USP16-Mediated Deubiquitination of Calcineurin a Controls Peripheral T Cell Maintenance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Circulating Supar in Two Cohorts of Primary FSGS
CLINICAL RESEARCH www.jasn.org Circulating suPAR in Two Cohorts of Primary FSGS † ‡ Changli Wei,* Howard Trachtman, Jing Li,* Chuanhui Dong, Aaron L. Friedman,§ | | | Jennifer J. Gassman, June L. McMahan, Milena Radeva, Karsten M. Heil,¶ †† ‡‡ Agnes Trautmann,¶ Ali Anarat,** Sevinc Emre, Gian M. Ghiggeri, Fatih Ozaltin,§§ || ††† Dieter Haffner, Debbie S. Gipson,¶¶ Frederick Kaskel,*** Dagmar-Christiane Fischer, ‡‡‡ Franz Schaefer,¶ and Jochen Reiser, for the PodoNet and FSGS CT Study Consortia Departments of *Medicine and ‡Neurology, University of Miami Miller School of Medicine, Miami, Florida; †Department of Pediatrics, NYU Langone Medical Center, New York, New York; §Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; |Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio; ¶Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany; **Department of Pediatric Nephrology, Cukurova University School of Medicine, Adana, Turkey; ††Department of Pediatrics, Istanbul Medical Faculty, University of Istanbul, Istanbul, Turkey; ‡‡Division of Nephrology, Dialysis, and Transplantation, Laboratory on Pathophysiology of Uremia, G. Gaslini Children’s Hospital, Genoa, Italy; §§Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey; ||Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany; ¶¶Department of Pediatrics, University of Michigan, Ann Arbor, Michigan; ***Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York; †††Department of Pediatrics, Rostock University Hospital, Rostock, Germany; and ‡‡‡Department of Medicine, Rush University Medical Center, Chicago, Illinois ABSTRACT Overexpression of soluble urokinase receptor (suPAR) causes pathology in animal models similar to pri- mary FSGS, and one recent study demonstrated elevated levels of serum suPAR in patients with the disease. -
By Submitted in Partial Satisfaction of the Requirements for Degree of in In
Developments of Two Imaging based Technologies for Cell Biology Researches by Xiaowei Yan DISSERTATION Submitted in partial satisfaction of the requirements for degree of DOCTOR OF PHILOSOPHY in Biochemistry and Molecular Biology in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________Ronald Vale Chair ______________________________________________________________________________Jonathan Weissman ______________________________________________________________________________Orion Weiner ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2021 By Xiaowei Yan ii DEDICATION Everything happens for the best. To my family, who supported me with all their love. iii ACKNOWLEDGEMENTS The greatest joy of my PhD has been joining UCSF, working and learning with such a fantastic group of scientists. I am extremely grateful for all the support and mentorship I received and would like to thank: My mentor, Ron Vale, who is such a great and generous person. Thank you for showing me that science is so much fun and thank you for always giving me the freedom in pursuing my interest. I am grateful for all the guidance from you and thank you for always supporting me whenever I needed. You are a person full of wisdom, and I have been learning so much from you and your attitude to science, science community and even life will continue inspire me. Thank you for being my mentor and thank you for being such a great mentor. Everyone else in Vale lab, past and present, for making our lab a sweet home. I would like to give my special thank to Marvin (Marvin Tanenbaum) and Nico (Nico Stuurman), two other mentors for me in the lab. I would like to thank them for helping me adapt to our lab, for all the valuable advice and for all the happiness during the time that we work together. -
Regulation of Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase (PDE1): Review
95-105 5/6/06 13:44 Page 95 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 18: 95-105, 2006 95 Regulation of calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1): Review RAJENDRA K. SHARMA, SHANKAR B. DAS, ASHAKUMARY LAKSHMIKUTTYAMMA, PONNIAH SELVAKUMAR and ANURAAG SHRIVASTAV Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Cancer Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon SK S7N 4H4, Canada Received January 16, 2006; Accepted March 13, 2006 Abstract. The response of living cells to change in cell 6. Differential inhibition of PDE1 isozymes and its environment depends on the action of second messenger therapeutic applications molecules. The two second messenger molecules cAMP and 7. Role of proteolysis in regulating PDE1A2 Ca2+ regulate a large number of eukaryotic cellular events. 8. Role of PDE1A1 in ischemic-reperfused heart Calmodulin-stimulated cyclic nucleotide phosphodiesterase 9. Conclusion (PDE1) is one of the key enzymes involved in the complex interaction between cAMP and Ca2+ second messenger systems. Some PDE1 isozymes have similar kinetic and 1. Introduction immunological properties but are differentially regulated by Ca2+ and calmodulin. Accumulating evidence suggests that the A variety of cellular activities are regulated through mech- activity of PDE1 is selectively regulated by cross-talk between anisms controlling the level of cyclic nucleotides. These Ca2+ and cAMP signalling pathways. These isozymes are mechanisms include synthesis, degradation, efflux and seque- also further distinguished by various pharmacological agents. stration of cyclic adenosine 3':5'-monophosphate (cAMP) and We have demonstrated a potentially novel regulation of PDE1 cyclic guanosine 3':5'- monophosphate (cGMP) within the by calpain. -
