dissertação estuda-se a adição de reagentes do tipo organocério a um (R)-aldeído de tipo Garner derivado da (L)-serina, com o objectivo de melhorar a estereosselectividade, minimizar as reacções laterais, e aumentar o rendimento do produto desejado. Esta metodologia tem aplicação na síntese de molécula pequenas importantes, como a (L)- eritro-ceramida, e representa um objectivo de grande relevância por permitir a síntese desta molécula usando um material de partida de baixo custo, e facilmente disponível no conjunto de compostos quirais comuns – o amino ácido natural (L)-serina. - 4 - PALAVRAS CHAVE Ácidos de Lewis, Aldeído de tipo Garner, Ceramida, Esfingolípidos, Esfingosina, Moléculas biologicamente activas, Moléculas pequenas, Síntese total. - 5 - ABSTRACT Synthetic chemistry is the science of constructing complex molecules from simpler one. Maybe and one of the most important development in this research area is the total synthesis of biologically interesting molecules. In synthetic organic chemistry, the term total synthesis refers to the step-by-step design of the chemical synthesis of a molecule from relatively simple and hopefully cheap commercially available starting materials. In recent years, research has been directed towards the synthesis of small molecules, because of their capacity of binding with high affinity to a large variety of biopolymers such as proteins, nucleic acids, or polysaccharides, altering their structure and, so, their function. Small molecules can have a variety of biological functions, and their varied applicability is due to their small size and low molecular weight (< 2000 Da), which allow them to rapidly diffuse across cell membranes reaching intracellular sites of action. The Marcantoni's research group has been interested in both fields of organic synthesis: the total synthesis and the development of new synthetic methodologies. In fact, it is interested on the total synthesis of small biologically active molecules, and of useful building blocks for the synthesis of natural products; it also focus on the development of new methodologies involving the use of the Lewis acid CeCl 3 as a promoter in carbon-carbon bond forming reactions. It is aware that the more efficient use of materials and the development of clean and renewable sources of energy represent an essential contribution from the chemical community to true sustainable development. In this thesis project the addition of organocerium reagents to an (R)-Garner-type aldehyde derived from (L)-serine will be studied, in order to improve the stereoselectivity, minimizing side reactions, and increasing the yield of the desired product. This work will find application in the synthesis of an important small molecule such as (L)-erythro - ceramide, and it represents an important goal for organic synthesis, since this molecule would be synthesized from a cheap starting material, easily found in the chirality pool, the natural amino acid (L)-serine. Ceramide, containing a 2-amino-1,3-diol moiety, is an important mammalian lipid which plays a critical role in several important biological and physiological processes, and its role is well established in the apoptosis process. In particular, it has been tested in vitro that the ceramide inhibiting ability for sphingosine kinase and it has emerged that the enzyme is specific for erythro isomers, while threo isomers behave as enzyme inhibitors. The results - 6 - are the confirmation that the erythro isomers have the right spatial conformation that allow them to behave as substrates for this enzyme. The project of thesis would be the first example of synthetic procedure for obtaining the L-erythro -ceramide from (L)-serine, offering an easier, stereoselective, and sustainable synthetic route to this important target small molecule, as an alternative to the unfavourable synthetic and chemoenzymatic routes reported in the literature. KEYWORDS Biologically active molecules, Ceramide, Garner type Aldehyde, Lewis acids, Small molecules, Sphingolipids, Sphingosine, Total Synthesis. - 7 - INDEX ACKNOWLEDGMENTS 3 RESUMO 4 PALAVRAS CHAVE 5 ABSTRACT 6 KEYWORDS 7 INDEX OF FIGURES 11 INDEX OF SCHEME 13 ABBREVIATION LIST 14 1. TOTAL SYNTHESIS AND SMALL MOLECULES 16 1.1 INTRODUCTION TO ORGANIC SYNTHESIS 16 1.2 A BRIEF HISTORY