Strong Algebrability of Sets of Sequences and Functions

Total Page:16

File Type:pdf, Size:1020Kb

Strong Algebrability of Sets of Sequences and Functions PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 3, March 2013, Pages 827–835 S 0002-9939(2012)11377-2 Article electronically published on July 20, 2012 STRONG ALGEBRABILITY OF SETS OF SEQUENCES AND FUNCTIONS ARTUR BARTOSZEWICZ AND SZYMON GLA¸B (Communicated by Thomas Schlumprecht) Abstract. We introduce a notion of strong algebrability of subsets of linear algebras. Our main results are the following. The set of all sequences from c0 which are not summable with any power is densely strongly c–algebrable. The set of all sequences in l∞ whose sets of limit points are homeomorphic to the Cantor set is comeager and strongly c-algebrable. The set of all non- measurable functions from RR is 2c–algebrable. These results complete several by other authors, within the modern context of lineability. 1. Introduction Assume that B is a linear algebra, that is, a linear space that is also an algebra. According to [4], a subset E ⊂ B is called algebrable whenever E ∪{0} contains an infinitely generated algebra. If κ is a cardinal, E is said to be κ–algebrable if E∪{0} contains an algebra generated by an algebraically independent set with cardinality κ. Hence algebrability equals ω-algebrability, where ω denotes the cardinality of the set N of positive integers. In addition to algebrability, there exist other related properties such as lineability, dense-lineability and spaceability; see [3], [8], [9] and [14]. In this note we will focus on algebrability. This notion was considered by many authors. For instance Aron, P´erez-Garc´ıa and Seoane-Sep´ulveda proved in [4] that the set of non-convergent Fourier series is algebrable. Aron and Seoane-Sep´ulveda established in [5] algebrability of everywhere surjective functions on C,whichwas strengthened in [2]. Other algebrability results can be found in [11] and [12]. Here we will discuss some strengthening of the notion of algebrability. For a cardinal κ,wesaythatA is a κ-generated free algebra if there exists a subset X = {xα : α<κ} of A such that any function f from X to some algebra A can be uniquely extended to a homomorphism from A into A.ThenX is called a set of free generators of the algebra A. A subset X = {xα : α<κ} of a commutative algebra B generates a free subalgebra A if and only if for each polynomial P and any xα1 ,xα2 , ..., xαn we have P (xα1 ,xα2 , ..., xαn ) = 0 if and only if P =0. This leads us to the following definition. We say that a subset E of a commutative linear algebra B is strongly κ–algebrable if there exists a κ-generated free algebra A contained in E ∪{0}. If additionally, B is equipped with some topological structure and A is dense in B,thenwesaythatE is densely strongly κ–algebrable. Received by the editors May 24, 2011 and, in revised form, July 19, 2011 and July 23, 2011. 2010 Mathematics Subject Classification. Primary 15A03; Secondary 28A20, 46J10. Key words and phrases. Algebrability, non-summable sequences, non-measurable functions, Banach-Mazur game, accumulation points, Cantor sets. c 2012 American Mathematical Society Reverts to public domain 28 years from publication 827 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 828 ARTUR BARTOSZEWICZ AND SZYMON GLA¸B Note that X = {xα : α<κ}⊂E is a set of free generators of a free algebra ⊂ ˜ k1 k2 ··· kn A E if and only if the set X of elements of the form xα1 xα2 xαn is linearly independent and all linear combinations of elements from X˜ are in E ∪{0}.(In particular, it follows that sets considered in [7] were strongly algebrable.) It is easy to see that free algebras have no divisors of zero. In general, there are subsets of linear algebras which are algebrable but not strongly algebrable. Let c00 be a subset of c0 consisting of all sequences with real terms equal to zero from some place. Having members x1, ..., xn of some linear algebra and a polynomial P ,anelementP (x1, ..., xn) will be called an algebraic combination of x1, ..., xn. Proposition 1. The set c00 is algebrable in c0 but is not strongly 1–algebrable. Proof. Note that c00 is a linear subalgebra of c0 which can be generated by a linearly independent set of cardinality ω,namely,by{e1,e2, ...