Heat Pumps in District Heating and Cooling Systems – Case Studies

Total Page:16

File Type:pdf, Size:1020Kb

Heat Pumps in District Heating and Cooling Systems – Case Studies Heat Pumps in District Heating and Cooling Systems – Case studies Institute of Building Technology and Energy IGE Center for Integrated Building Technology Diego Hangartner Research Associate T direct +41 41 349 39 78 [email protected] Aalborg 12.11.2018 4th District Heating and Cooling Conference in Aalborg Denmark Why district heating? CO2- emissions Renewable Energy Economically Local profitable source End user Slide 2, 14.12.2018 Source picture: Photo LaPresse Situation in Europe Percentage of citizens served by district heating 100 90 80 70 60 50 40 30 20 10 0 Source: www.euroheat.org/news/district-energy-in-the-news/top-district-heating-countries-euroheat-power-2015-survey-analysis/ Slide 3, 14.12.2018 District Heating Systems – Potential in Switzerland 2014 Heat Source Theoretical Economical Potential of thermal networks in Switzerland until 2050 Potential Potential März [TWh/a] [TWh/a] , TWh/a Waste Incineration 5.7 3.6 85 pauli Waste heat industry 3.6 Not assigned Retrofit und Groundwater 12.2 1.9 45 Wastewater plant 7.7 1.9 eicher Lakes 97.0 5.1 , 100% Rivers 21.3 1.8 17 38% Wood 20.5 1.7 ground water, lake, river 0 Geothermal 70.0 1.3 Fernwärme 2010 2050 Total 238.0 17.3 Weissbuch T. et al., T. et Sres Source: Source: Slide 4, 14.12.2018 Heat pumps – Applications in DHC Systems POSITION: Source Distribution, generation Nutzer 11°C 70°C 70°C Ambiant heat Ground water CENTRAL 8°C 50°C 50°C Source Distribution, generation Nutzer 11°C 35°C 35 °C 70°C Ambiant heat CENTRAL/ Ground water 8°C 28°C 28°C 50°C DECENTRAL Source Distribution, generation Nutzer 4°C 8°C 8 °C 70°C Ambiant heat CENTRAL/ Lake water 2°C 4°C 4°C 50°C DECENTRAL Source Distribution, generation Nutzer 10°C 10°C 70°C Ambiant heat Ground water DECENTRAL 7°C 7°C 50°C Slide 5, 14.12.2018 Case project – Rheinfelden-Mitte (Brewery Feldschlösschen) - AEW Energie AG / Wärmeverbund Rheinfelden Mitte AG - Residential, offices, restaurants, commercial buildings of Rheinfelden. - 9.7 GWh/a (Heating + DHW) - 5.9 MW power installed - Ammonia HP 2 x 1 MW / COP=3.4 - Source: industrial waste heat - TNetwork: 70/80 °C and 50 °C. - Investments: 20.5 Mio. CHF Slide 6, 14.12.2018 Case Project – Bulle, «Jardins de la Pâla» - EKZ Contracting SA - 65’000 m2 Residential + Commercial - 3’100 MWh/a (Heating + DHW) - 650 MWh/a Cooling demand - 2 MW power installed (in total) - Two-stage HP per house / COP=4.1 - Source: Ground water - TNetwork: between 4 °C and 17 °C. - Investments: 6 Mio. CHF Slide 7, 14.12.2018 Programm «Thermal Networks» - Classification of networks Thermal networks 2018März , SCCER, EnFK High temperature Low temperature Heating Pre-Heating Cooling 60°C Limit DHW-preparation 5th Generation? heat Limit 30°C of Direct heating Value Value 20°C Limit Direct cooling 0°C Freezing point H2O Case 1 60°C Case 2 30°C Case 3 20°C Case 4 0°C Slide 8, 14.12.2018 Network temperature (warm pipe) Quelle: Ködel et al., Grundlagen Grundlagen Quelle:al., etKödel und Erläuterungen zu thermischen Netzen, Heat pumps Slide 9, 14/12/2018 Power range of heat pumps sold in Switzerland in kW 82% < 20 kW sold 97% < 50 kW units of Number kW Source: https://www.fws.ch/wp-content/uploads/2018/05/FWS_Statistiken_2017_V2.pdf Slide 10, 14/12/2018 IEA Annex 47 – Heat Pumps in DHC Systems - Participating Countries: - Denmark (Lead, Svend Vinther Pedersen) - Sweden - Austria - Switzerland - Great