Hoja Geológica 3766-IV General Acha Provincia De La Pampa

Total Page:16

File Type:pdf, Size:1020Kb

Hoja Geológica 3766-IV General Acha Provincia De La Pampa Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000 Hoja Geológica 3766-IV General Acha Provincia de La Pampa Diego G. Silva Nieto, Patricia M. Espejo, Carlos J. Chernicoff y Eduardo O. Zappettini Supervisión: Mario Franchi Normas, dirección y supervisión del Instituto de Geología y Recursos Minerales SERVICIO GEOLÓGICO MINERO ARGENTINO INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES Boletín Nº 427 Buenos Aires - 2017 SERVICIO GEOLÓGICO MINERO ARGENTINO Presidente: Geól. Julio Ríos Gómez Secretario Ejecutivo: Lic. Carlos G. Cuburu INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES Director: Dr. Eduardo O. Zappettini DIRECCIÓN DE GEOLOGÍA REGIONAL Director: Lic. José E. Mendía REFERENCIA BIBLIOGRÁFICA Esta publicación debe citarse como: SILVA NIETO, D., P. M. ESPEJO, C. J. CHERNICOFF y E. O. ZAPPETTINI, 2017. Hoja Geológica 3766-IV, General Acha. Provincia de La Pampa. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 427, 52pp., Buenos Aires. ISSN 0328-2333 ES PROPIEDAD DEL INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES - SEGEMAR PROHIBIDA SU REPRODUCCIÓN Av. General Paz 5445 (Colectora provincia) 1650 - San Martín - Buenos Aires - República Argentina Edificios 14 y 25 | (11)5670-0100 www.segemar.gov.ar BUENOS AIRES - 2017 CONTENIDO RESUMEN ........................................................................................................ 1 ABSTRACT ........................................................................................................ 1 1.INTRODUCCIÓN ........................................................................................................ 2 UBICACIÓN Y CARACTERÍSTICAS GEOGRÁFICAS .................................................................. 2 NATURALEZA DEL TRABAJO ........................................................................................................ 3 INVESTIGACIONES ANTERIORES.................................................................................................. 3 2.ESTRATIGRAFÍA ........................................................................................................ 4 RELACIONES GENERALES ............................................................................................ 4 BASAMENTO PREMESOZOICO EN LA PROVINCIA DE LA PAMPA ...................................... 6 2.1.NEOPROTEROZOICO-CÁMBRICO INFERIOR ............................................................ 6 2.1.1.EDIACÁRICO-CÁMBRICO INFERIOR ................................................................ 6 Esquistos Santa Helena (1) ........................................................................................... 6 Formación Las Piedras (2)............................................................................................ 8 2.2.PALEOZOICO ........................................................................................................ 8 2.2.1.CÁMBRICO INFERIOR ........................................................................................... 8 Complejo Ígneo El Carancho (3)................................................................................... 8 2.2.2.ORDOVÍCICO ........................................................................................................ 9 Formación Paso del Bote (4) ........................................................................................ 9 Formación Valle Daza (5) ............................................................................................. 10 2.2.3.ORDOVÍCICO SUPERIOR-DEVÓNICO ............................................................... 12 Formación La Horqueta (6) .......................................................................................... 12 2.2.4.DEVÓNICO ........................................................................................................ 13 Formación Curacó (7) ................................................................................................... 13 2.2.5.PÉRMICO ........................................................................................................ 14 Formación Arizona (8) .................................................................................................. 14 2.3.PALEOZOICO-MESOZOICO ............................................................................................ 15 2.3.1.PÉRMICO -TRIÁSICO ............................................................................................. 15 GRUPO LIHUÉ CALEL ............................................................................................. 15 Formación El Centinela (9) .................................................................................... 15 Formación Choique Mahuida (10) ......................................................................... 16 Formación Zúñiga (11) ........................................................................................... 17 2.4.MESOZOICO ........................................................................................................ 19 2.4.1.¿CRETÁCICO? ........................................................................................................ 19 Basaltos cretácicos (?) (12) .......................................................................................... 19 2.5.CENOZOICO ........................................................................................................ 21 2.5.1.NEÓGENO ........................................................................................................ 21 2.5.1.1.MIOCENO SUPERIOR .................................................................................. 