},whereei is a sequence consisting of 1 on the i-th coordinate and zeros on the remaining coordinates. Note also that c00 cannot be generated by finitely many elements, since any linear (or algebraic) combination of finitely many elements from c00 eventually equals zero. Suppose that c00 is strongly 1–algebrable; i.e., there is a sequence a ∈ c00 which is algebraically independent. In particular, this means that the collection 2 3 {a, a ,a , ...} is linearly independent. Since a ∈ c00,thereisn ∈ N such that a(k)=0fork ≥ n.Moreoveram(k) = 0 for all k ≥ n and m ∈ N. Note that the linear space generated by a, a2,a3, ... is isomorphic to a linear subspace of Rn and 2 3 Rn the restriction vectors an,an,an, ... are linearly independent in , a contradic- tion. The aim of this note is to prove strong c–algebrability of some sets of sequences and functions, where c denotes cardinality of the continuum. These are: the set of all sequences tending to zero which are not summable with any power, the set of non-measurable functions, and the set of bounded real sequences whose set of accumulation points is of measure zero and can be decomposed into a finite set and a set homeomorphic to the Cantor set. This last set happens to be co-meager. ∞ 2. Algebrability in c0 and l To prove Theorem 2 we will use the idea from the paper [7]. Our theorem is p related to [10, Theorem 1.3], from which the spaceability of c0 \ {l : p ≥ 1} is extracted as a consequence. Recall that a subset E of a topological vector space X is called spaceable if E ∪{0} contains a closed infinite-dimensional subspace of X. p Theorem 2. The set c0 \ {l : p ≥ 1} is densely strongly c–algebrable in c0. Proof. Let {rα : α<c} be a linearly independent (with respect to the field Q) subset of positive reals containing 1. Let A be a linear algebra generated by the set ∞ 1 S = rα : α<c . ln (n +1) n=1 We will show that any non-trivial algebraic combination of elements from S is either a null sequence or it is not summable with any power. To prove this, we need to show that for every matrix (kil : i ≤ m, l ≤ j) of non-negative integers with non- zero and distinct rows and any β1, ..., βm ∈ R which do not vanish simultaneously, License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use STRONG ALGEBRABILITY OF SOME SETS 829 the series ∞ 1 1 (1) β1 + ... + βm k11rα1 +...+k1j rαj km1rα1 +...+kmj rαj n=1 ln (n +1) ln (n +1) is not summable with any power. Note that the sequence 1 (2) k r +...+k r ln 11 α1 1j αj (n +1) n∈N tends to zero; i.e. it is in c0. We need to prove that the series (1) is divergent. Since { } the set rα : α<c is linearly independent, the numbers k11rα1 + ... + k1j rαj ,..., km1rα1 + ... + kmjrαj are distinct. To simplify the notation, put ki := ki1rα1 + ... + kijrαj for every i =1, ..., m. We may assume that k1 <k2 < ... < km and β1 =0. k Since ln i (n+1) →∞(n →∞) for all i =2, ..., m, we obtain that there is an N lnk1 (n+1) such that | | 1 1 1 β1 (3) β1 + β2 + ... + βm ≥ lnk1 (n +1) lnk2 (n +1) lnkm (n +1) 2lnk1 (n +1) ∞ ≥ 1 ∈ p ≥ for all n N.Since lnq (n+1) / l for any p 1andq>0, the result follows. n=1 Now, we prove that A is dense in c0. Consider the subalgebra A1 of space c (of all ∞ 1 convergent sequences with the sup-norm), generated by two elements: ln(n+1) ∞ n=1 1 and1=(1, 1, 1, ...). Let A2 be a subalgebra of A generated by ln(n+1) .Note n=1 that A1 = {x +(a, a, a, ...):x ∈ A2,a ∈ R}. Equip the set of positive integers N with the discrete topology and let αN be a one-point compactification of N.Note that c is isometrically isomorphic to the space C(αN) of all continuous real functions ∞ N 1 on α with the sup-norm. Since ln(n+1) is a strictly decreasing sequence of n=1 positive numbers tending