Detrital Thermochronologic Record of Burial Heating and Sediment Recycling in the Magallanes Foreland Basin, Patagonian Andes Julie C

Total Page:16

File Type:pdf, Size:1020Kb

Detrital Thermochronologic Record of Burial Heating and Sediment Recycling in the Magallanes Foreland Basin, Patagonian Andes Julie C EAGE Basin Research (2014) 1–27, doi: 10.1111/bre.12088 Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes Julie C. Fosdick,* Marty Grove,† Stephan A. Graham,† Jeremy K. Hourigan,‡ Oscar Lovera§ and Brian W. Romans¶ *Geological Sciences, Indiana University, Bloomington, IN, USA †Geological & Environmental Sciences, Stanford University, Stanford, CA, USA ‡Earth Sciences, University of California, Santa Cruz, CA, USA §Earth & Space Sciences, University of California, Los Angeles, CA, USA ¶Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ABSTRACT The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rap- idly cooled, first-cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sedi- ment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best-fit thermal his- tories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust-related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be respon- sible for the development of a basin-wide Palaeogene unconformity. Results from the Cenozoic Rıo Turbio and Santa Cruz formations confirm that they contain both Cenozoic first-cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation. INTRODUCTION provenance interpretations. Such factors are critical for assessing long-term sediment budgets, interactions Sedimentary basins chronicle the erosional history of between tectonics and sedimentation, nutrient flux from their sediment sources, offering invaluable information the continents into the deep sea and the distribution of about orogenic unroofing histories and inferred deforma- natural resources. tional events in diverse tectonic environments (e.g. Dick- Sediment recycling is expected in many tectonic set- inson & Suczek, 1979; Steidtmann & Schmitt, 1988). tings, such as foreland basins, where the path followed by Integration of complementary sedimentary provenance grains initially derived from erosion of a basement source methods including conglomerate and sandstone petrogra- region typically involves significant intermediate stages of phy, palaeocurrent measurements, geochemical analysis crustal evolution before the detritus is finally incorporated and detrital zircon geochronology can provide powerful into tectonically stable basin strata. Figure 1 illustrates fingerprinting of source regions (e.g. Suttner, 1974; Gra- how sediments eroded from the active thrust belt may be ham et al., 1986; Dickinson, 1988; Heller and Frost, tectonically buried beneath advancing thrusts and sedi- 1988; Degraaff-Surpless et al., 2002). In tectonically mentary overburden and later re-exhumed by thrusting complex environments such as thrust belts, however, to serve as the source terrane for younger sedimentary more information is often required to recognize sediment rocks in the basin (e.g. Schmitt & Steidtmann, 1990; Gra- recycling of lithologic units and older thrust belt ham et al., 1993). The shallow crustal histories experi- cannibalization that can lead to ambiguous sedimentary enced by eroded sediment are associated with important differences in thermal histories (Fig. 1) that go unde- Correspondence: Julie C. Fosdick, Department of Geological tected by traditional provenance methods, but are poten- Sciences, Indiana University, Bloomington, IN 47404, USA. E-mail: [email protected] tially recoverable by thermochronologic methods. © 2014 The Authors Basin Research © 2014 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists 1 Julie C. Fosdick et al. Unroofing of upper crustal levels of orogenic highlands Deposition TEMPERATURE 150°C Detrital zircon cooling paths Sediment derived from Sediment-source thermal history multiple sources 150°C 150°C Burial TIME 150°C Basin burial & heating Basin exhumation Uplift and exhumation Basin historythermal of basin strata Erosion and 150°C transport to younger depocenter Fig. 1. Schematic