21 Formación Cerro Azul (13) .................................................................................... 21 2.5.2.NEÓGENO-CUATERNARIO .................................................................................. 24 2.5.2.1.PLIOCENO INFERIOR - PLEISTOCENO ............................................ 24 Calcretes con cobertura eólica (14I, 14II)...................................................... 24 2.5.3.CUATERNARIO........................................................................................................ 29 2.5.3.1.PLEISTOCENO – HOLOCENO .................................................................... 29 Sedimentos fluviolacustres del río Chadileuvú (15)................................................ 29 Formación Meaucó (16) ........................................................................................ 30 Depósitos aluviales sobre superficies pedimentadas (17) ...................................... 32 2.5.3.2.HOLOCENO .................................................................................................... 32 Depósitos coluviales indiferenciados (18) .............................................................. 32 Depósitos aluviales (19) ......................................................................................... 32 Depósitos finos de bajos y lagunas (20) ................................................................. 32 3.ESTRUCTURA ........................................................................................................ 33 Estructura del basamento ........................................................................................................33 4.GEOMORFOLOGÍA ........................................................................................................ 36 Planicie estructural disectada ...................................................................................................... 36 Planicie arenosa eólica ........................................................................................................ 37 Serranías ........................................................................................................ 37 Valle del Chadileuvú ........................................................................................................ 38 5.HISTORIA GEOLÓGICA ........................................................................................................ 39 6.RECURSOS MINERALES ........................................................................................................ 40 6.1.DEPÓSITOS DE MINERALES METALÍFEROS ............................................................. 40 Níquel – Platino diseminado ................................................................................................. 40 6.2.DEPÓSITOS DE MINERALES INDUSTRIALES............................................................ 40 Cuarzo ........................................................................................................ 40 Sulfato de sodio ........................................................................................................ 40 6.3.DEPÓSITOS DE ROCAS DE APLICACIÓN ................................................................... 41 Andesitas ........................................................................................................ 41 Cantera Lihué Calel ...................................................................................................... 41 Pegmatitas ........................................................................................................ 42 Granito ........................................................................................................ 42 Tosca ........................................................................................................ 42 7.RECURSOS HÍDRICOS .......................................................................................................
Recommended publications
  • A Revised Lithostratigraphy of the Sierra Baguales, Magallanes Basin
    A revised lithostratigraphy of the Sierra Baguales, Magallanes Basin Enrique Bostelmann 1, Jacobus P. Le Roux 2, Ana Vasquez 2, Nestor Gutiérrez 2, José Luis Oyarzún 3, Catalina Carreño 2, Teresa Torres 4, Rodrigo Otero 5, Andrea Llanos 4, C. Mark Fanning 6, Sven N. Nielsen 7, Francisco Hervé 2,8 1Museo Nacional de Historia Natural, CC. 399, 11.000. Montevideo, Uruguay 2Departamento de Geología, Universidad de Chile / Centro de Excelencia en Geotermia de los Andes, Casilla 13518, Santiago, Chile 3Parque Geológico y Paleontológico, La Cumbre-Baguales 4Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Correo 1004, Santiago, Chile 5Área Paleontología, Museo Nacional de Historia Natural. Casilla 787, Santiago, Chile 6Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, ACT 0200, Australia 7Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany 8Departamento de Geología, Universidad Andrés Bello, Santiago, Chile Abstract We present a new lithostratigraphic scheme zircons in the Loreto Formation have been dated at for the Sierra Baguales north of Torres del Paine based 36.48±0.47–36.73±0.5 Ma (Otero et al., 2012), on recent field work, which shows that the stratigraphy whereas zircons in the Río Baguales Formation have of the Lake Argentino region of Argentina is duplicated yielded an age of 40.48±0.37 Ma (Le Roux, 2012). here. The former Río Baguales Formation probably The Loreto Formation was named as early as 1931 by correlates with the Man Aike Formation of Argentina and also in part with the Loreto Formation of the Keidel and Hemmer, whereas its stratigraphic Brunswick Peninsula, so that the name Loreto is equivalents were named much later: the Río Baguales retained for this unit.
