Southwest Australian Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Southwest Australian Vegetation Plant Formations in the Southwest Australian BioProvince Peter Martin Rhind Southwest Australian Jarrah Forest Unlike most of the World’s hardwood forests this type of forest is almost exclusively dominated by a single species the Jarrah (Eucalyptus marginata), which can form almost pure stands in certain areas especially where laterite soils predominate. The only other commonly associated trees are Eucalyptus calophylla (marri), E. patens (blacknut) and E. wandoo (wandoo). Commonly associated under storey species include the strange Casuarine fraserana and various banksias (Proteaceae) such as Banksia grandis, B. menziesii and B. attenuata. However, in addition there are various arborescent monocots such as the endemic Dasypogon hookeri, Kingia australis and Xanthorrhoea gracilis (Xanthorrhoeaceae). The most common liana is the endemic Kennedia coccinea (Fabaceae) and, in fact, both lianas and creepers are common features of these forests. The shrub layer, unlike the canopy, is also rich in species with many endemics. The most common of these is Stirlingia latifolia (Proteaceae), while other species include Acacia alata, Adenanthos barbigerus, Conospermum glumaceum, Dryandra praemorsa, Grevillea willsoni, Hakea lissocarpha, Isopogon sphaerocephalus (Proteaceae), Andersonia axilliflora, Astroloma ciliatum (Epacridaceae), Anigozanthos preissii (Haemodoraceae), Chorizema dicksonii, Daviesia cordata, Gastrolobium villosum (Fabaceae), Darwinia carnea, Hypocalymma robustum (Myrtaceae), Hemiandra linearis (Lamiaceae), Hibbertia hypericoides (Dilleniaceae), Lechenaultia biloba, Scaevola platyphylla (Goodenaceae), and Primelea rosea (Thymeleaceae). The ground layer is also richly endowed with endemics including various orchids such as Caladenia gemmata, Caladenia macrostylis, Caladenia sericea, Prasophyllum fimbria, Pterostylis barbata, Pterostylis recurva and Thelymitra crinita (Orchidaceae), while other ground dwelling, largely perennial herbs include Anigozanthos bicolor, Conostylis androstemma, Conostylis setigera (Haemodoraceae), Dampiera linearis (Goodeniaceae), the insectivorous Drosera microphylla and D. platystigma (Droseraceae), the ground hugging Dryandra nivea (Proteaceae), Goodenia fasciculate, Scaevola striata (Goodeniaceae), Kennedia stirlingii (Fabaceae), Orthrosanthus laxus, Patersonia xanthina (Iridaceae), Ptilotus manglesii (Amaranthaceae), Tetratheca viminea (Tremandraceae) and Trichocline spathulata (Asteraceae). A slightly sinister aspect of these forests is the many toxic species. These are particularly prevalent in the endemic genus Gastrolobium such as Gastrolobium calycinum (york road poison). Other highly toxic species include the endemic Isotoma hypocrateriformis (woodbridge poison) of the Lobelliaceae, various species of Oxylobium and the endemic cycad Macrozamia riedlei (Zamiaceae). These forests also provide habitat for the strange parasitic plant Pilostyles hamiltonii - Australia’s only representative of the family Rafflesiaceae. A better-known example is Rafflesia arnoldii, which has the World’s largest flower. In contrast Pilostyles has comparatively small flowers, just a few millimeters across, but like its larger relatives, spends most of its life cycle in the tissues of various host plants, which locally include various members of the genus Daviesia. Southwest Australian Karri Forest On the loams and sandy loams over granitic and gneissic rocks the forests are mainly dominated by the endemic Eucalyptus diversicolor (karri), which is credited with being one of the three tallest hardwoods in the World measuring up to 90 m. In fact, it dwarfs most of the associated tree, although one of these, Eucalyptus jacksonii, can reach heights of 70 m. Other trees include Agonis juniperina and Eucalypus guilfoylei, while smaller trees Copyright © 2010 Peter Martin Rhind growing far below the karri canopy include the endemic Agonis flexuosa (Myrtaceae). Altogether there may be three or four stories to these forests. A dense shrub layer is always present and commonly includes Trymalium spathulatum and the endemic Chorilaena quercifolia (Rutaceae). Other endemic shrubs include Acacia pentodenia (Fabaceae), Chorilaena quercifolia (Rutaceae), Hibbertia cuneiformis (Dilleniaceae), Leucopogon verticillatus (Fabaceae), and a number of very attractive