to zero, then it separates the points of αN. Therefore by the Stone–Weierstrass theorem, the algebra A1 is dense in c. Take any x ∈ c0 and ε>0. There is y ∈ A1 with ||x − y|| <ε/2. Note that | limn y(n)|≤ε/2. Puty ˆ =(y(1)−limn y(n),y(2)−limn y(n),y(3)−limn y(n), ...) ∈ c0.Then||x − yˆ|| <ε. Sincey ˆ ∈ A2 ⊂ A, we obtain that A2, and therefore A,is dense in c0. In the sequel we will need the following observation. Let S be a set defined in the proof of Theorem 2. Let S = {aα : α<c} and let (nk) be any increasing sequence of natural numbers. Then S := {(aα(nk))k∈N : α<c} is also a set of free generators in c0. This easily follows from (3). In [1] it was proved that the set E of all sequences from l∞ which are not convergent is c-lineable; i.e.
Recommended publications
  • Lectures on Fractal Geometry and Dynamics
    Lectures on fractal geometry and dynamics Michael Hochman∗ March 25, 2012 Contents 1 Introduction 2 2 Preliminaries 3 3 Dimension 3 3.1 A family of examples: Middle-α Cantor sets . 3 3.2 Minkowski dimension . 4 3.3 Hausdorff dimension . 9 4 Using measures to compute dimension 13 4.1 The mass distribution principle . 13 4.2 Billingsley's lemma . 15 4.3 Frostman's lemma . 18 4.4 Product sets . 22 5 Iterated function systems 24 5.1 The Hausdorff metric . 24 5.2 Iterated function systems . 26 5.3 Self-similar sets . 31 5.4 Self-affine sets . 36 6 Geometry of measures 39 6.1 The Besicovitch covering theorem . 39 6.2 Density and differentiation theorems . 45 6.3 Dimension of a measure at a point . 48 6.4 Upper and lower dimension of measures . 50 ∗Send comments to [email protected] 1 6.5 Hausdorff measures and their densities . 52 1 Introduction Fractal geometry and its sibling, geometric measure theory, are branches of analysis which study the structure of \irregular" sets and measures in metric spaces, primarily d R . The distinction between regular and irregular sets is not a precise one but informally, k regular sets might be understood as smooth sub-manifolds of R , or perhaps Lipschitz graphs, or countable unions of the above; whereas irregular sets include just about 1 everything else, from the middle- 3 Cantor set (still highly structured) to arbitrary d Cantor sets (irregular, but topologically the same) to truly arbitrary subsets of R . d For concreteness, let us compare smooth sub-manifolds and Cantor subsets of R .
    [Show full text]
  • Uniqueness for the Signature of a Path of Bounded Variation and the Reduced Path Group
    ANNALS OF MATHEMATICS Uniqueness for the signature of a path of bounded variation and the reduced path group By Ben Hambly and Terry Lyons SECOND SERIES, VOL. 171, NO. 1 January, 2010 anmaah Annals of Mathematics, 171 (2010), 109–167 Uniqueness for the signature of a path of bounded variation and the reduced path group By BEN HAMBLY and TERRY LYONS Abstract We introduce the notions of tree-like path and tree-like equivalence between paths and prove that the latter is an equivalence relation for paths of finite length. We show that the equivalence classes form a group with some similarity to a free group, and that in each class there is a unique path that is tree reduced. The set of these paths is the Reduced Path Group. It is a continuous analogue of the group of reduced words. The signature of the path is a power series whose coefficients are certain tensor valued definite iterated integrals of the path. We identify the paths with trivial signature as the tree-like paths, and prove that two paths are in tree-like equivalence if and only if they have the same signature. In this way, we extend Chen’s theorems on the uniqueness of the sequence of iterated integrals associated with a piecewise regular path to finite length paths and identify the appropriate ex- tended meaning for parametrisation in the general setting. It is suggestive to think of this result as a noncommutative analogue of the result that integrable functions on the circle are determined, up to Lebesgue null sets, by their Fourier coefficients.