    [Show full text]
  • New Chondrichthyans from Bartonian-Priabonian Levels of Río De Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia
    Andean Geology 42 (2): 268-283. May, 2015 Andean Geology doi: 10.5027/andgeoV42n2-a06 www.andeangeology.cl PALEONTOLOGICAL NOTE New chondrichthyans from Bartonian-Priabonian levels of Río de Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia *Rodrigo A. Otero1, Sergio Soto-Acuña1, 2 1 Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile. [email protected] 2 Área de Paleontología, Museo Nacional de Historia Natural, Casilla 787, Santiago, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. Here we studied new fossil chondrichthyans from two localities, Río de Las Minas, and Sierra Dorotea, both in the Magallanes Region, southernmost Chile. In Río de Las Minas, the upper section of the Priabonian Loreto Formation have yielded material referable to the taxa Megascyliorhinus sp., Pristiophorus sp., Rhinoptera sp., and Callorhinchus sp. In Sierra Dorotea, middle-to-late Eocene levels of the Río Turbio Formation have provided teeth referable to the taxa Striatolamia macrota (Agassiz), Palaeohypotodus rutoti (Winkler), Squalus aff. weltoni Long, Carcharias sp., Paraorthacodus sp., Rhinoptera sp., and indeterminate Myliobatids. These new records show the presence of common chondrichtyan diversity along most of the Magallanes Basin. The new record of Paraorthacodus sp. and P. rutoti, support the extension of their respective biochrons in the Magallanes Basin and likely in the southeastern Pacific. Keywords: Cartilaginous fishes, Weddellian Province, Southernmost Chile. RESUMEN. Nuevos condrictios de niveles Bartoniano-priabonianos de Río de Las Minas y Sierra Dorotea, Cuenca de Magallanes, Patagonia Chilena. Se estudiaron nuevos condrictios fósiles provenientes de dos localidades, Río de Las Minas y Sierra Dorotea, ambas en la Región de Magallanes, sur de Chile.
    [Show full text]
  • 168 2Nd Issue 2015
    ISSN 0019–1043 Ice News Bulletin of the International Glaciological Society Number 168 2nd Issue 2015 Contents 2 From the Editor 25 Annals of Glaciology 56(70) 5 Recent work 25 Annals of Glaciology 57(71) 5 Chile 26 Annals of Glaciology 57(72) 5 National projects 27 Report from the New Zealand Branch 9 Northern Chile Annual Workshop, July 2015 11 Central Chile 29 Report from the Kathmandu Symposium, 13 Lake district (37–41° S) March 2015 14 Patagonia and Tierra del Fuego (41–56° S) 43 News 20 Antarctica International Glaciological Society seeks a 22 Abbreviations new Chief Editor and three new Associate 23 International Glaciological Society Chief Editors 23 Journal of Glaciology 45 Glaciological diary 25 Annals of Glaciology 56(69) 48 New members Cover picture: Khumbu Glacier, Nepal. Photograph by Morgan Gibson. EXCLUSION CLAUSE. While care is taken to provide accurate accounts and information in this Newsletter, neither the editor nor the International Glaciological Society undertakes any liability for omissions or errors. 1 From the Editor Dear IGS member It is now confirmed. The International Glacio­ be moving from using the EJ Press system to logical Society and Cambridge University a ScholarOne system (which is the one CUP Press (CUP) have joined in a partnership in uses). For a transition period, both online which CUP will take over the production and submission/review systems will run in parallel. publication of our two journals, the Journal Submissions will be two­tiered – of Glaciology and the Annals of Glaciology. ‘Papers’ and ‘Letters’. There will no longer This coincides with our journals becoming be a distinction made between ‘General’ fully Gold Open Access on 1 January 2016.