species such as Boronia gracilipes, Crowea angustifolia (Rutaceae), Chorizema ilicifolium and Hovea elliptica (Fabaceae). Few members of the southern heath family Epacridaceae occur in these forests, but the endemic Leucopogon verticillatus may be found. Underneath the shrubs large quantities of litter, bark and leaves accumulate. Despite this a number of herbaceous plants occur including various endemic species such as Dampiera hederacea (Goodeniaceae), and at least five species of fern. Of these Pteridium esculentum (a native bracken) is the most common, and is the largest native species growing to heights of 2 m, while other include Adiantum aethiopicum and Lindsaea linearis. Southwest Australian Coastal Limestone Communities In the more exposed situations where salt spray is driven inland by winter storms, just a few small shrubs of Frankenia pauciflora mainly colonize this coastal limestone. Further inland this gives way to a heathland community of Dryandra, Hakea and Melaleuca, while in the more sheltered valleys trees such as Callitris preissii, Eucalyptus gomphocephala, Melaleuca lanceolata may occur. Endemic species found here include shrubs such as Diplolaena angustifolia (Rutaceae), Dryandra sessilis (Proteaceae), Melaleuca heugelii (Myrtaceae), and the creeper Kennedia coccinea (Fabaceae). Southwest Australian Coastal Sand Dune Communities In the mobile dunes exposed to salt-laden winds, the main species include various dune grasses such as Spinifex longifolius and S. hirsutus, together with a variety of cosmopolitan species like Cakile maritima. In the more stable zones further inland a form of low heath occurs composed of species such as Acanthocarpus preissii, and the endemic Acacia pullchella (Fabaceae), Calectasia cyanea (Xanthorrhoeaceae) and Hibbertia hypericoides (Dilleniaceae). Other endemics associated with dunes include the shrubs Diplolaena dampieri (Rutaceae) and Rhagodia radiata (Chenopodiaceae). Banksias (Proteaceae) are also a feature of the coastal dunes in the south, particularly between Hopetoun and Israelite Bay. Here showy species such as Banksia speciosa, B. nutans and the endemic B. baxteri and B coccinea occur. Deeper coastal sand provides habitat for members of the endemic genera Anigozanthos and Conostylis including Anigozanthos rufus and the attractive Conostylis bealiana, C. petrophiloides and C. vaginata. Southwest Australian Bush of Southern Sand Plains This region includes the undulating plains along the south coast from Pallinup River to Israelite Bay and extends inland to Lake Grace. Two of the more prominent shrubs of these southern bush lands are Hakea crassifolia and the endemic Lambertia inervis (Proteaceae). The latter represents a near endemic genus with all but one species endemic to the southwest. Another widespread endemic shrub found here is the unusual Franklandia fucifolia (Proteaceae), while other important shrubby species are the so-called bottlebrushes Beaufortia micrantha, B. orbifolia and B. schaueri, and the wax flowers Chamelaucium axillare and C. megalopetalum (Mrytaceae). Both genera are endemic to the southwest, with some 15 species of Chamelaucium. Among the endemic herbs are species of the endemic genus Anthotium (Goodeniaceae) including Anthotium humile and A. rubiflorum. Both have perennial rootstocks and rosetted linear leaves. Copyright © 2010 Peter Martin Rhind Southwest Australian Bush of Northern Sand Plains These sandy plains occur north of Perth between Moore River and Shark Bay. Like their southern counterpart two of the most prominent families are Proteaceae and Myrtaceae. In the former there are at least 20 species of Banksia including the endemic B. burdettii and many species of the endemic Dryandra such as D. nana, D. carlinoides, D. kippistiana, D. shuttleworthiana and D. speciosa. Most dryandras and banksias produce abundant nectar and although birds and insects are attracted to this, it seems that small marsupials are the main pollinators. Other conspicuous members of the Proteaceae include the grevilleas, such as the spectacular white plume grevellea (Grevillea leucopteris) and the endemic smokebush Conospermum stoechadis. Of the Myrtaceae, the intriguing genus Darwinia, with its great diversity of inflorescences, is well represented with some 30 species endemic to the southwest. Two of the more common of these are Darwinia neildiana and D. speciosa. Other indigenous members