USP16 Counteracts Mono-Ubiquitination of Rps27a And
RESEARCH ARTICLE USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit Christian Montellese1†, Jasmin van den Heuvel1,2, Caroline Ashiono1, Kerstin Do¨ rner1,2, Andre´ Melnik3‡, Stefanie Jonas1§, Ivo Zemp1, Paola Picotti3, Ludovic C Gillet1, Ulrike Kutay1* 1Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; 2Molecular Life Sciences Ph.D. Program, Zurich, Switzerland; 3Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Abstract Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein *For correspondence: RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in [email protected] incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis Present address: †CSL Behring, factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. CSL Biologics Research Center, Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential ‡ Bern, Switzerland; MSD Merck connection between 40S maturation and protein synthesis. Sharp & Dohme AG, Lucerne, Switzerland; §Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland Introduction Ribosomes stand at the center of translation in all kingdoms of life, catalyzing the synthesis of pro- Competing interests: The teins by reading a messenger RNA (mRNA) template. -
Role of Senataxin in RNA: DNA Hybrids Resolution at DNA Double
Role of senataxin in RNA : DNA hybrids resolution at DNA double strand breaks Sarah Cohen To cite this version: Sarah Cohen. Role of senataxin in RNA : DNA hybrids resolution at DNA double strand breaks. Cellular Biology. Université Paul Sabatier - Toulouse III, 2019. English. NNT : 2019TOU30125. tel-02930730 HAL Id: tel-02930730 https://tel.archives-ouvertes.fr/tel-02930730 Submitted on 4 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ����� ���� ������������������ ������������������������������������ ��������� ���!������"������ �� "��#�$�% ��� � ���� %��"���������"� ��� ��� � � � &������ ������������ ������� ����'������"�� � (����� �"�� ���"�� �������"�&)�����"����*���� (�+ "" ��"��� ��������"�����!��� ������������������,�,�$�,����-��.�� ���.�,����+&����-��" �������������,����/�������������� �������������������� �,�0�%�$�� ��� ���������,����-������� � �������0���+ � ����� ������'������� ������'������������ %����1�� ����� ����������������� /��������/�,�� ��� ���������� ������������������� ������������������������������ �� ����������������� -
The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2. -
PDE6) by the Glutamic Acid- Rich Protein-2 (GARP2)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2013 Regulation of the catalytic and allosteric properties of photoreceptor phosphodiesterase (PDE6) by the glutamic acid- rich protein-2 (GARP2) Wei Yao Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Yao, Wei, "Regulation of the catalytic and allosteric properties of photoreceptor phosphodiesterase (PDE6) by the glutamic acid-rich protein-2 (GARP2)" (2013). Doctoral Dissertations. 747. https://scholars.unh.edu/dissertation/747 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. REGULATION OF THE CATALYTIC AND ALLOSTERIC PROPERTIES OF PHOTORECEPTOR PHOSPHODIESTERASE (PDE6) BY THE GLUTAMIC ACID-RICH PROTEIN-2 (GARP2) BY WEI YAO B.S., Jinan University, 2007 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry September, 2013 UMI Number: 3575987 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss0?t&iori Piiblist’Mlg UMI 3575987 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. -
Supplementary Table 3: Calcineurin- and Aging-Sensitive Genes
Supplementary Table 3: Calcineurin- and Aging-Sensitive Genes Supplementary Table 3: Calcineurin up/ Aging up (pages 1 -2)- genes classified as Ad-aCaN up in the present study (see Supplementary Table 1), as well as reported as significantly increased in our prior aging study (Blalock et al., 2003, see supplementary tables 3, 4 and 5). Calcineurin Down/ Aging Down (page 2), Calcineurin Up/ Aging Down (pages 2-3),and Calcineurin Down/Aging Up (page 3)as above except for direction of change. - Columns: Probe Set- Affymetrix probe set identifier for RG-U34A microarray, Symbol and Title- annotated information for above probe set (annotation downloaded June, 2004), Calcineurin ANOVA- p-value for 1-way Analysis of Variance. Calcineurin Up/Aging Up Probe set Symbol Title CaN ANOVA rc_AI170268_at B2m beta-2 microglobulin 0.00000 rc_AI102299_s_at Bid3 BH3 interacting domain 3 0.00721 X52477_at C3 complement component 3 0.00000 X58294_at Ca2 carbonic anhydrase 2 0.00004 X76489cds_g_at Cd9 CD9 antigen 0.00000 L07736_at Cpt1a carnitine palmitoyltransferase 1, liver 0.00001 M55534mRNA_s_at Cryab crystallin, alpha B 0.00000 X60351cds_s_at Cryab crystallin, alpha B 0.00000 rc_AI234146_at Csrp1 cysteine and glycine-rich protein 1 0.00000 rc_AI176595_s_at Ctsl cathepsin L 0.00001 D00569_at Decr1 2,4-dienoyl CoA reductase 1, mitochondrial 0.00000 rc_AA924925_at Dri42 ER transmembrane protein Dri 42 0.00000 rc_AA848831_at Edg2 endothelial differentiation, lysophosphatidic acid GPCR, 2 0.00000 X14323cds_g_at Fcgrt Fc receptor, IgG, alpha chain transporter -
Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights Since 2016
International Journal of Molecular Sciences Review Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016 Susann Schröder 1,2,* , Matthias Scheunemann 2, Barbara Wenzel 2 and Peter Brust 2 1 Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany 2 Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; [email protected] (M.S.); [email protected] (B.W.); [email protected] (P.B.) * Correspondence: [email protected]; Tel.: +49-341-234-179-4631 Abstract: Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform- selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE Citation: Schröder, S.; Scheunemann, radioligands since 2016. M.; Wenzel, B.; Brust, P. Challenges on Cyclic Nucleotide Keywords: positron emission tomography; cyclic nucleotide phosphodiesterases; PDE inhibitors; Phosphodiesterases Imaging with PDE radioligands; radiochemistry; imaging; recent (pre-)clinical insights Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. -
Modulation of the Camp Levels with a Conserved Actinobacteria Phosphodiesterase 2 Enzyme Reduces Antimicrobial Tolerance in Mycobacteria
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.267864; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Modulation of the cAMP levels with a conserved actinobacteria phosphodiesterase 2 enzyme reduces antimicrobial tolerance in mycobacteria 3 4 Michael Thomson1, Kanokkan Nunta1, Ashleigh Cheyne1, Yi liu1, Acely Garza-Garcia2 and 5 Gerald Larrouy-Maumus1† 6 7 1MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, 8 Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK 9 2The Francis Crick Institute, London NW1 1AT, United Kingdom. 10 11 †Corresponding author: 12 13 Dr Gerald Larrouy-Maumus 14 MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty 15 of Natural Sciences, Imperial College London, London, SW7 2AZ, UK 16 Telephone: +44 (0) 2075 947463 17 E-mail: [email protected] 18 19 20 1 e ag P 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.267864; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 Antimicrobial tolerance (AMT) is the gateway to the development of antimicrobial resistance 23 (AMR) and is therefore a major issue that needs to be addressed. 24 The second messenger cyclic-AMP (cAMP), which is conserved across all taxa, is involved 25 in propagating signals from environmental stimuli and converting these into a response. -
Aberrant Gene Expression: Diagnostic Markers and Therapeutic Targets for Pancreatic Cancer
ABERRANT GENE EXPRESSION: DIAGNOSTIC MARKERS AND THERAPEUTIC TARGETS FOR PANCREATIC CANCER Jeran Kent Stratford A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2014 Approved by: Jen Jen Yeh Channing J. Der Gary L. Johnson Adrienne D. Cox Timothy C. Elston © 2014 Jeran Kent Stratford ALL RIGHTS RESERVED ii ABSTRACT Jeran Kent Stratford: Aberrant gene expression: diagnostic markers and therapeutic targets for pancreatic cancer (Under the direction of Jen Jen Yeh and Channing J. Der) Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer and the fourth leading cause of cancer-related death in the United States. The overall median survival for patients diagnosed with PDAC is five to eight months. The poor outcome is due, in part, to a lack of disease-specific symptoms that can be used for early detection, and as such, most patients present with locally advanced or metastatic disease at the time of diagnosis. Therefore, the need for diagnostic tools is both great and urgent. Furthermore, current chemotherapies have low response rates and high toxicity, limiting their use, and there are currently no effective targeted therapies for PDAC. Therefore, a greater understanding of the underlying biology of pancreatic cancer is needed to identify tumor-specific vulnerabilities that can be therapeutically exploited. Pancreatic cancer development is driven by genomic changes that alter gene expression. Aberrant gene expression produces changes in protein expression, which in turn may confer growth advantages to the tumor; often the tumor then develops a dependency on continued aberrant gene and protein expression. -
Kinase-Inactive ZAP-70 Thymocyte Development By
An Improved Retroviral Gene Transfer Technique Demonstrates Inhibition of CD4− CD8− Thymocyte Development by Kinase-Inactive ZAP-70 This information is current as of September 23, 2021. Takehiko Sugawara, Vincenzo Di Bartolo, Tadaaki Miyazaki, Hiromitsu Nakauchi, Oreste Acuto and Yousuke Takahama J Immunol 1998; 161:2888-2894; ; http://www.jimmunol.org/content/161/6/2888 Downloaded from References This article cites 49 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/161/6/2888.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. An Improved Retroviral Gene Transfer Technique Demonstrates Inhibition of CD42CD82 Thymocyte Development by Kinase-Inactive ZAP-701 Takehiko Sugawara,* Vincenzo Di Bartolo,§ Tadaaki Miyazaki,‡ Hiromitsu Nakauchi,* Oreste Acuto,§ and Yousuke Takahama2*† ZAP-70 is a Syk family tyrosine kinase that plays an essential role in initiating TCR signals.