    [Show full text]
  • Burdigalian Deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, Depositional Environment and Vertebrate Fossils
    Andean Geology 40 (3): 458-489, September, 2013 Andean Geology doi: 10.5027/andgeoV40n3-a0410.5027/andgeoV40n3-a?? formerly Revista Geológica de Chile www.andeangeology.cl Burdigalian deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, depositional environment and vertebrate fossils J. Enrique Bostelmann1, 2, Jacobus P. Le Roux3, Ana Vásquez3, Néstor M. Gutiérrez3, José Luis Oyarzún4, Catalina Carreño3, Teresa Torres5, Rodrigo Otero2, Andrea Llanos5, C. Mark Fanning6, Francisco Hervé3, 7 1 Museo Nacional de Historia Natural, 25 de Mayo 582, Montevideo, Uruguay. [email protected] 2 Red Paleontológica U-Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Avda. Las Palmeras 3425, Ñuñoa, Santiago,Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Centro de Excelencia en Geotermia de los Andes, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 4 Callejón Pedro Méndez, Huerto N° 112, Puerto Natales, Chile. [email protected] 5 Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Avda. Santa Rosa N° 11315, La Pintana, Santiago, Chile. [email protected]; [email protected] 6 Research School of Earth Sciences, The Australian National University, Building 142 Mills Road, ACT 0200, Canberra, Australia. [email protected] 7 Escuela de Ciencias de la Tierra, Universidad Andrés Bello, Salvador Sanfuentes 2357, Santiago, Chile. ABSTRACT. A succession of marine and continental strata on the southern flank of Cerro Cono in the Sierra Baguales, northeast of Torres del Paine, can be correlated with stratigraphic units exposed along the southern border of the Lago Argentino region in Santa Cruz Province, Argentina.
    [Show full text]
  • Detrital Thermochronologic Record of Burial Heating and Sediment Recycling in the Magallanes Foreland Basin, Patagonian Andes Julie C
    EAGE Basin Research (2014) 1–27, doi: 10.1111/bre.12088 Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes Julie C. Fosdick,* Marty Grove,† Stephan A. Graham,† Jeremy K. Hourigan,‡ Oscar Lovera§ and Brian W. Romans¶ *Geological Sciences, Indiana University, Bloomington, IN, USA †Geological & Environmental Sciences, Stanford University, Stanford, CA, USA ‡Earth Sciences, University of California, Santa Cruz, CA, USA §Earth & Space Sciences, University of California, Los Angeles, CA, USA ¶Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ABSTRACT The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rap- idly cooled, first-cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sedi- ment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best-fit thermal his- tories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting.
    [Show full text]
  • The Late Oligocene Flora from the Río Leona Formation, Argentinian
    ÔØ ÅÒÙ×Ö ÔØ The late Oligocene flora from the R´ıo Leona Formation, Argentinian Patagonia Silvia N. C´esari, Carolina Panti, Roberto R. Pujana, Jane E. Francis, Sergio A. Marenssi PII: S0034-6667(15)00020-2 DOI: doi: 10.1016/j.revpalbo.2015.01.002 Reference: PALBO 3596 To appear in: Review of Palaeobotany and Palynology Received date: 24 July 2014 Revised date: 9 January 2015 Accepted date: 12 January 2015 Please cite this article as: C´esari, Silvia N., Panti, Carolina, Pujana, Roberto R., Francis, Jane E., Marenssi, Sergio A., The late Oligocene flora from the R´ıo Leona Formation, Argentinian Patagonia, Review of Palaeobotany and Palynology (2015), doi: 10.1016/j.revpalbo.2015.01.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT The late Oligocene flora from the Río Leona Formation, Argentinian Patagonia Silvia N. Césari1*, Carolina Panti1, Roberto R. Pujana1, Jane E. Francis2, Sergio A. Marenssi3 1. Museo Argentino de Ciencias Naturales, “B. Rivadavia”, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina 2. British Antarctic Survey High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom 3. IGEBA, Departamento de Geología, Universidad de Buenos Aires (1428), Argentina *Corresponding author.