of this family include various species of the genus Calothamnus. All 25 species of this genus are endemic to the southwest but only about 10 occur on the northern sand plains including Calothamnus blepharospermus, C. homalophyllus and C. quadrifidus. Also present are many poisonous plants of the endemic genus Gastrolobium, such as Gastrolobium oxylobioides, which have caused problems for pastoralists since the early days of settlement. Flowers of many colours are seen in the family Goodeniaceae and even in the genus Lechenaultia with about 25 species, flowers may be blue, white, yellow, red, orange or green. One of the more common of these is the endemic blue lechenaultia (Lechenaultia biloba). In areas of deep sand are various members of the enigmatic, endemic genus Anigozanthos, including Anigozanthos manglesii
Recommended publications
  • Cunninghamia Date of Publication: February 2020 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: February 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) The Australian paintings of Marianne North, 1880–1881: landscapes ‘doomed shortly to disappear’ John Leslie Dowe Australian Tropical Herbarium, James Cook University, Smithfield, Qld 4878 AUSTRALIA. [email protected] Abstract: The 80 paintings of Australian flora, fauna and landscapes by English artist Marianne North (1830-1890), completed during her travels in 1880–1881, provide a record of the Australian environment rarely presented by artists at that time. In the words of her mentor Sir Joseph Dalton Hooker, director of Kew Gardens, North’s objective was to capture landscapes that were ‘doomed shortly to disappear before the axe and the forest fires, the plough and the flock, or the ever advancing settler or colonist’. In addition to her paintings, North wrote books recollecting her travels, in which she presented her observations and explained the relevance of her paintings, within the principles of a ‘Darwinian vision,’ and inevitable and rapid environmental change. By examining her paintings and writings together, North’s works provide a documented narrative of the state of the Australian environment in the late nineteenth- century, filtered through the themes of personal botanical discovery, colonial expansion and British imperialism. Cunninghamia (2020) 20: 001–033 doi: 10.7751/cunninghamia.2020.20.001 Cunninghamia: a journal of plant ecology for eastern Australia © 2020 Royal Botanic Gardens and Domain Trust www.rbgsyd.nsw.gov.au/science/Scientific_publications/cunninghamia 2 Cunninghamia 20: 2020 John Dowe, Australian paintings of Marianne North, 1880–1881 Introduction The Marianne North Gallery in the Royal Botanic Gardens Kew houses 832 oil paintings which Marianne North (b.
    [Show full text]
  • The Fairchild Tropical Garden NIXON SMILEY ______1
    ~GAZ.NE AMERICAN HORTI CULTURAL SOCIETY A vnion of the Ame'rican Horticultuml Society and the American Ho·rticultural Council 1600 BLADENSB URG ROAD, NORTHEAST . WASHINGTON 2, D. C. For Un ited H mticulture *** to accumulate, increase, and disseminate horticultuml infmmation B. Y. MORRISON, Editor Di?-ec to?'S T enns Expiring 1960 J AMES R. H ARLOW, Managing Editor D ONOVAN S. CORRELL T exas CARL "V. F ENN I NGER Editorial Committee Pennsylvania W. H . HODGE W'. H . HODGE, Chainnan Pen nS)1 Ivan i(~ ] OHN L. CREECH A. J. IRVI NG Yo?'k FREDElRI C P. L EE New "VILLIAM C. STEERE CONRAD B. LI NK New York CURTIS MAY FREDERICK G. MEYER T erms Ex1Jil'ing 1961 STUART M. ARMSTRONG 'WILBUR H. YOUNGMAN Maryland J OHN L. CREECH Maryland Officers 'WILLIAM H . FREDERICK, JR. DelawQ.j·e PR ES IDENT FRANCIS PATTESON-KNIGHT RICHARD P . 'WHITE V il'ginia Washington, D. C. DONALD WYMAN 111 assachv.setts FIRST VICE·PRESIDENT Tenns Expiring 1962 DONALD W YMAN Jamaica Plain, Massachusetts FREDERIC P. LEE Maryland HENRY T. SKINNER SECOND VICE- PRESIDENT Distl'ict of Columba STUART M. ARMSTRONG CEORGE H. SPALDING Silvel' Spring, Mal'yland California RICHARD P. WHITE SECRETARY-TREASURER District of Columbia OLIVE E. WEATHERELL AN NE " VERTSNER WOOD Washington, D. C. Pennsylvania The Amel'ican Ho'yticvltw'al Magazine is the official publication of the American Horticultural Society and is issued fo ur times a year during the q uarters commencing with January, April , July and October. It is devoted to the dissemination of knowledge in the science and art of growing ornamental plants, fruits, vegetables, and related subjects.