illustration of sediment source terranes and basinfill in a typical foreland basin setting showing the thermal evolu- tion of sediment during its detrital exhumation history (upper panels) and its subsequent basin thermal history (lower panels). The Patagonian Magallanes retroarc foreland basin of thrust belt throughout the latest Cretaceous and early southern South America (Fig. 2) provides an excellent Cenozoic, it is likely that foreland basin sediment – also geologic setting to explore complex sediment and source batholith-derived – of this age experienced protracted lat- thermal histories via combined zircon U–Pb and He age est Cretaceous – early Cenozoic burial. Continued thrust dating. Many stratigraphic and provenance studies have deformation ultimately exhumed and eroded these strata focused upon the Upper Cretaceous Patagonian Magall- and reworked the detritus into younger Cenozoic depos- anes basin strata (e.g. Katz, 1963; Macellari et al., 1989; its. In some cases, Cenozoic thrust burial of Upper Creta- Biddle et al., 1986; Wilson, 1991; Fildani et al., 2003; Fil- ceous strata occurred to depths sufficient to partially dani & Hessler, 2005; Romans et al., 2010; Bernhardt degas He from zircon (Fosdick et al., 2013). et al., 2011; McAtamney et al., 2011) that have demon- Thermochronology relies upon the balance of radio- strated sustained sedimentary connectivity between the genic ingrowth and thermally activated diffusive loss of southern Patagonian batholith (Herve et al., 2007b) and daughter products of radioactive decay in minerals and the age-equivalent thrust belt and marine foredeep in the thus provides a sensitive tool for constraining tempera- Patagonian Andes. Throughout the Late Cretaceous, sed- ture–time histories. Detrital thermochronology methods iment dispersal systems provided a remarkably continu- such as 40Ar/39Ar in muscovite and K-feldspar, and fis- ous supply of batholith-sourced zircon to the basin sion track and (U–Th)/He analysis of apatite and zircon (Fig. 2). Recent work on the Palaeogene nonmarine ba- have been widely exploited to elucidate the thermal histo- sinfill also records a prominent arc source during early ries of sedimentary basins and their respective source Cenozoic Patagonian foreland basin evolution at this lati- regions (Reiners & Brandon, 2006). Combined dating of tude (Otero et al., 2012; Schwartz et al., 2012). However, two or more chronologic systems with differing tempera- the detailed path taken by this batholith-derived detritus ture sensitivity in the same phase can significantly remains unclear. Because of the tectonic activity of the increase the ability to interpret detrital thermochronology © 2014 The Authors 2 Basin Research © 2014 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists Detrital thermochronology of the Magallanes basin Uplifted Cretaceous Magallanes Basin detrital zircon age distribution (n = 550) 48°S Pacific Ocean NPK3 K2 K1 J h c n e r Pz-Mz mb T e l i h 0 255075100125150175200 C U-Pb age (Ma) ICE N NIA O Relative probability distribution G TH RVB us TA LI o PA HO e 0 200 400 600 800 1000 1200 1400 1600 AT c B ta l e il U-Pb age (Ma) r -f C in s d a e b ft li s p e n U a ll a Atlantic Ocean g a M Figure 4 51°S PALEOGEOGRAPHY Drainage divide IC O S A Z E A’ Cretaceous sediment O N EN A dispersal direction C LL GA Oligocene-Miocene position of A-A’ A IN M S sediment dispersal schematic crustal A section Fig. 14 B LITHOTECTONIC UNITS RVB Cenozoic foreland basin-fill Patagonian thrust-belt Patagonian batholith Late Jurassic bimodal volcanics Paleozoic & Mesozoic metamorphic basement (Pz-Mz mb) BATHOLITH INTRUSIVE AGES Neogene (25-15 Ma) Paleogene (67-40 Ma) Late Cretaceous (126-70 Ma) Mid Cretaceous (136-127 Ma) 0 100 km Early Cretaceous (144-137 Ma) 70°W Jurassic plutons (157-145 Ma) Fig. 2. Tectonostratigraphic map of the southern Patagonian Andes showing the location of the study area (Fig. 4). Triangles show pluton ages of the Patagonian batholith, a major sediment source to the foreland basin (intrusive intervals defined by Herve et al., 2007b). Grey arrows indicate general sediment dispersal patterns for the Late Cretaceous basin (solid) and Oligo- cene–Miocene basin (dashed). Inset: compiled detrital U–Pb age distributions from the Patagonian Cretaceous Magallanes basin (compiled from Fildani et al., 2003; Romans et al., 2010; Bernhardt et al., 2011) in comparison to the batholith intrusive ages (shown by coloured panels). results. Consequently,