    [Show full text]
  • Factors Controlling Alpine Glaciations in the Sierra Baguales Mountain Range (50º - 51º S) As Inferred from Morphometric Analysis of Glacial Cirques
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Factors controlling alpine glaciations in the Sierra Baguales Mountain Range (50º - 51º S) as inferred from morphometric analysis of glacial cirques José Araos* **, Jacobus Le Roux* *** and Mike Kaplan**** * Departamento de Geología. Universidad de Chile. Plaza Ercilla 803, Santiago, Chile. ** Departamento de Geografía. Universidad Alberto Hurtado. Cienfuegos 41, Santiago, Chile. *** Andean Geothermal Centre of Excellence, Plaza Ercilla 803, Santiago, Chile. **** LDEO of Columbia University, Palisades, NY 10964. *Mail: [email protected] Abstract. We mapped the spatial and elevation 11.8 Ka. distribution of 143 cirques in southern Patagonia, between 50 º and 51º S, and analyzed their morphometry using The Sierra Baguales Mountain Range in the eastern simple and multivariate statistical methods. The cirque foothills of the Andes (Figure 1), located 50 km northeast basins are located east of the Southern Patagonian Ice of the Torres del Paine massif presents active alpine Field and around the Sierra Baguales Mountain Range, about 200 Km from the Pacific coast. The geomorphologic glaciers and geomorphological evidence that indicates the evidence indicates that alpine glaciations have been the existence of an former system of glacial cirques located in predominant style in the study area. the Westerly Winds area and topographically isolated from the SPI. The accumulation zone of these glacial cirques is The distribution and activity on glacial cirques are located above1000 m a.s.l and more than 200 km from the influenced by both tectonic factors (Andean uplift) and Pacific coast.
    [Show full text]
  • Evaluating the Role of Tectonics, Eustasy, and Climate On
    This manuscript is a preprint and has been submitted to Basin Research for peer review. Please note that, this manuscript has to be formally accepted for publication. Subsequent versions may have slight differences in content according to the peer review process. If accepted, the final version of this manuscript will be available via the ‘Peer-reviewed Publication DOI’ link on the right information panel of this website. We welcome feedback on the content of this manuscript. Please feel free to contact any of the authors. EVALUATING THE ROLE OF TECTONICS, EUSTASY, AND CLIMATE ON THE MAASTRICHTIAN-DANIAN TRANSGRESSION IN THE MAGALLANES- AUSTRAL BASIN (CHILEAN PATAGONIA) Huber A. Rivera1, 2, *, Jacobus P. Le Roux1, Marcelo Farías1, Néstor M. Gutiérrez1, Alejandro Sánchez3, Sylvia Palma-Heldt4, Lissett Celle1 1Departamento de Geología, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France 3Departamento de Ingeniería en Minas, Universidad de Santiago de Chile, Av. O'Higgins 3363, Estación Central, Santiago, Chile 4Departamento de Ciencias de la Tierra, Universidad de Concepción, Barrio Universitario S/N°, Concepción, Chile *Corresponding author: [email protected]; [email protected] Page 1 of 65 Basin Research 1 2 3 Evaluating the role of tectonics, eustasy, and climate on the Maastrichtian-Danian 4 5 6 transgression in the Magallanes-Austral Basin (Chilean Patagonia) 7 8 9 Huber A. Rivera1, 2, *, Jacobus P. Le Roux1, Marcelo Farías1, Néstor M. Gutiérrez1, 10 3 4 1 11 Alejandro Sánchez , Sylvia Palma-Heldt , Lissett Celle 12 13 1Departamento de Geología, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 14 15 2Univ.