    [Show full text]
  • BFS048 Site Species List
    Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No kens01 (FCT23a) Wd? Acacia sessilis Wattle Mimosaceae Dicot WA 3 SH P 48 y Acacia stenoptera Narrow-winged Wattle Mimosaceae Dicot WA 3 SH P 48 y * Aira caryophyllea Silvery Hairgrass Poaceae Monocot 5 G A 48 y Alexgeorgea nitens Alexgeorgea Restionaceae Monocot WA 6 S-R P 48 y Allocasuarina humilis Dwarf Sheoak Casuarinaceae Dicot WA 3 SH P 48 y Amphipogon turbinatus Amphipogon Poaceae Monocot WA 5 G P 48 y * Anagallis arvensis Pimpernel Primulaceae Dicot 4 H A 48 y Austrostipa compressa Golden Speargrass Poaceae Monocot WA 5 G P 48 y Banksia menziesii Firewood Banksia Proteaceae Dicot WA 1 T P 48 y Bossiaea eriocarpa Common Bossiaea Papilionaceae Dicot WA 3 SH P 48 y * Briza maxima Blowfly Grass Poaceae Monocot 5 G A 48 y Burchardia congesta Kara Colchicaceae Monocot WA 4 H PAB 48 y Calectasia narragara Blue Tinsel Lily Dasypogonaceae Monocot WA 4 H-SH P 48 y Calytrix angulata Yellow Starflower Myrtaceae Dicot WA 3 SH P 48 y Centrolepis drummondiana Sand Centrolepis Centrolepidaceae Monocot AUST 6 S-C A 48 y Conostephium pendulum Pearlflower Epacridaceae Dicot WA 3 SH P 48 y Conostylis aculeata Prickly Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis juncea Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis setigera subsp.
    [Show full text]
  • Newsletter No
    Newsletter No. 167 June 2016 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (ATH) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+61)/(0)7 4232 1859 Tel: (+61)/(0) 3 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Leon Perrie John Clarkson Museum of New Zealand Te Papa Tongarewa Queensland Parks and Wildlife Service PO Box 467, Wellington 6011 PO Box 975, Atherton Qld 4883 New Zealand Australia Tel: (+64)/(0) 4 381 7261 Tel: (+61)/(0) 7 4091 8170 Email: [email protected] Mobile: (+61)/(0) 437 732 487 Councillor Email: [email protected] Jennifer Tate Councillor Institute of Fundamental Sciences Mike Bayly Massey University School of Botany Private Bag 11222, Palmerston North 4442 University of Melbourne, Vic. 3010 New Zealand Australia Tel: (+64)/(0) 6 356- 099 ext. 84718 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Matthews Heidi Meudt Advisory Standing Committees Joanne Birch Financial Katharina Schulte Patrick Brownsey Murray Henwood David Cantrill Chair: Dan Murphy, Vice President Bob Hill Grant application closing dates Ad hoc adviser to Committee: Bruce Evans Hansjörg Eichler Research
    [Show full text]
  • Inventory of Taxa for the Fitzgerald River National Park
    Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract ..............................................................................................................................