Recommended publications
  • A Revised Lithostratigraphy of the Sierra Baguales, Magallanes Basin
    A revised lithostratigraphy of the Sierra Baguales, Magallanes Basin Enrique Bostelmann 1, Jacobus P. Le Roux 2, Ana Vasquez 2, Nestor Gutiérrez 2, José Luis Oyarzún 3, Catalina Carreño 2, Teresa Torres 4, Rodrigo Otero 5, Andrea Llanos 4, C. Mark Fanning 6, Sven N. Nielsen 7, Francisco Hervé 2,8 1Museo Nacional de Historia Natural, CC. 399, 11.000. Montevideo, Uruguay 2Departamento de Geología, Universidad de Chile / Centro de Excelencia en Geotermia de los Andes, Casilla 13518, Santiago, Chile 3Parque Geológico y Paleontológico, La Cumbre-Baguales 4Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Correo 1004, Santiago, Chile 5Área Paleontología, Museo Nacional de Historia Natural. Casilla 787, Santiago, Chile 6Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, ACT 0200, Australia 7Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany 8Departamento de Geología, Universidad Andrés Bello, Santiago, Chile Abstract We present a new lithostratigraphic scheme zircons in the Loreto Formation have been dated at for the Sierra Baguales north of Torres del Paine based 36.48±0.47–36.73±0.5 Ma (Otero et al., 2012), on recent field work, which shows that the stratigraphy whereas zircons in the Río Baguales Formation have of the Lake Argentino region of Argentina is duplicated yielded an age of 40.48±0.37 Ma (Le Roux, 2012). here. The former Río Baguales Formation probably The Loreto Formation was named as early as 1931 by correlates with the Man Aike Formation of Argentina and also in part with the Loreto Formation of the Keidel and Hemmer, whereas its stratigraphic Brunswick Peninsula, so that the name Loreto is equivalents were named much later: the Río Baguales retained for this unit.
    [Show full text]
  • New Chondrichthyans from Bartonian-Priabonian Levels of Río De Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia
    Andean Geology 42 (2): 268-283. May, 2015 Andean Geology doi: 10.5027/andgeoV42n2-a06 www.andeangeology.cl PALEONTOLOGICAL NOTE New chondrichthyans from Bartonian-Priabonian levels of Río de Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia *Rodrigo A. Otero1, Sergio Soto-Acuña1, 2 1 Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile. [email protected] 2 Área de Paleontología, Museo Nacional de Historia Natural, Casilla 787, Santiago, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. Here we studied new fossil chondrichthyans from two localities, Río de Las Minas, and Sierra Dorotea, both in the Magallanes Region, southernmost Chile. In Río de Las Minas, the upper section of the Priabonian Loreto Formation have yielded material referable to the taxa Megascyliorhinus sp., Pristiophorus sp., Rhinoptera sp., and Callorhinchus sp. In Sierra Dorotea, middle-to-late Eocene levels of the Río Turbio Formation have provided teeth referable to the taxa Striatolamia macrota (Agassiz), Palaeohypotodus rutoti (Winkler), Squalus aff. weltoni Long, Carcharias sp., Paraorthacodus sp., Rhinoptera sp., and indeterminate Myliobatids. These new records show the presence of common chondrichtyan diversity along most of the Magallanes Basin. The new record of Paraorthacodus sp. and P. rutoti, support the extension of their respective biochrons in the Magallanes Basin and likely in the southeastern Pacific. Keywords: Cartilaginous fishes, Weddellian Province, Southernmost Chile. RESUMEN. Nuevos condrictios de niveles Bartoniano-priabonianos de Río de Las Minas y Sierra Dorotea, Cuenca de Magallanes, Patagonia Chilena. Se estudiaron nuevos condrictios fósiles provenientes de dos localidades, Río de Las Minas y Sierra Dorotea, ambas en la Región de Magallanes, sur de Chile.