    [Show full text]
  • Eocene Birds from the Western Margin of Southernmost South America Michel A
    Journal of Paleontology, 84(6), 2010, p. 1061–1070 Copyright ’ 2010, The Paleontological Society 0022-3360/10/0084-1061$03.00 EOCENE BIRDS FROM THE WESTERN MARGIN OF SOUTHERNMOST SOUTH AMERICA MICHEL A. SALLABERRY,1 ROBERTO E. YURY-YA´ N˜ EZ,1 RODRIGO A. OTERO,1,2 SERGIO SOTO-ACUN˜ A,1 AND TERESA TORRES G.3 1Laboratorio de Zoologı´a de Vertebrados, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, N˜ un˜oa, Santiago de Chile, ,[email protected]., ,[email protected]., ,[email protected].; 2Consejo de Monumentos Nacionales, A´ rea Patrimonio Natural, Vicun˜a Mackenna 084, Providencia, Santiago de Chile, ,[email protected].; and 3Facultad de Ciencias Agrono´micas, Universidad de Chile, Santa Rosa 11315, Santiago de Chile, ,[email protected]. ABSTRACT—This study presents the first record of Eocene birds from the western margin of southernmost South America. Three localities in Magallanes, southern Chile, have yielded a total of eleven bird remains, including Sphenisciformes (penguins) and one record tentatively assigned to cf. Ardeidae (egrets). Two different groups of penguins have been recognized from these localities. The first group is similar in size to the smallest taxa previously described from Seymour Island, Marambiornis Myrcha et al., 2002, Mesetaornis Myrcha et al., 2002, and Delphinornis Wiman, 1905. The second recognized group is similar in size to the biggest taxa from Seymour Island; based on the available remains, we recognize the genus Palaeeudyptes Huxley, 1859, one of the most widespread penguin genera in the Southern Hemisphere during the Eocene. The stratigraphic context of the localities indicates a certain level of correlation with the geological units described on Seymour Island.
    [Show full text]
  • Revised Timing of Cenozoic Atlantic Incursions and Changing
    This preprint has been submitted to Lithosphere for peer review. 1 Revised timing of Cenozoic Atlantic incursions and changing 2 hinterland sediment sources during southern Patagonian 3 orogenesis 4 Julie C. Fosdick1, R.A. VanderLeest1, J.E. Bostelmann T.2,3, J.S. Leonard4, R. Ugalde5, J.L. 5 Oyarzún6, and Miguel Griffin7 6 1Department of Geosciences, University of Connecticut, 354 Mansfield Road, U-1045, Storrs, CT 7 06269, USA 8 2Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Los 9 Laureles s/n, 5090000, Valdivia, Chile. 10 3Programa de Doctorado en Ciencias Mención Ecología y Evolución, Universidad Austral de 11 Chile, Los Laureles s/n, 5090000, Valdivia, Chile. 12 4School of Earth and Space Exploration, Arizona State University, AZ 85287 USA 13 5PEDECIBA Geociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 14 Montevideo, Uruguay 15 6Parque Geo-Paleontológico La Cumbre-Baguales, Ruta 9 km 284, Magallanes, Chile 16 7CONICET—División Paleozoología Invertebrados, Museo de La Plata. Paseo del Bosque s/n, 17 La Plata, Argentina 18 ABSTRACT 19 New detrital zircon U-Pb geochronology data from the Cenozoic Magallanes Basin in 20 Argentina and Chile ~51°S establish a revised chronostratigraphy of Paleocene – Miocene 21 foreland synorogenic strata and document the rise and subsequent isolation of hinterland sources 22 in the Patagonian Andes from the continental margin. The upsection loss of zircons derived from 23 the hinterland Paleozoic and Late Jurassic sources between ca. 60-44 Ma documents a major 24 shift in sediment routing due to Paleogene orogenesis in the greater Patagonian-Fuegian Andes.