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Association of Societies for Growing Australian Plants
    Association of Societies for Growing Australian Plants Ref No. ISSN 0725-8755 July 2003 GSG Victoria Chapter NSW Programme 2003 Leader: Neil Marriott (03) 5356 2404 Wednesday July 23 [email protected] TIME: 9.30 a.m Morning Tea for 10.00am start VENUE: Grevillea Park Convener: Max McDowall (03) 9850 3411 SUBJECT: Plant labelling ideas - discussion group [email protected] Wednesday August 13 Meeting cancelled VIC Programme 2003 Sunday October 12 TIME: 10.00 a.m. Sunday August 17 To Drummond & Fryers Range and Elphinstone VENUE: Home of Mark Ross,107 Pitt Town Road, McGraths Hill 2756 LEADERS: John & Sue Walter and Ian Evans Ph: 02) 4577 2831 E: [email protected] TIME: 10.30 a.m. SUBJECT: Grafting Workshop VENUE: 249 Pudding Bag Road, Drummond Melbourne Cup Weekend Fri Oct 31-Tues Nov 4 (VicRoads 59 G5-F5) on left 2.49 km from the CONTACT : Bruce Wallace, [email protected] intersection with Daylesford-Malmsbury Road, between MEETING PLACE: 10.00am at McDonalds, Sth Nowra creek and intersection with Scobles Road. Land for Wildlife and Malmsbury Landcare signs on Field trip south to view G. linearifolia (Dolphin Point, gate. Enlarged scan of VicRoads map will be sent to Ulladulla & Bendalong-Manyana), G. arenaria & G. scabrifolia those who register with Max. (near Nowra), G. buxifolia (Pigeon House), G. epicroca, G. victoriae ssp. nivalis (Brown Mountain), G. johnsonii BYO lunch and thermoses for lunch and afternoon tea, and some goodies to share. Meet at the new home of and many other exciting localities & plant populations. GSG members John and Sue Walter ph.
    [Show full text]
  • Heat Damage in Sclerophylls Is Influenced by Their Leaf Properties and Plant Environment1
    CoSCIENCE E 11 (1): 94-101 (2004) Heat damage in sclerophylls is influenced by their leaf properties and plant environment1 Philip K. GROOM2, Department of Environmental Biology, Curtin University of Technology, P.O. Box U1987, Perth, Western Australia 6845, Australia, and Centre for Horticulture and Plant Sciences, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith South DC, New South Wales 1797, Australia, e-mail: [email protected] Byron B. LAMONT, Sylvia LEIGHTON, Pattie LEIGHTON & Chantal BURROWS, Department of Environmental Biology, Curtin University of Technology, P.O. Box U1987, Perth, Western Australia 6845, Australia. Abstract: Mediterranean southwestern Australia experienced two successive days of extreme (> 45 °C) maximum temperatures and hot winds during the summer of 1991, resulting in adult mortality and extensive crown damage in a sclerophyllous mallee-heathland. To investigate the relationship between leaf attributes, plant environment, and heat tolerance in sclerophylls, measurements of plant height, leaf clustering, leaf morphology (thickness, dry density, area, perimeter/area ratio), percentage crown damage, and percentage mortality, and categories of exposure to wind, shade, and bare soils were recorded for 40 heat-damaged and 14 undamaged co-occurring species. Analyzing the entire dataset by principal components analysis showed that undamaged species had thicker leaves (on average 61% thicker) than species with damaged leaves and were more exposed to wind, sun, and bare soil. Thicker leaves are a common response to hot, dry, and more exposed environments and are more heat tolerant than thinner leaves. A separate analysis of the Proteaceae (25 damaged and six undamaged species) showed a similar trend to the overall dataset.
    [Show full text]
  • Anigozanthos Bicolor Subsp. Minor) Recovery Plan
    SMALL TWO-COLOURED KANGAROO PAW (ANIGOZANTHOS BICOLOR SUBSP. MINOR) RECOVERY PLAN Department of Environment and Conservation Kensington Recovery Plan for Anigozanthos bicolor subsp. minor FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in Department of Conservation and Land Management (CALM) [now Department of Environment and Conservation (DEC)] Policy Statements Nos. 44 and 50. Note: the Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. DEC will continue to adhere to these Policy Statements until they are revised and reissued. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. DEC is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of Critically Endangered (CR) taxa, always within one year of endorsement of that rank by the Minister. This Interim Recovery Plan will operate from May 2006 to April 2011 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked Critically Endangered (WA), this IRP will be reviewed after five years and the need for further recovery actions assessed. This IRP was given regional approval on 13 February, 2006 and was approved by the Director of Nature Conservation on 22 February, 2006. The allocation of staff time and provision of funds identified in this Interim Recovery Plan is dependent on budgetary and other constraints affecting DEC, as well as the need to address other priorities.