    [Show full text]
  • Nilsequences, Null-Sequences, and Multiple Correlation Sequences
    Nilsequences, null-sequences, and multiple correlation sequences A. Leibman Department of Mathematics The Ohio State University Columbus, OH 43210, USA e-mail: [email protected] April 3, 2013 Abstract A (d-parameter) basic nilsequence is a sequence of the form ψ(n) = f(anx), n ∈ Zd, where x is a point of a compact nilmanifold X, a is a translation on X, and f ∈ C(X); a nilsequence is a uniform limit of basic nilsequences. If X = G/Γ be a compact nilmanifold, Y is a subnilmanifold of X, (g(n))n∈Zd is a polynomial sequence in G, and f ∈ C(X), we show that the sequence ϕ(n) = g(n)Y f is the sum of a basic nilsequence and a sequence that converges to zero in uniformR density (a null-sequence). We also show that an integral of a family of nilsequences is a nilsequence plus a null-sequence. We deduce that for any d invertible finite measure preserving system (W, B,µ,T ), polynomials p1,...,pk: Z −→ Z, p1(n) pk(n) d and sets A1,...,Ak ∈B, the sequence ϕ(n)= µ(T A1 ∩ ... ∩ T Ak), n ∈ Z , is the sum of a nilsequence and a null-sequence. 0. Introduction Throughout the whole paper we will deal with “multiparameter sequences”, – we fix d ∈ N and under “a sequence” will usually understand “a two-sided d-parameter sequence”, that is, a mapping with domain Zd. A (compact) r-step nilmanifold X is a factor space G/Γ, where G is an r-step nilpo- tent (not necessarily connected) Lie group and Γ is a discrete co-compact subgroup of G.
    [Show full text]
  • Sparse Sets Alexander Shen, Laurent Bienvenu, Andrei Romashchenko
    Sparse sets Alexander Shen, Laurent Bienvenu, Andrei Romashchenko To cite this version: Alexander Shen, Laurent Bienvenu, Andrei Romashchenko. Sparse sets. JAC 2008, Apr 2008, Uzès, France. pp.18-28. hal-00274010 HAL Id: hal-00274010 https://hal.archives-ouvertes.fr/hal-00274010 Submitted on 17 Apr 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journees´ Automates Cellulaires 2008 (Uzes),` pp. 18-28 SPARSE SETS LAURENT BIENVENU 1, ANDREI ROMASHCHENKO 2, AND ALEXANDER SHEN 1 1 LIF, Aix-Marseille Universit´e,CNRS, 39 rue Joliot Curie, 13013 Marseille, France E-mail address: [email protected] URL: http://www.lif.univ-mrs.fr/ 2 LIP, ENS Lyon, CNRS, 46 all´eed’Italie, 69007 Lyon, France E-mail address: [email protected] URL: http://www.ens-lyon.fr/ Abstract. For a given p > 0 we consider sequences that are random with respect to p-Bernoulli distribution and sequences that can be obtained from them by replacing ones by zeros. We call these sequences sparse and study their properties. They can be used in the robustness analysis for tilings or computations and in percolation theory.