ON THE TOTAL SYNTHESIS 18 1.3 HOW TO DESIGN A TOTAL SYNTHESIS 23 1.4 SMALL MOLECULES 26 2. CHEMISTRY AND BIOLOGY OF SPHINGOLIPIDS 29 2.1 INTRODUCTION AND BIOLOGICAL IMPORTANCE OF SPHINGOLIPIDS 29 2.2 BIOSYNTHESIS OF SPHINGOLIPIDS 33 2.3 SPHINGOSINES: SYNTHESIS AND BIOLOGICAL ACTIVITY 35 2.3.1 Strategic Pathway for the Synthesis of Sphingosines 41 2.4 SPHINGOMYELINS: STRUCTURE AND THEIR BIOLOGICAL PROPERTIES 44 2.5 CERAMIDES: A KEY INTERMEDIATES IN THE SPHINGOLIPIDS METABOLISM 49 - 8 - 3. GARNER’S ALDEHYDE AND ORGANOCERIUM REAGENTS 61 3.1 GARNER’S ALDEHYDE AND GARNER-TYPE ALDEHYDE: SYNTHESIS AND REACTIVITY 61 3.2 THE ORGANOCERIUM REAGENTS 63 3.2.1 Cerium 63 3.2.2 Organocerium Compound 63 3.2.3 Addition of Organocerium to Carbonyl compound 64 3.2.4 Organocerium reagent: their importance in Organic Synthesis 67 4. TOTAL SYNTHESIS OF L-ERYTHRO-CERAMIDE C6 70 4.1 INTRODUCTION TO THE EXPERIMENTAL WORK 70 4.2 CERAMIDE C6 71 4.3 DESIGN OF TOTAL SYNTHESIS: INNOVATIVE STRATEGIES IN THIS SYNTHETIC PATHWAY 73 4.4 PART ONE: FORMATION OF GARNER-TYPE ALDEHYDE 76 4.5 PART TWO: SYNTHESIS OF SPHINGOSINE 80 4.6 PART THREE: SYNTHESIS OF C6 L-ERYTHRO-CERAMIDE 85 4.7 TOTAL SYNTHESIS OF L-ERYTHRO-CERAMIDE C6 87 4.8 CONCLUSION AND FUTURE PROJECT 88 5. EXPERIMENTAL SECTION 87 5.1 INSTRUMENTATION 87 5.2 SYNTHETIC PROCEDURES AND CHARACTERIZATION OF PRODUCTS 90 5.2.1 Protection of hydroxyl group 90 5.2.2 Reduction of the ester 92 5.2.3 Protection of amino and hydroxyl group with Cyclohexanone 93 5.2.4 Protection of amino group with Boc 95 5.2.5 Deprotection of the alcoholic group 96 5.2.6 Oxidation of the alcoholic group to aldehyde 97 5.2.7 Oxidation of tetradecanol 99 5.2.8 Takai olefination 100 5.2.9 Formation of organolithium 102 - 9 - 5.2.10 Addition of the organocerium to aldehyde 102 5.2.11 Acid hydrolysis for the deprotection of sphingosine 105 5.2.12 N-acylation of sphingosine 106 6. REFERENCES 108 - 10 - INDEX OF FIGURES Figure 1. Scheme of organic synthesis 17 Figure 2. Selected XIX century Landmark total synthesis of natural product 18 Figure 3. Selected syntheses by the Woodward group 19 Figure 4. Longifolene and its retrosynthetic analisis 20 Figure 5. Retrosynthetic analysis of taxol 21 Figure 6. The total synthesis of taxol 22 Figure 7. Scheme of S-Naproxene (anti-inflammatory agent) obtained by two different route: asymmetric and kinetic resolution 24 Figure 8. Scheme of ideal synthesis 25 Figure 9. Example of small molecules with biological activity 26 Figure 10. Structure of Colchicine and Chloropromazine 27 Figure 11.
Recommended publications
  • Synthesis of the Methyl Ester Of
    Master’s Thesis 2019 60 ECTS Faculty of Chemistry, Biotechnology and Food Science Synthesis of the Methyl Ester of MaR2n-3 DPA Jeanne Sønderskov Rasmussen Master’s degree in Chemistry and Biotechnology II Acknowledgements The master’s degree was performed as collaboration between the Faculty of Chemistry, Biotechnology and Food Science at the Norwegian University of Life Sciences and the Department of Pharmacy, University of Oslo. The practical work as part of this thesis was conducted in the LIPCHEM group at the Section of Pharmaceutical Chemistry. First, I would like to thank my two supervisors, Professor Trond Vidar Hansen and Professor Yngve Stenstrøm for excellent guidance, encouragement and especially, for sharing long-time experience. Also, thanks to Dr. Jørn Tungen and Associate professor Anders Vik for solid guidance and teaching, especially during the time in the laboratory. I would also like to thank the rest of the LIPCHEM group. It has been a great experience to be a part of a research group and witness the impressive work that is carried out. Also, I am very grateful for sharing this challenging period with the four master students in pharmaceutical chemistry, Amalie Føreid Reinertsen, Marie Hermansen Mørk, Aina Kristin Pham and Margrethe Kristiansen. It has been nice to get to know you and follow your progress as well. Finally, an enormous thank to my lovely boyfriend, family and friends. Thanks for fantastic support and cheering through my six years of education. Blindern, May 2019 Jeanne Sønderskov Rasmussen III Abstract This master thesis presents the first synthesis of the methyl ester of the specialized pro-resolving mediator named MaR2n-3 DPA.