Britain - Task 1. Market potential - Task 2. Description of existing systems - Task 3. Concepts/solutions - Task 4. Implementation barriers - Task 5. Dissemination Source: http://heatpumpingtechnologies.org/annex47/ Slide 11, 14.12.2018 Supply and return temperatures of DH – Case Austria Source: Büchele R., „Bewertung des Potenzials für den Einsatz der hocheffizienten KWK und Slide 12.14.12.2018 effizienter Fernwärme- und Fernkälteversorgung, Endbericht,“ Wien, 2015. Heat pumps – Application possibilities in thermal networks Increase the capacity of the Source Distribution Users 68°C 65°C Wood Own network 45°C 50°C Source Distribution Users 68°C 65°C Wood Other networks 45°C 50°C Other users Slide 13, 14.12.2018 District heating Tamsweg – Using return temperatures as heat source - Increase network capacity - Improve efficiency of burner due to better flue gas condensation - 20 % more energy out of the same amount of wood - 0.9 MW heat pump, COP 6 Source: Kronberger, B., 2015 Slide 14, 14/12/2018 Heat pumps in thermal networks - Summary - Heat pumps key technology - Efficiency improvement and CO2-reductions - More application possibilities Heat source Application Power range Temp. range Delta T Ground water Central lift > 1 MW 11°C to 70°C 60 K Ground water Decentral lift 100 kW – 1 MW 11°C to 65°C 55 K Lake water Central low temp. lift > 1 MW 4°C to 8°C 4 K Return DH Central or decentral 100 kW – 1 MW 50°C to 70°C 20 K - Still technical and social-economical barriers to overcome! - Availability products - «New» technology Slide 15, 14.12.2018 Thank you for your support and attention! Annex 47 https://heatpumpingtechnologies.org/annex47/ Programm www.energieschweiz.ch/thermische-netze «Thermal Networks» Slide 16, 14.12.2018.
Recommended publications
  • Consider Installing a Condensing Economizer, Energy Tips
    ADVANCED MANUFACTURING OFFICE Energy Tips: STEAM Steam Tip Sheet #26A Consider Installing a Condensing Economizer Suggested Actions The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By installing a condensing economizer, companies can im- ■■ Determine your boiler capacity, prove overall heat recovery and steam system efficiency by up to 10%. Many average steam production, boiler applications can benefit from this additional heat recovery, such as district combustion efficiency, stack gas heating systems, wallboard production facilities, greenhouses, food processing temperature, annual hours of plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- operation, and annual fuel ers require site-specific engineering and design, and a thorough understanding of consumption. the effect they will have on the existing steam system and water chemistry. ■■ Identify in-plant uses for heated Use this tip sheet and its companion, Considerations When Selecting a water, such as boiler makeup Condensing Economizer, to learn about these efficiency improvements. water heating, preheating, or A conventional feedwater economizer reduces steam boiler fuel requirements domestic hot water or process by transferring heat from the flue gas to the boiler feedwater. For natural gas-fired water heating requirements. boilers, the lowest temperature to which flue gas can be cooled is about 250°F ■■ Determine the thermal to prevent condensation and possible stack or stack liner corrosion. requirements that can be met The condensing economizer improves waste heat recovery by cooling the flue through installation of a gas below its dew point, which is about 135°F for products of combustion of condensing economizer.