    [Show full text]
  • Review of Set Theory and Probability Space
    Review of Set Theory and Probability Space i) Set A set is a collection of objects. These objects are called elements of the set. ii) Subset A subset b of a set a is a set whose elements are also elements of a . iii) Space “Space” S is the largest set and all other sets under consideration are subsets of S . iv) Null Set O is an empty or null set. O contains no elements. Set Operations A set b is a subset of a , b ⊂ a , or the set a contains b , a ⊃ b , if all elements of b are also elements of a . That is, If b ⊂ a , and c ⊂ b , then c ⊂ a . The following relationship holds: a c a ⊂ a , 0 ⊂ a , a ⊂ S b i) Equality S a = b iff a ⊂ b and b ⊂ a . Examples of subsets. ii)Union (Sum) The union of two sets a and b is a set consisting of all elements of a or of b or of both. The union operation satisfies the following properties: a ∪ b = b ∪ a , (Commutative), a ∪ b a ∪ a = a , a b a ∪ 0 = a , An example of union of sets a and b. ME529 1 G. Ahmadi a ∪ S = S , ()a ∪ b ∪ c = a ∪ (b ∪ c) = a ∪ b ∪ c , (Associative). iii) Intersection (Product) The intersection of two sets a and b is a set consisting of all elements that are common to the sets a and b . The intersection operation satisfies the following properties: a ∩ b = b ∩ a , (Commutative), a ∩ a = a , a a ∩ b b a ∩ 0 = 0 , An example of intersection of sets a and b.
    [Show full text]
  • On Possible Restrictions of the Null Ideal
    On possible restrictions of the null ideal Ashutosh Kumar,∗ Saharon Shelahy Abstract We prove that the null ideal restricted to a non-null set of reals could be isomorphic to a variety of sigma ideals. Using this, we show that the following are consistent: (1) There is a non-null subset of plane each of whose non-null subsets contains three collinear points. (2) There is a partition of a non-null set of reals into null sets, each of size @1, such that every transversal of this partition is null. 1 Introduction In [9], starting with a measurable cardinal, Shelah constructed a model in which the null ideal restricted to a non-null set of reals is @1-saturated. We would like to prove the following generalization of this. Theorem 1.1. Suppose κ is a cardinal of uncountable cofinality and I is a sigma ideal on κ that contains all bounded subsets of κ. Then there is a ccc forcing P such that in V P, the null ideal restricted to some non-null set is isomorphic to the ideal generated by I. An immediate corollary of Theorem 1.1 (see Lemma 5.1 below) is that the null ideal restricted to some non-null set of reals can be isomorphic to the non-stationary ideal on !1. This answers a question of Fremlin (Problem 9 in [2] and Problem DX in [3]). We also give the following applications. Theorem 1.2. The following is consistent: There is a non-null X ⊆ R2 such that for every Y ⊆ X if Y is non-null, then Y contains three collinear points.
    [Show full text]
  • Arxiv:1206.2041V1 [Math.MG]
    CONVERGENCE IN SHAPE OF STEINER SYMMETRIZATIONS GABRIELE BIANCHI, ALMUT BURCHARD, PAOLO GRONCHI, AND ALJOSAˇ VOLCIˇ Cˇ Abstract. There are sequences of directions such that, given any compact set K ⊂ Rn, the sequence of iterated Steiner symmetrals of K in these direc- tions converges to a ball. However examples show that Steiner symmetrization along a sequence of directions whose differences are square summable does not generally converge. (Note that this may happen even with sequences of direc- tions which are dense in Sn−1.) Here we show that such sequences converge in shape. The limit need not be an ellipsoid or even a convex set. We also deal with uniformly distributed sequences of directions, and with a recent result of Klain on Steiner symmetrization along sequences chosen from a finite set of directions. 1. Introduction Steiner symmetrization is often used to identify the ball as the solution to geo- metric optimization problems. Starting from any given body, one can find sequences of iterated Steiner symmetrals that converge to the centered ball of the same vol- ume as the initial body. If the objective functional improves along the sequence, the ball must be optimal. Most constructions of convergent sequences of Steiner symmetrizations rely on auxiliary geometric functionals that decrease monotonically along the sequence. For example, the perimeter and the moment of inertia of a convex body decrease strictly under Steiner symmetrization unless the body is already reflection symmetric [15, 6], but for general compact sets, there are additional equality cases. The (essential) perimeter of a compact set decreases strictly under Steiner symmetrization in most, but not necessarily all directions u Sn−1, unless the set is a ball [7].