    [Show full text]
  • Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester
    pubs.acs.org/joc Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester Pengfei Li,† Jun Li,‡,§ Fatih Arikan,‡, ) Wiebke Ahlbrecht,† Michael Dieckmann,† and Dirk Menche*,†,‡ †Institut fur€ Organische Chemie, Ruprecht-Karls-Universitat€ Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and ‡Helmholtz-Zentrum fur€ Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. §Present address: Institut fur€ Pharmazeutische Wissenschaften, ETH Zurich..€ Present) address: ABX GmbH, Radeberg. [email protected] Received February 5, 2010 A highly stereoselective joint total synthesis of the potent polyketide macrolide antibiotics etnangien and etnangien methyl ester was accomplished by a convergent strategy and proceeds in 23 steps (longest linear sequence). Notable synthetic features include a sequence of highly stereoselective substrate-controlled aldol reactions to set the characteristic assembly of methyl- and hydroxyl- bearing stereogenic centers of the propionate portions, an efficient diastereoselective Heck macro- cyclization of a deliberately conformationally biased precursor, and a late-stage introduction of the labile side chain by means of a high-yielding Stille coupling of protective-group-free precursors. Along the way, an improved, reliable protocol for a Z-selective Stork-Zhao-Wittig olefination of aldehydes was developed, and an effective protocol for a 1,3-syn reduction of sterically particularly hindered β-hydroxy ketones was devised. Within the synthetic campaign, a more detailed under- standing of the intrinsic isomerization pathways of these labile natural products was elaborated. The expedient and flexible strategy of the etnangiens should be amenable to designed analogues of these RNA-polymerase inhibitors, thus enabling further exploration of the promising biological potential of these macrolide antibiotics.
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • 4.2. FG Strategies. Part II.Pdf
    Master Course 2018-19 in Organic Chemistry methods and design in organic synthesis Pere Romea Rubik’s cube 4.2. Single & Double Bonds Non functional group R R disconnection Carbon-a Carbon-d R R ¿"? Alkyl%d Alkyl%a Li Potential precursors X Alkyl lithium Alkyl halide, X: Cl, Br, I MgBr RSO3 Alkyl magnesium halide Alkyl sulfonates M + Y M: Li, MgX M: halide, sulfonate The reaction is plagued by many side reactions due to high pKa of Alkyl-d (pKa 45–50) OH OMe O N O MeO H N O (–) Hennoxazole A ?antiviral Smith, T. E. JOC 2008, 73, 142 Polyfibrospongia OH OMe O N O MeO H N O ¿ FGA ? OPG OMe TBS O N O MeO H N O OPG OMe TBS O N O Li Br MeO H N O Oxazole alkylation studies O Ph N two potential reacting sites Oxazole alkylation studies Li Li O base O O –78 °C Ph N Ph N Ph N MeI MeI ratio 1:2 O Me Me O BuLi LDA LiNEt2 (14:86) (37:63) (99:1) Ph N Ph N 1 2 This reversal of regioselectivity is thought to arise from the ability of Et2NH to mediate the low-temperature equilibration of a kinetic mixture of otherwise noninterconverting lithiated intermediates However, such a situation was dramatically modified in a model close to the TGT structure TAKE-HOME MESSAGE: the model should be as similar as possible to the real system Oxazole alkylation studies single product Chelation could be the reason O Li O Li O MeO OMe MeO OMe MeO OMe N base N N H N N N –78 °C H H O O O three potential base: BuLi, LDA, LiNEt2 reacting sites These results suggest that deprotonation at the heterocycle is thermodynamically as well as kinetically favored SOLUTION: BLOCKING THAT
    [Show full text]
  • THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10) Patent No
    THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,850 , 268 B2 Hoveyda et al. ( 45 ) Date of Patent: Dec . 26 , 2017 ( 54 ) METATHESIS CATALYSTS AND METHODS 17/ 269 (2013 . 01 ) ; C07C 17 /275 ( 2013. 01 ) ; THEREOF C07C 17 / 278 ( 2013 . 01 ) ; C07C 17361 ( 2013 .01 ) ; C07C 37 /62 ( 2013 .01 ) ; C07C 41/ 30 (71 ) Applicants :Massachusetts Institute of ( 2013 . 01 ) ; C07C 45 /63 ( 2013 . 01 ) ; C07C Technology , Cambridge , MA (US ) ; 67 /307 ( 2013 .01 ) ; C07C 67 /333 (2013 .01 ) ; Trustees of Boston College, Chestnut C07D 209 / 10 ( 2013 . 01 ) ; C07D 209 /48 Hill , MA (US ) ( 2013 .01 ) ; C070 333 /54 ( 2013 . 01) ; COFF 5 / 025 ( 2013 .01 ) ; CO7F 7 / 1844 ( 2013 .01 ) ; (72 ) Inventors : Amir H . Hoveyda , Lincoln , MA (US ) ; CO7F 7 / 1852 ( 2013 .01 ) ; C07 ) 9 /00 ( 2013 .01 ) ; Hanmo Zhang , Chestnut Hill, MA C07 ) 51/ 00 ( 2013 .01 ) ; B01J 2231/ 543 (US ) ; Ming Joo Koh , Chestnut Hill , ( 2013 . 01 ) ; B01 ) 2531 / 64 ( 2013 .01 ) ; B01J MA (US ) ; Richard Royce Schrock , 2531/ 66 ( 2013. 01 ); C07C 2601/ 14 ( 2017 .05 ) ; Winchester , MA (US ) C07C 2603/ 26 ( 2017 .05 ) (58 ) Field of Classification Search (73 ) Assignees : Trustees of Boston College , Chestnut CPC .. C07C 17 / 275 ; C07C 45/ 63 ; C07C 37 /62 ; Hill , MA (US ) ; Massachusetts B01J 2231/ 543 ; B01J 2531 /64 ; B01J Institute of Technology , Cambridge, 2531/ 66 ; B01J 31/ 2265 MA (US ) USPC .. .. 548 /402 ; 514 / 408 , 184 ( * ) Notice: Subject to any disclaimer , the term of this See application file for complete search history . patent is extended or adjusted under 35 U . S . C .
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 0521770971 - Modern Methods of Organic Synthesis W. Carruthers and Iain Coldham Index More information Index acidity 1 from alkynes 125–32 acyl anion equivalents 56 from diols 123 acyloin reaction 425 from hydrazones 120 Adams’ catalyst 407 reaction of AD-mix ␣ 352 with carbenes 303–9 AD-mix ␤ 352 with dienes in Diels–Alder reaction 162 agelastatin A 376 with radicals 280–98 AIBN 268 reduction of 322, 408–13, 459 alane 437, 444 alkenyllithium species 57, 59 alcohols alkylation 1–19 deoxygenation 270 asymmetric 37 from alkenes 323, 349 with enamines 1, 17 from carbonyl compounds 416, 421, 423, 434–56 with enolates 1–16 oxidation 378–93 with metalloenamines 16 aldehydes alkyl halides alkylation of 17 oxidation to carbonyl compounds 384 as dienophiles in Diels–Alder reaction 169 reductive cleavage to hydrocarbons 269, 406, 442 decarbonylation of 419 alkyllithium species 46 from alcohols 380 alkynes from alkenes 325, 360, 364 conversion to alkenes 125–32, 414 oxidation of 392 deprotonation of 58 reduction of 435, 439, 443 hydrometallation 128 reductive dimerization of 148, 425 preparation of 137 Alder–ene reaction 231 reduction of 125 aldol reaction 27–36 allopumiliotoxin 58 diastereoselective 32 allosamidin disaccharides 272 enantioselective 41 allylic organometallics 71–4 aldosterone 276 allylic oxidation 374 alkenes allylic 1,3-strain 26, 73, 351 allylic oxidation of 374 ␲-allylpalladium complexes 98 conversion to alcohols 323 amabiline 220 conversion to ketones (Wacker reaction) 365 ambruticin S 308 epoxidation
    [Show full text]
  • A Acetophenones, 10 Horner–Emmons Olefination, 7 Acrylonitrile
    Index A Alkenylmetals, 38 Acetophenones, 10 Alkenylsilanes, 18 Horner–Emmons olefination, 7 Alkenylstannanes, 18 Acrylonitrile, Z-selective cross metathesis, 46 α-Alkoxycyclopentenone, 25 Acylgermanes, 18 (E)-β-Alkoxy divinyl ketones, 25 Acyl phosphonates, olefination, Co(TPP), 160 α-Alkoxyketones, 12 Acylsilanes, 18 Alkyl aryl ketones, 16 Acylstannanes, 18 Alkylidenephosphoranes, olefination, 208 Africanol, 187 Alkynes, conjugated dienes, 98 Aldehydes, 197 Z-alkenes, 40, 43 Fe(II)(TTP), olefination, 151 hydrofluorination, 60 Mo-based catalytic olefination, 149 hydrofunctionalizations, 134 MTO-catalyzed olefination, 149 hydrometalation, 43 olefination, 6 2-Alkynoate, conjugated dienes, 109 diazocarbonyl reagents, 161 Alkynoates, 108 