    [Show full text]
  • Best Practices in Central Heat Pump Water Heating
    MAR 2018 Heat Pumps Are Not Boilers ACEEE – HOT WATER FORUM 2018 | Shawn Oram, PE, LEED AP Director of Engineering & Design ECOTOPE.COM • OVERVIEW • END GAME • WHAT’S AVAILABLE NOW • PROBLEMS WE ARE SEEING • MARKET DEVELOPMENT NEEDS • QUESTIONS AGENDA ECOTOPE.COM 2 Common Space Heat, Seattle 2014 Benchmarking Data 5 DHW Heat, 10 Median EUI (kBtu/SF/yr) Unit Space 1/3 OF THE LOAD IS Heat, 5 TEMPERATURE MAINTAINANCE Lowrise EUI = 32 Unit Non- Common Heat, 10 Non-Heat, Midrise EUI = 36 10 2009 Multifamily EUI (KBTU/Sf/Yr) Highrise EUI = 51 Breakdown By Energy End Use Type MULTIFAMILY ENERGY END USES ECOTOPE.COM 3 “Heat Pumps Move Heat” Optimize storage design to use coldest water possible HEAT PUMP WATER HEATING ECOTOPE.COM 4 R-717 0 BETTER CO2 Variable Capacity | SANDEN, R-744 1 MAYEKAWA, MITSUBISHI Eco-Cute R-1270 2 GWP OF SELECTED REFRIGERANTS R-290 3 (Carbon Dioxide Equivalents, CO2e) R-600a 3 Proposed HFO replacement refrigerant R-1234yf 4 R-1150 4 R-1234ze 6 Refrigerants have 10% of the climate R-170 6 forcing impact of CO2 Emissions R-152a 124 Fixed Capacity| MOST HPWH’s R-32 675 COLMAC, AO SMITH R-134a 1430 R-407C 1744 Variable Capacity | PHNIX, R-22 1810 ALTHERMA, VERSATI R-410A 2088 Fixed Capacity| AERMEC R-125 3500 R-404A 3922 R-502 4657 WORSE R-12 10900 REFRIGERANT TYPES ECOTOPE.COM 5 • No Refrigerant • 20-30% Less Energy • Quiet • GE/Oak Ridge Pilot • Ready for Market -2020 MAGNETO-CALORIC HEAT PUMP ECOTOPE.COM 6 140˚ 120˚ HOT WATER HEAT PUMP HOT WATER HEAT PUMP STORAGE WATER STORAGE WATER HEATER HEATER 50˚ 110˚ Heat the water up to usable Heat the water up 10-15 degrees temp in a single pass.
    [Show full text]
  • District Heating System, Which Is More Efficient Than
    Supported by ECOHEATCOOL Work package 3 Guidelines for assessing the efficiency of district heating and district cooling systems This report is published by Euroheat & Power whose aim is to inform about district heating and cooling as efficient and environmentally benign energy solutions that make use of resources that otherwise would be wasted, delivering reliable and comfortable heating and cooling in return. The present guidelines have been developed with a view to benchmarking individual systems and enabling comparison with alternative heating/cooling options. This report is the report of Ecoheatcool Work Package 3 The project is co-financed by EU Intelligent Energy Europe Programme. The project time schedule is January 2005-December 2006. The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Up-to-date information about Euroheat & Power can be found on the internet at www.euroheat.org More information on Ecoheatcool project is available at www.ecoheatcool.org © Ecoheatcool and Euroheat & Power 2005-2006 Euroheat & Power Avenue de Tervuren 300, 1150 Brussels Belgium Tel. +32 (0)2 740 21 10 Fax. +32 (0)2 740 21 19 Produced in the European Union ECOHEATCOOL The ECOHEATCOOL project structure Target area of EU28 + EFTA3 for heating and cooling Information resources: Output: IEA EB & ES Database Heating and cooling Housing statistics
    [Show full text]
  • Technical Challenges and Innovative Solutions for Integrating Solar Thermal Into District Heating
    Solar Energy Systems GmbH Technical challenges and innovative solutions for integrating solar thermal into district heating P. Reiter SOLID Solar Energy Systems GmbH 06.12.2019 Solar Energy Systems GmbH Solar Heat and DH Solar Cooling Solare Process Heat 26 YEARS EXPERIENCE IN LARGE-SCALE SOLAR THERMAL 300 SYSTEMS BUILT IN MORE THAN 20 COUNTRIES OFFICES IN THE USA, SINGAPORE, GERMANY Energy used by sector: heat - mobility - electricity Solar Energy Systems GmbH Renewable Energy in Total Final Energy Consumption, by Sector, 2016; Source: REN21 Global Status Report 2019 Current supply of DH worldwide Solar Energy Systems GmbH Werner (2017), https://doi.org/10.1016/j.energy.2017.04.045 Energy mix of the future Solar Energy Systems GmbH Limited renewable electricity More wind needed to cover Seasonal current electricity demand mismatch Limited availability Recycling reduces energy from waste Industry tries Operation based on to reduce Limited electricity needs => waste heat availability does not match heat profile Differences between basic SDH and BigSolar Solar Energy Systems GmbH Basic solar district heating (SDH) for covering DHW demand Current SDH systems for covering summer DHW demand Solar Energy Systems GmbH AEVG/Fernheizwerk, Graz, AT Collector field test under real conditions! 10 collector types from 7different manufacturers: • HT-flat plate collectors (foil/double glass) Commiss Collector Nominal Solar CO2- ioning surface power yield savings • Vacuum-tube collectors area Heat • Concentrating collector 2007 8,215 m² 5.7 MW ca. 3,000 1,400 t / 2014-18 MWh/a year Differences between basic SDH and BigSolar Solar Energy Systems GmbH Solar district heating including seasonal storage (BigSolar) Scenario 2 The BigSolar concept Solar Energy Systems GmbH CITYCITY Boiler Boiler Potentials with high solar coverage ratios Solar Energy Systems GmbH SDH for DHW in summer BigSolar (incl.