    [Show full text]
  • 168 2Nd Issue 2015
    ISSN 0019–1043 Ice News Bulletin of the International Glaciological Society Number 168 2nd Issue 2015 Contents 2 From the Editor 25 Annals of Glaciology 56(70) 5 Recent work 25 Annals of Glaciology 57(71) 5 Chile 26 Annals of Glaciology 57(72) 5 National projects 27 Report from the New Zealand Branch 9 Northern Chile Annual Workshop, July 2015 11 Central Chile 29 Report from the Kathmandu Symposium, 13 Lake district (37–41° S) March 2015 14 Patagonia and Tierra del Fuego (41–56° S) 43 News 20 Antarctica International Glaciological Society seeks a 22 Abbreviations new Chief Editor and three new Associate 23 International Glaciological Society Chief Editors 23 Journal of Glaciology 45 Glaciological diary 25 Annals of Glaciology 56(69) 48 New members Cover picture: Khumbu Glacier, Nepal. Photograph by Morgan Gibson. EXCLUSION CLAUSE. While care is taken to provide accurate accounts and information in this Newsletter, neither the editor nor the International Glaciological Society undertakes any liability for omissions or errors. 1 From the Editor Dear IGS member It is now confirmed. The International Glacio­ be moving from using the EJ Press system to logical Society and Cambridge University a ScholarOne system (which is the one CUP Press (CUP) have joined in a partnership in uses). For a transition period, both online which CUP will take over the production and submission/review systems will run in parallel. publication of our two journals, the Journal Submissions will be two­tiered – of Glaciology and the Annals of Glaciology. ‘Papers’ and ‘Letters’. There will no longer This coincides with our journals becoming be a distinction made between ‘General’ fully Gold Open Access on 1 January 2016.
    [Show full text]
  • Importance of Predecessor Basin History on the Sedimentary Fill of A
    EAGE Basin Research (2010) 22, 640–658, doi: 10.1111/j.1365-2117.2009.00443.x Importance of predecessor basin history on the sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50^521S) B. W. Romans,n A. Fildani,w S. A. Graham,n S. M. Hubbardz and J. A. Covaultn nDepartment of Geological & Environmental Sciences, Stanford University, Stanford, CA, USA wChevron EnergyTechnology Company, Clastic Stratigraphy R&D, San Ramon, CA, USA zDepartment of Geoscience, University of Calgary,Calgary,AB, Canada ABSTRACT An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (501300^521S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single-grain detrital-zircon U-Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin- ¢lling succession (44000- m-thick). Prominent peaks in detrital-zircon age distribution among the Punta Barrosa, CerroToro, TresPasos andDoroteaFormations indicate thatthe incorporation and exhumation ofUpperJurassic igneous rocks (ca.147^155Ma) into the Andean fold-thrust belt was established in the Santonian (ca. 85 Ma) andwas a signi¢cant source of detritus to the basin by the Maastrichtian (ca.70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin ¢ll corroborating the interpretation of an unroo¢ng sequence. Detrital-zircon ages indicate that the Magallanes foredeep received young arc-derived detritus throughout its ca. 20 m.y.¢lling history,constraining the timing of basin- ¢lling phases previously based only on biostratigraphy.
    [Show full text]
  • Sedimentary Record of Andean Mountain Building
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321814349 Sedimentary record of Andean mountain building Article in Earth-Science Reviews · March 2018 DOI: 10.1016/j.earscirev.2017.11.025 CITATIONS READS 12 2,367 1 author: Brian K. Horton University of Texas at Austin 188 PUBLICATIONS 5,174 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Petroleum Tectonic of Fold and Thrust Belts View project Collisional tectonics View project All content following this page was uploaded by Brian K. Horton on 15 December 2018. The user has requested enhancement of the downloaded file. Earth-Science Reviews 178 (2018) 279–309 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Sedimentary record of Andean mountain building T Brian K. Horton Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, United States ARTICLE INFO ABSTRACT Keywords: Integration of regional stratigraphic relationships with data on sediment accumulation, provenance, Andes paleodrainage, and deformation timing enables a reconstruction of Mesozoic-Cenozoic subduction-related Fold-thrust belts mountain building along the western margin of South America. Sedimentary basins evolved in a wide range of Foreland basins structural settings on both flanks of the Andean magmatic arc, with strong signatures of retroarc crustal Orogeny shortening, flexure, and rapid accumulation in long-lived foreland and hinterland basins. Extensional basins also Sediment provenance formed during pre-Andean backarc extension and locally in selected forearc, arc, and retroarc zones during Late Stratigraphy Subduction Cretaceous-Cenozoic Andean orogenesis.