    [Show full text]
  • Small Sets of Reals: Measure and Category
    Small Sets of Reals: Measure and Category Francis Adams August 31, 2016 Francis Adams Small Sets of Reals: Measure and Category Question What sets of reals can be considered small, and how do different notions of smallness compare? Francis Adams Small Sets of Reals: Measure and Category Countable Sets Countable sets must be considered small. The countable union of countable sets is countable. A subset of a countable set is countable. R isn't countable. Francis Adams Small Sets of Reals: Measure and Category What are some other interesting σ-ideals containing the countable sets? σ-ideals Definition A collection I of subsets of R is a σ-ideal if R 2= I , I is closed under taking subsets, and I is closed under taking countable unions. So the collection of countable sets is a σ-ideal on R. Francis Adams Small Sets of Reals: Measure and Category σ-ideals Definition A collection I of subsets of R is a σ-ideal if R 2= I , I is closed under taking subsets, and I is closed under taking countable unions. So the collection of countable sets is a σ-ideal on R. What are some other interesting σ-ideals containing the countable sets? Francis Adams Small Sets of Reals: Measure and Category The σ-algebra generated by the open sets is called the Borel σ-algebra. open and closed sets Gδ (countable intersection of open sets) and Fσ (countable union of closed sets) Gδσ (countable union of Gδ sets) and Fσδ (countable intersection of Fσ sets) Keep going to get a hierarchy of uncountable length.
    [Show full text]
  • Measure and Category
    Measure and Category Marianna Cs¨ornyei [email protected] http:/www.ucl.ac.uk/∼ucahmcs 1 / 96 A (very short) Introduction to Cardinals I The cardinality of a set A is equal to the cardinality of a set B, denoted |A| = |B|, if there exists a bijection from A to B. I A countable set A is an infinite set that has the same cardinality as the set of natural numbers N. That is, the elements of the set can be listed in a sequence A = {a1, a2, a3,... }. If an infinite set is not countable, we say it is uncountable. I The cardinality of the set of real numbers R is called continuum. 2 / 96 Examples of Countable Sets I The set of integers Z = {0, 1, −1, 2, −2, 3, −3,... } is countable. I The set of rationals Q is countable. For each positive integer k there are only a finite number of p rational numbers q in reduced form for which |p| + q = k. List those for which k = 1, then those for which k = 2, and so on: 0 1 −1 2 −2 1 −1 1 −1 = , , , , , , , , ,... Q 1 1 1 1 1 2 2 3 3 I Countable union of countable sets is countable. This follows from the fact that N can be decomposed as the union of countable many sequences: 1, 2, 4, 8, 16,... 3, 6, 12, 24,... 5, 10, 20, 40,... 7, 14, 28, 56,... 3 / 96 Cantor Theorem Theorem (Cantor) For any sequence of real numbers x1, x2, x3,..
    [Show full text]
  • Theory of Probability Measure Theory, Classical Probability and Stochastic Analysis Lecture Notes
    Theory of Probability Measure theory, classical probability and stochastic analysis Lecture Notes by Gordan Žitkovi´c Department of Mathematics, The University of Texas at Austin Contents Contents 1 I Theory of Probability I 4 1 Measurable spaces 5 1.1 Families of Sets . 5 1.2 Measurable mappings . 8 1.3 Products of measurable spaces . 10 1.4 Real-valued measurable functions . 13 1.5 Additional Problems . 17 2 Measures 19 2.1 Measure spaces . 19 2.2 Extensions of measures and the coin-toss space . 24 2.3 The Lebesgue measure . 28 2.4 Signed measures . 30 2.5 Additional Problems . 33 3 Lebesgue Integration 36 3.1 The construction of the integral . 36 3.2 First properties of the integral . 39 3.3 Null sets . 44 3.4 Additional Problems . 46 4 Lebesgue Spaces and Inequalities 50 4.1 Lebesgue spaces . 50 4.2 Inequalities . 53 4.3 Additional problems . 58 5 Theorems of Fubini-Tonelli and Radon-Nikodym 60 5.1 Products of measure spaces . 60 5.2 The Radon-Nikodym Theorem . 66 5.3 Additional Problems . 70 1 6 Basic Notions of Probability 72 6.1 Probability spaces . 72 6.2 Distributions of random variables, vectors and elements . 74 6.3 Independence . 77 6.4 Sums of independent random variables and convolution . 82 6.5 Do independent random variables exist? . 84 6.6 Additional Problems . 86 7 Weak Convergence and Characteristic Functions 89 7.1 Weak convergence . 89 7.2 Characteristic functions . 96 7.3 Tail behavior . 100 7.4 The continuity theorem . 102 7.5 Additional Problems .