    [Show full text]
  • Wood Anatomy of Actinostrobus (Cupressaceae)
    IAWA Journal, Vol. 26 (I), 2005: 79-92 WOOD ANATOMY OF ACTINOSTROBUS (CUPRESSACEAE) R. D. Heady 1 & P. D. Evans2 SUMMARY The wood anatomy of the Western Australian species Actinostrobus are­ narius (Cupressaceae) is described for the first time and its features are compared with those of the two other species in the genus: A. acuminatus and A. pyramidalis. Mature heartwood in A. arenarius is light-brown in colour and has an air-dry density of0.56 g/cm3. Average tracheid length is 4.3 mm. A very prominent warty layer, with individual warts commonly greater than one micron in height and large enough to be visible to light microscopy, lines the inner walls of tracheids. Callitroid thickening is commonly present in narrow (latewood) tracheids, but is absent from wide ones (earlywood). Axial parenchyma cells with dark-red resinous inc1usions are tangentially zonate in earlywood. Bordered pitting in early­ wood and latewood is uniseriate. Pit borders are circular and there is a raised torus. Average ray height is low. Cross-field pitting is cupressoid and the number of pits per cross field ranges from two to five, with a mean of 3.1. Average ray heights, ray frequencies, ray volumes, and numbers of pits present in cross fields are higher in A. arenarius than in A. pyra­ midalis, thus supporting the c1assification of A. arenarius as aseparate species within Actinostrobus. Veins of distorted xylem cells, similar in appearance to 'frost rings' occur sporadically in the sterns of a11 three species. If such rings are confined to Actinostrobus, then the combination of a very prominent warty layer, and the common occurrence of frost rings could provide a means of separating Actinostrobus from Callitris.
    [Show full text]
  • Marchagee Nature Reserve B.G
    11 VEGETATION OF MARCHAGEE NATURE RESERVE B.G. MUIR General Marchagee Nature Reserve lies within the Irwin district of the South Western Botanical Province of Gardner and Bennetts (1956). Vegetation of the Marchagee Vegetation System has been discussed by Beard (1976a,b). Beard maps the vegeta­ tion of Marchagee Reserve as 'scrub heath on sandplain' with a belt of 'teatree thicket and samphire' on its north-eastern side. Abbreviated vegetation descriptions are presented in Appendix 1 and sample loca­ tions are illustrated on Map 1. Full descriptions of the vegetation following the format presented in Muir (1977) are available on request from the Librarian. Species found at some locations are listed in Appendix 2 and families of plants in Appendix 3. Methodology The vegetation of Marchagee Nature Reserve was mapped at Level 1 on the reliability scale set out in Muir (ibid). Each vegetation formation discernible on the air photographs was examined on the ground; at least one location was described in detail within each major association using the classification shown in Table 1 and discussed in detail in Muir (ibid); and a soil profile was described for each major association. Level 1 locations shown on Map 1 represent 'sample areas' where the vegetation was examined in detail. The following prefix numbers of the locations represent basic formation types. 2. = Mallee formations 3. = Shrubland formations 4. = Heath formations 7. = Salt complex 8. = Other The methods used in classifying formations, coding vegetation, preparing plant lists, classifying litter and describing soils are those of Muir (ibid). In addition to the soil characteristics dealt with on other reserves, total soluble salts were also measured on Marchagee Reserve.
    [Show full text]
  • Management of Commercial Harvesting of Protected Flora in WA
    Management of Commercial Harvesting of Protected Flora in Western Australia 1 July 2018 – 30 June 2023 June 2018 Management of Commercial Harvesting of Protected Flora in Western Australia - 1 July 2018 – 30 June 2023 Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000 Fax: (08) 9334 0498 www.dbca.wa.gov.au © Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2018 June 2018 This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions. This document was prepared by Species and Communities Branch Questions regarding the use of this material should be directed to: Melanie Smith Species and Communities Branch Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: 9219 9529 Email: [email protected] The recommended reference for this publication is: Department Biodiversity, Conservation and Attractions, 2013, Management of Commercial Harvesting of Protected Flora in Western Australia, 1 July 2018- 30 June 2023, Department of Biodiversity, Conservation and Attractions, Perth. Please note: urls in this document which conclude a sentence are followed by a full point. If copying the url please do not include the full point. Cover image Banksia hookeriana. Photo by M.
    [Show full text]