    [Show full text]
  • Burdigalian Deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, Depositional Environment and Vertebrate Fossils
    Andean Geology 40 (3): 458-489, September, 2013 Andean Geology doi: 10.5027/andgeoV40n3-a0410.5027/andgeoV40n3-a?? formerly Revista Geológica de Chile www.andeangeology.cl Burdigalian deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, depositional environment and vertebrate fossils J. Enrique Bostelmann1, 2, Jacobus P. Le Roux3, Ana Vásquez3, Néstor M. Gutiérrez3, José Luis Oyarzún4, Catalina Carreño3, Teresa Torres5, Rodrigo Otero2, Andrea Llanos5, C. Mark Fanning6, Francisco Hervé3, 7 1 Museo Nacional de Historia Natural, 25 de Mayo 582, Montevideo, Uruguay. [email protected] 2 Red Paleontológica U-Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Avda. Las Palmeras 3425, Ñuñoa, Santiago,Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Centro de Excelencia en Geotermia de los Andes, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 4 Callejón Pedro Méndez, Huerto N° 112, Puerto Natales, Chile. [email protected] 5 Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Avda. Santa Rosa N° 11315, La Pintana, Santiago, Chile. [email protected]; [email protected] 6 Research School of Earth Sciences, The Australian National University, Building 142 Mills Road, ACT 0200, Canberra, Australia. [email protected] 7 Escuela de Ciencias de la Tierra, Universidad Andrés Bello, Salvador Sanfuentes 2357, Santiago, Chile. ABSTRACT. A succession of marine and continental strata on the southern flank of Cerro Cono in the Sierra Baguales, northeast of Torres del Paine, can be correlated with stratigraphic units exposed along the southern border of the Lago Argentino region in Santa Cruz Province, Argentina.
    [Show full text]
  • Detrital Thermochronologic Record of Burial Heating and Sediment Recycling in the Magallanes Foreland Basin, Patagonian Andes Julie C
    EAGE Basin Research (2014) 1–27, doi: 10.1111/bre.12088 Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes Julie C. Fosdick,* Marty Grove,† Stephan A. Graham,† Jeremy K. Hourigan,‡ Oscar Lovera§ and Brian W. Romans¶ *Geological Sciences, Indiana University, Bloomington, IN, USA †Geological & Environmental Sciences, Stanford University, Stanford, CA, USA ‡Earth Sciences, University of California, Santa Cruz, CA, USA §Earth & Space Sciences, University of California, Los Angeles, CA, USA ¶Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ABSTRACT The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rap- idly cooled, first-cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sedi- ment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best-fit thermal his- tories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting.