    [Show full text]
  • Definition of Null Set in Math Terms
    Definition Of Null Set In Math Terms Summative and ultracentrifugal Edie thin some Mayan so riskily! Is Nikita erethistic or fibreless after planar Wendell twaddles so softly? Is Dana always dumbfounded and barefooted when pilgrimage some ambroid very pretendedly and feckly? Physics to our definition: definition and last five years from a null set definition of in math terms are functions in math words introduced to many elements in which the null set braces when we were surveyed and dim all subsets. We consider infinite sets are constantly evolving, or prime numbers is no elements of your say that is an object in terms of null set definition in math is. These shapes may street, will be explore the set. We add no elements in terms for null set definition, just the most cases, which means and enclosed within the point at. How to that recurs throughout the definition of null set in math. The definition allows for propositional formulas as in math can now, null set definition of in math terms: mech disc brakes vs dual pivot sidepull brakes vs dual pivot sidepull brakes? When writing them up to highlight the file copy the reader, of null set definition in math terms of as the pdf from indian institute of these operations are extremely useful as to learn. Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, such as the set of whole numbers, then the old definition would automatically become a characterisation as well. The first days of autumn. What null or is in terms of a definition of elements in at in order relations of education experts: mech disc brakes vs dual pivot sidepull brakes? Something other set! Which in math is null or section could be careful when you a definition does not implement a specific meanings depending upon the general fact lead us! The null set be calling you can a complicated set of education open the elements that is represented with example, of null set definition of view more.
    [Show full text]
  • PROBLEMS in PROBABILITY THEORY Problem 1. Let F Be a Σ
    PROBLEMS IN PROBABILITY THEORY MANJUNATH KRISHNAPUR Problem 1. Let F be a σ-algebra of subsets of Ω. T (1) Show that F is closed under countable intersections ( An), under set differences n (A n B), under symmetric differences (A∆B). (2) If An is a countable sequence of subsets of Ω, the set lim supn An (respectively lim infn An) is defined as the set of all ! 2 Ω that belongs to infinitely many (re- spectively, all but finitely many) of the sets An. If An 2 F for all n, show that lim sup An 2 F and lim inf An 2 F.[Hint: First express lim sup An and lim inf An in terms of Ans and basic set operations]. (3) If A1 ⊆ A2 ⊆ A3 ⊆ :::, what are lim sup An and lim inf An? Problem 2. Let (Ω; F) be a set with a σ-algebra. (1) Suppose P is a probability measure on F. If An 2 F and An increase to A (re- spectively, decrease to A), show that P(An) increases to (respectively, decreases to) P(A). (2) Suppose P : F! [0; 1] is a function such that (a) P(Ω) = 1, (b) P is finitely additive, (c) if An;A 2 F and Ans increase to A, then P(An) " P(A). Then, show that P is a probability measure on F. Problem 3. Suppose S is a π-system and is further closed under complements (A 2 S implies Ac 2 S). Show that S is an algebra. Problem 4. Let P be a p.m.
    [Show full text]