oxygen-substituted phosphorus Alkynyl ketones, 16 ylides, 156 Allenamides, 126 Ph3As, 157 Allenoates, 108 Rh-catalyzed methylenation, 157 one-pot Wittig reaction, 213 Ru-catalyzed olefination, 157 Allylation, 54 Aldimines, olefination, 28 Allyl ethers, chiral, 258 Alkaloids, 171 N-Allylhydrazones, 107 Alkene cross metathesis, 178 Allylic alcohols, trisubstituted, 207 Alkene metathesis, catalytic Allylic carbonates, one-pot Wittig enantioselective, 187 reaction, 213 catalytic Z-selective, 189 Allylic gem-difluorides, 67 selective, 163 Allylic substitution, 54 selective relay, 174 Allylidenetriethylphosphoranes, 205 Alkenes, 197 Allylsulfides, multisubstituted, synthesis, 239 desulfurization, 16 tetrasubstituted, 1 Amino acid, (Z)-fluoroalkenyl moiety, 83 Z-Alkenes, stereoselective synthesis, 33 α-Aminoketones, 14 Alkenylboronic
    [Show full text]
  • Mathieson, Jennifer E. (2012) a Flexible One-Step Synthesis of Dienamides: Approaches Towards a Total Synthesis of the Crocacins
    Mathieson, Jennifer E. (2012) A flexible one-step synthesis of dienamides: approaches towards a total synthesis of the Crocacins. MSc(R) thesis http://theses.gla.ac.uk/3577/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] A Flexible One-Step Synthesis of Dienamides: Approaches Towards a Total Synthesis of the Crocacins Jennifer E. Mathieson (M. Sci) A thesis submitted in fulfilment of the requirements of the degree of Master of Science School of Chemistry College of Science & Engineering University of Glasgow June 2012 2 Abstract Dienamides are prevalent in many biologically active natural products and pharmaceutical drug leads. A number of different approaches have been reported for the synthesis of dienamides. These methods have varying degrees of success in terms of yield and selectivity. In particular, the control of double bond geometry presents a significant challenge. Presented, is an efficient one step synthesis of dienamide units starting from previously established N-formyl imide building blocks. This approach presents an attractive alternative to other methods available currently in terms of the number of steps, yield and overall simplicity.
    [Show full text]
  • Mr. Debabrata Bhattasali
    SYNTHETIC STUDIES TOWARD NEW α- GLUCOSIDASE INHIBITORS PENAROLIDE SULFATE A1, SCHULZEINES B AND C BY MR. DEBABRATA BHATTASALI DR. MUKUND K. GURJAR (RESEARCH GUIDE) DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA OCTOBER 2008 Synthetic Studies Toward New α-Glucosidase Inhibitors Penarolide Sulfate A1, Schulzeines B And C A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY) TO KALYANI UNIVERSITY BY Mr. DEBABRATA BHATTASALI Dr. Mukund K. Gurjar (Research Guide) DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA OCTOBER 2008 DEDICATED TO MY BELOVED PARENTS DECLARATION The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. M. K. Gurjar, Division of Organic Chemistry, National Chemical Laboratory, Pune- 411008. This work is original and has not been submitted part or full, for any degree or diploma of this or any other University. Pune-411008 (Debabrata Bhattasali) October 2008 Candidate CERTIFICATE The research work presented in thesis entitled “Synthetic Studies Toward New α- Glucosidase Inhibitors Penarolide Sulfate A1, Schulzeines B And C” has been carried out under my supervision and is a bonafide work of Mr. Debabrata Bhattasali. This work is original and has not been submitted for any other degree or diploma of this or any other University. Pune-411008 (Dr. M. K. Gurjar) October 2008 Research Guide ACKNOWLEDGEMENTS It gives me great pleasure to express my deep sense of esteem and gratitude to my research guide, Dr. Mukund. K. Gurjar, Division of Organic Chemistry, NCL, for his inspiring guidance, never diminishing encouragement, support and his complete dedication during the progress of my work.