    [Show full text]
  • Hoja Geológica 3766-IV General Acha Provincia De La Pampa
    Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000 Hoja Geológica 3766-IV General Acha Provincia de La Pampa Diego G. Silva Nieto, Patricia M. Espejo, Carlos J. Chernicoff y Eduardo O. Zappettini Supervisión: Mario Franchi Normas, dirección y supervisión del Instituto de Geología y Recursos Minerales SERVICIO GEOLÓGICO MINERO ARGENTINO INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES Boletín Nº 427 Buenos Aires - 2017 SERVICIO GEOLÓGICO MINERO ARGENTINO Presidente: Geól. Julio Ríos Gómez Secretario Ejecutivo: Lic. Carlos G. Cuburu INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES Director: Dr. Eduardo O. Zappettini DIRECCIÓN DE GEOLOGÍA REGIONAL Director: Lic. José E. Mendía REFERENCIA BIBLIOGRÁFICA Esta publicación debe citarse como: SILVA NIETO, D., P. M. ESPEJO, C. J. CHERNICOFF y E. O. ZAPPETTINI, 2017. Hoja Geológica 3766-IV, General Acha. Provincia de La Pampa. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 427, 52pp., Buenos Aires. ISSN 0328-2333 ES PROPIEDAD DEL INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES - SEGEMAR PROHIBIDA SU REPRODUCCIÓN Av. General Paz 5445 (Colectora provincia) 1650 - San Martín - Buenos Aires - República Argentina Edificios 14 y 25 | (11)5670-0100 www.segemar.gov.ar BUENOS AIRES - 2017 CONTENIDO RESUMEN ........................................................................................................ 1 ABSTRACT ........................................................................................................ 1 1.INTRODUCCIÓN .......................................................................................................
    [Show full text]
  • The Late Oligocene Flora from the Río Leona Formation, Argentinian
    ÔØ ÅÒÙ×Ö ÔØ The late Oligocene flora from the R´ıo Leona Formation, Argentinian Patagonia Silvia N. C´esari, Carolina Panti, Roberto R. Pujana, Jane E. Francis, Sergio A. Marenssi PII: S0034-6667(15)00020-2 DOI: doi: 10.1016/j.revpalbo.2015.01.002 Reference: PALBO 3596 To appear in: Review of Palaeobotany and Palynology Received date: 24 July 2014 Revised date: 9 January 2015 Accepted date: 12 January 2015 Please cite this article as: C´esari, Silvia N., Panti, Carolina, Pujana, Roberto R., Francis, Jane E., Marenssi, Sergio A., The late Oligocene flora from the R´ıo Leona Formation, Argentinian Patagonia, Review of Palaeobotany and Palynology (2015), doi: 10.1016/j.revpalbo.2015.01.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT The late Oligocene flora from the Río Leona Formation, Argentinian Patagonia Silvia N. Césari1*, Carolina Panti1, Roberto R. Pujana1, Jane E. Francis2, Sergio A. Marenssi3 1. Museo Argentino de Ciencias Naturales, “B. Rivadavia”, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina 2. British Antarctic Survey High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom 3. IGEBA, Departamento de Geología, Universidad de Buenos Aires (1428), Argentina *Corresponding author.
    [Show full text]
  • Factors Controlling Alpine Glaciations in the Sierra Baguales Mountain Range (50º - 51º S) As Inferred from Morphometric Analysis of Glacial Cirques
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Factors controlling alpine glaciations in the Sierra Baguales Mountain Range (50º - 51º S) as inferred from morphometric analysis of glacial cirques José Araos* **, Jacobus Le Roux* *** and Mike Kaplan**** * Departamento de Geología. Universidad de Chile. Plaza Ercilla 803, Santiago, Chile. ** Departamento de Geografía. Universidad Alberto Hurtado. Cienfuegos 41, Santiago, Chile. *** Andean Geothermal Centre of Excellence, Plaza Ercilla 803, Santiago, Chile. **** LDEO of Columbia University, Palisades, NY 10964. *Mail: [email protected] Abstract. We mapped the spatial and elevation 11.8 Ka. distribution of 143 cirques in southern Patagonia, between 50 º and 51º S, and analyzed their morphometry using The Sierra Baguales Mountain Range in the eastern simple and multivariate statistical methods. The cirque foothills of the Andes (Figure 1), located 50 km northeast basins are located east of the Southern Patagonian Ice of the Torres del Paine massif presents active alpine Field and around the Sierra Baguales Mountain Range, about 200 Km from the Pacific coast. The geomorphologic glaciers and geomorphological evidence that indicates the evidence indicates that alpine glaciations have been the existence of an former system of glacial cirques located in predominant style in the study area. the Westerly Winds area and topographically isolated from the SPI. The accumulation zone of these glacial cirques is The distribution and activity on glacial cirques are located above1000 m a.s.l and more than 200 km from the influenced by both tectonic factors (Andean uplift) and Pacific coast.