    [Show full text]
  • American Journal of Science, Vol
    [American Journal of Science, Vol. 319, June, 2019,P.431-472, DOI 10.2475/06.2019.01] American Journal of Science JUNE 2019 GROWTH AND STEADY STATE OF THE PATAGONIAN ANDES DAVID AUERBACH COLWYN*†, MARK T. BRANDON*, MICHAEL T. HREN**, JEREMY HOURIGAN***, ASTRID PACINI*, MARTHA G. COSGROVE*, MAYA MIDZIK*, RENE´ D. GARREAUD§, and CHRISTINE METZGER§§ ABSTRACT. Water isotopes are an important tool for reconstructing the amount of atmospheric lifting related to high topography in the geologic past. However, our capacity for meaningful interpretation requires understanding the climatic setting and isolating the influence of orography on water isotopes. Patagonia’s simple, steady climatology and location within the Southern Westerlies makes it an ideal setting for successful application of water isotopes to measuring topography through time. Here we use hydrated volcanic glass to construct a new record of the size of the Patagonian Andes during the Cenozoic. We also utilize a novel method for identifying the contribution of orography in regional climate records. Our results show that variation in the observed record can largely be explained by variations in climate. Thus we conclude that the mountain range has maintained a size similar to modern since at least Paleocene. This result is in agreement with geologic data, which constrain the bulk of the surface uplift of the Andes to the Cretaceous. The reconstruction of the Patago- nian Andes, which grew in the Cretaceous and remained high through the Cenozoic, is markedly different from the widely held view of Miocene formation of this mountain range. In particular, the topography appears to remain stable during the northward propagation and collision of offshore spreading centers.
    [Show full text]
  • New Chondrichthyans from Bartonian-Priabonian Levels of Río De Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia
    Andean Geology 42 (2): 268-283. May, 2015 Andean Geology doi: 10.5027/andgeoV42n2-a06 www.andeangeology.cl PALEONTOLOGICAL NOTE New chondrichthyans from Bartonian-Priabonian levels of Río de Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia *Rodrigo A. Otero1, Sergio Soto-Acuña1, 2 1 Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile. [email protected] 2 Área de Paleontología, Museo Nacional de Historia Natural, Casilla 787, Santiago, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. Here we studied new fossil chondrichthyans from two localities, Río de Las Minas, and Sierra Dorotea, both in the Magallanes Region, southernmost Chile. In Río de Las Minas, the upper section of the Priabonian Loreto Formation have yielded material referable to the taxa Megascyliorhinus sp., Pristiophorus sp., Rhinoptera sp., and Callorhinchus sp. In Sierra Dorotea, middle-to-late Eocene levels of the Río Turbio Formation have provided teeth referable to the taxa Striatolamia macrota (Agassiz), Palaeohypotodus rutoti (Winkler), Squalus aff. weltoni Long, Carcharias sp., Paraorthacodus sp., Rhinoptera sp., and indeterminate Myliobatids. These new records show the presence of common chondrichtyan diversity along most of the Magallanes Basin. The new record of Paraorthacodus sp. and P. rutoti, support the extension of their respective biochrons in the Magallanes Basin and likely in the southeastern Pacific. Keywords: Cartilaginous fishes, Weddellian Province, Southernmost Chile. RESUMEN. Nuevos condrictios de niveles Bartoniano-priabonianos de Río de Las Minas y Sierra Dorotea, Cuenca de Magallanes, Patagonia Chilena. Se estudiaron nuevos condrictios fósiles provenientes de dos localidades, Río de Las Minas y Sierra Dorotea, ambas en la Región de Magallanes, sur de Chile.
    [Show full text]