    [Show full text]
  • The Potential and Challenges of Solar Boosted Heat Pumps for Domestic Hot Water Heating
    Solar Calorimetry Laboratory The Potential and Challenges of Solar Boosted Heat Pumps for Domestic Hot Water Heating Stephen Harrison Ph.D., P. Eng., Solar Calorimetry Laboratory, Dept. of Mechanical and Materials Engineering, Queen’s University, Kingston, ON, Canada Solar Calorimetry Laboratory Background • As many groups try to improve energy efficiency in residences, hot water heating loads remain a significant energy demand. • Even in heating-dominated climates, energy use for hot water production represents ~ 20% of a building’s annual energy consumption. • Many jurisdictions are imposing, or considering regulations, specifying higher hot water heating efficiencies. – New EU requirements will effectively require the use of either heat pumps or solar heating systems for domestic hot water production – In the USA, for storage systems above (i.e., 208 L) capacity, similar regulations currently apply Canadian residential sector energy consumption (Source: CBEEDAC) Solar Calorimetry Laboratory Solar and HP water heaters • Both solar-thermal and air-source heat pumps can achieve efficiencies above 100% based on their primary energy consumption. • Both technologies are well developed, but have limitations in many climatic regions. • In particular, colder ambient temperatures lower the performance of these units making them less attractive than alternative, more conventional, water heating approaches. Solar Collector • Another drawback relates to the requirement to have an auxiliary heat source to supplement the solar or heat pump unit,
    [Show full text]
  • Refrigerant Selection and Cycle Development for a High Temperature Vapor Compression Heat Pump
    Refrigerant Selection and Cycle Development for a High Temperature Vapor Compression Heat Pump Heinz Moisia*, Renè Riebererb aResearch Assistant, Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B, 8010 Graz, Austria bAssociate Professor, Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B, 8010 Graz, Austria Abstract Different technological challenges have to be met in the course of the development of a high temperature vapor compression heat pump. In certain points of operation, high temperature refrigerants can show condensation during the compression which may lead to compressor damage. As a consequence, high suction gas superheat up to 20 K can be necessary. Furthermore high compressor outlet temperatures caused by high heat sink outlet temperatures (approx. 110 °C) and high pressure ratios can lead to problems with the compressor lubricant. In order to meet these challenges different refrigerant and cycle configurations have been investigated by means of simulation. Thermodynamic properties as well as legal and availability aspects have been considered for the refrigerant selection. The focus of the cycle configurations has been set on the realization of the required suction gas superheat. Therefore the possibility of an internal heat exchanger and a suction gas cooled compressor has been investigated. The simulation results showed a COP increase of up to +11 % due to the fact that the main part of the suction gas superheat has not been provided in the evaporator. Furthermore, the effect of increased subcooling has been investigated for a single stage cycle with internal heat exchanger. The results showed a COP of 3.4 with a subcooling of 25 K at a temperature lift of approximately 60 K for the refrigerant R600 (n-butane).