    [Show full text]
  • Total Synthesis of Members of the Amphidinolide Family of Natural Products Filippo Romiti
    Romiti, Filippo (2015) Total synthesis of members of the amphidinolide family of natural products. PhD thesis. https://theses.gla.ac.uk/6445/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Total Synthesis of Members of the Amphidinolide Family of Natural Products Filippo Romiti Dottore Magistrale in Farmacia (cum laude) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemistry College of Science and Engineering University of Glasgow May 2015 Abstract The amphidinolides are macrolide natural products isolated from marine dinoflagellates of the genus Amphidinium and most of them display potent cytotoxic activities in vitro. Amphidinolides C-C3, F and T1-5 represent attractive synthetic targets due to a combination of potent bioactivity and complex molecular architecture. This thesis describes the total syntheses of amphidinolides T1, T3 and T4, and the preparation of the C1-C17 fragment of amphidinolides C and F. Concise and high-yielding total syntheses of amphidinolides T1, T3, and T4 have been completed using an alkynyl macrolactone as a common late-stage intermediate.
    [Show full text]
  • Florida State University Libraries
    Florida State University Libraries 2015 Process Improvement of Rac-Progesterone and Other Synthetic Studies Rimantas Slegeris Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PROCESS IMPROVEMENT OF RAC-PROGESTERONE AND OTHER SYNTHETIC STUDIES By RIMANTAS SLEGERIS A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2015 Rimantas Slegeris defended this dissertation on April 29, 2015. The members of the supervisory committee were: Gregory B. Dudley Professor Directing Dissertation John Telotte University Representative Tyler McQuade Committee member Sourav Saha Committee member Michael Shatruk Committee member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGEMENTS Any PhD is a long journey, which would not have been possible without the input from many different people. I would like to thank my high school teacher L. Marinskiene for introducing me to the field, and letting me explore chemistry during long afternoons at school in the chemistry prep room. I would also like to thank my professors at my undergraduate institution: notably, Dr. R. Raudonis and Dr. E. Butkus, who were very supportive during my early explorations of chemistry. Also, professor Dr. D. Tauraite from Vilnius University Institute of Biochemistry, who taught me the basics of organic lab work. The input of these people led to the fact that I started grad school here at FSU.
    [Show full text]
  • Callipeltosides A, B and C: Total Syntheses and Structural
    DOI:10.1002/chem.201501877 Full Paper & NaturalProducts |Very Important Paper| Callipeltosides A, Band C: Total Syntheses and Structural Confirmation James R.Frost,*[a] Colin M. Pearson,[a] Thomas N. Snaddon,[a, b] Richard A. Booth,[a] Richard M. Turner,[a] Johan Gold,[a] David M. Shaw,[a] MatthewJ.Gaunt,[a] and Steven V. Ley*[a] Abstract: Since their isolation almost20years ago, the calli- of these advanced fragments by meansofanalkenylzinc ad- peltosides have been of long standing interest to the syn- dition (d.r.= 91:9 at C9). The common callipeltoside aglycon thetic community owing to their unique structuralfeatures (4)was completed in afurtherfive steps. Following this, all and inherentbiological activity.Herein we presentour full three sugar fragments were appended to provide the entire research effort that has led to the synthesis of thesemole- callipeltoside family. In addition to this, d-configured callipel- cules. Key aspects of our final strategy include 1) synthesis tose Bwas synthesised and appended to the callipeltoside 1 of the C1–C9 pyran core (5)using an AuCl3-catalysed cyclisa- aglycon. The HNMR spectrum of this molecule was found tion;2)formationofC10–C22 vinyl iodide (55)bysequential to be significantly different to the natural isolate,further bidirectional Stille reactions and 3) diastereoselective union supporting our assignment of callipeltoside B(2). Introduction Natural product synthesis continues to provide an attractive platform for the discovery of new synthetic methods and fur- ther elaboration of novel synthesis pathways. In doing so, this effort importantly not only provides materialfor biological evaluation but also serves as atool enabling unambiguous confirmation of structure.
    [Show full text]