    [Show full text]
  • Evaluating the Role of Tectonics, Eustasy, and Climate On
    This manuscript is a preprint and has been submitted to Basin Research for peer review. Please note that, this manuscript has to be formally accepted for publication. Subsequent versions may have slight differences in content according to the peer review process. If accepted, the final version of this manuscript will be available via the ‘Peer-reviewed Publication DOI’ link on the right information panel of this website. We welcome feedback on the content of this manuscript. Please feel free to contact any of the authors. EVALUATING THE ROLE OF TECTONICS, EUSTASY, AND CLIMATE ON THE MAASTRICHTIAN-DANIAN TRANSGRESSION IN THE MAGALLANES- AUSTRAL BASIN (CHILEAN PATAGONIA) Huber A. Rivera1, 2, *, Jacobus P. Le Roux1, Marcelo Farías1, Néstor M. Gutiérrez1, Alejandro Sánchez3, Sylvia Palma-Heldt4, Lissett Celle1 1Departamento de Geología, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France 3Departamento de Ingeniería en Minas, Universidad de Santiago de Chile, Av. O'Higgins 3363, Estación Central, Santiago, Chile 4Departamento de Ciencias de la Tierra, Universidad de Concepción, Barrio Universitario S/N°, Concepción, Chile *Corresponding author: [email protected]; [email protected] Page 1 of 65 Basin Research 1 2 3 Evaluating the role of tectonics, eustasy, and climate on the Maastrichtian-Danian 4 5 6 transgression in the Magallanes-Austral Basin (Chilean Patagonia) 7 8 9 Huber A. Rivera1, 2, *, Jacobus P. Le Roux1, Marcelo Farías1, Néstor M. Gutiérrez1, 10 3 4 1 11 Alejandro Sánchez , Sylvia Palma-Heldt , Lissett Celle 12 13 1Departamento de Geología, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 14 15 2Univ.
    [Show full text]
  • Eocene Birds from the Western Margin of Southernmost South America Michel A
    Journal of Paleontology, 84(6), 2010, p. 1061–1070 Copyright ’ 2010, The Paleontological Society 0022-3360/10/0084-1061$03.00 EOCENE BIRDS FROM THE WESTERN MARGIN OF SOUTHERNMOST SOUTH AMERICA MICHEL A. SALLABERRY,1 ROBERTO E. YURY-YA´ N˜ EZ,1 RODRIGO A. OTERO,1,2 SERGIO SOTO-ACUN˜ A,1 AND TERESA TORRES G.3 1Laboratorio de Zoologı´a de Vertebrados, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, N˜ un˜oa, Santiago de Chile, ,[email protected]., ,[email protected]., ,[email protected].; 2Consejo de Monumentos Nacionales, A´ rea Patrimonio Natural, Vicun˜a Mackenna 084, Providencia, Santiago de Chile, ,[email protected].; and 3Facultad de Ciencias Agrono´micas, Universidad de Chile, Santa Rosa 11315, Santiago de Chile, ,[email protected]. ABSTRACT—This study presents the first record of Eocene birds from the western margin of southernmost South America. Three localities in Magallanes, southern Chile, have yielded a total of eleven bird remains, including Sphenisciformes (penguins) and one record tentatively assigned to cf. Ardeidae (egrets). Two different groups of penguins have been recognized from these localities. The first group is similar in size to the smallest taxa previously described from Seymour Island, Marambiornis Myrcha et al., 2002, Mesetaornis Myrcha et al., 2002, and Delphinornis Wiman, 1905. The second recognized group is similar in size to the biggest taxa from Seymour Island; based on the available remains, we recognize the genus Palaeeudyptes Huxley, 1859, one of the most widespread penguin genera in the Southern Hemisphere during the Eocene. The stratigraphic context of the localities indicates a certain level of correlation with the geological units described on Seymour Island.
    [Show full text]