    [Show full text]
  • Submission to the DCCAE's Consultation “Ireland's Draft
    Submission to the DCCAE’s Consultation “Ireland’s Draft National Energy and Climate Plan (NECP) 2021-2030” Submission prepared by the Irish District Energy Association February 2019 www.districtenergy.ie [email protected] Submission to ‘Draft NECP’ Consultation from DCCAE: February 2019 Contents Contents ........................................................................................................................................................ 2 1 Introduction .......................................................................................................................................... 3 2 IrDEA welcomes the support for District Heating in the responses to the Initial NECP Consultation .. 3 3 The Potential for District Heating is much higher than proposed in the NECP .................................... 4 4 District Heating is a key enabler of Renewable Heat ............................................................................ 5 4.1 Excess Heat Should be Considered along with Renewable Heat as it also offsets carbon emitting fuels such as oil and gas ............................................................................................................................ 8 5 The Flexibility of District Heating Should be valued under Energy Security ......................................... 9 6 Increasing Renewable Heat will require stronger signals and/or support ......................................... 12 7 Bioenergy should be prioritised where it adds most value ...............................................................
    [Show full text]
  • High Temperature Heat Pump Using HFO and HCFO Refrigerants
    Purdue University Purdue e-Pubs International Refrigeration and Air Conditioning School of Mechanical Engineering Conference 2018 High temperature heat pump using HFO and HCFO refrigerants - System design, simulation, and first experimental results Cordin Arpagaus NTB University of Applied Sciences of Technology Buchs, Switzerland, [email protected] Frédéric Bless NTB University of Applied Sciences of Technology Buchs, Institute for Energy Systems, Werdenbergstrasse 4, 9471 Buchs, Switzerland, [email protected] Michael Uhlmann NTB University of Applied Sciences in Buchs, Switzerland, [email protected] Elias Büchel NTB University of Applied Sciences of Technology Buchs, Institute for Energy Systems, Werdenbergstrasse 4, 9471 Buchs, Switzerland, [email protected] Stefan Frei NTB University of Applied Sciences of Technology Buchs, Institute for Energy Systems, Werdenbergstrasse 4, 9471 Buchs, Switzerland, [email protected] See next page for additional authors Follow this and additional works at: https://docs.lib.purdue.edu/iracc Arpagaus, Cordin; Bless, Frédéric; Uhlmann, Michael; Büchel, Elias; Frei, Stefan; Schiffmann, Jürg; and Bertsch, Stefan, "High temperature heat pump using HFO and HCFO refrigerants - System design, simulation, and first experimental results" (2018). International Refrigeration and Air Conditioning Conference. Paper 1875. https://docs.lib.purdue.edu/iracc/1875 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected]
    [Show full text]
  • A Little About Limits…
    FOREST-Handbook, chapter 03-00 1 District heating – Introduction 03-00: Introduction to small-scale district heating… As a “small” district heating network, one would consider anything with a peak thermal power less than about 5-10 MW, but there is no strict limit. The fundamental idea with district heating is simple enough, as shown by the schematic below: Thus, the system consists basically of three serial circuits, a boiler circuit, a distribution circuit and a customer circuit. In practice, there will be two customer circuits – one for the tap water and one for the comfort heating system water. These will be manifest as two separate coils in the customer heat exchanger but for simplicity only one is included in the schematic. The main components and their roles The boiler-end heat exchanger Looking at the schematic above it is obvious that the district heating system contains two heat exchangers – one at the boiler end and one with the customer. From a purely theoretical point of view, it might seem wise to exclude the boiler-end heat exchanger and to use the boiler circuit water also for the distribution, but this is not recommended for two reasons: 1) The part in the system most exposed to and most vulnerable to leakages is the distribution network, which may well extent for several kilometres across the township. In case of a major leakage – and if the boiler water is also the circulating water – the boiler will be dry and may suffer severe damage. Hence, the heat exchanger protects the boiler. 2) For maximum efficiency in the system as a whole it is important that the return water in the distribution system is as cold as possible – preferably below 50 oC.
    [Show full text]
  • Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida
    BUILDING TECHNOLOGIES OFFICE Building America Case Study Technology Solutions for New and Existing Homes Performance of a Heat Pump Water Heater in the Hot-Humid Climate Windermere, Florida Over recent years, heat pump water heaters (HPWHs) have become more read- PROJECT INFORMATION ily available and more widely adopted in the marketplace. A key feature of an Project Name: Systems Evaluation at HPWH unit is that it is a hybrid system. When conditions are favorable, the unit the Cool Energy House will operate in heat pump mode (using a vapor compression system that extracts Location: Windermere, FL heat from the surrounding air) to efficiently provide domestic hot water (DHW). Partners: Homeowners need not adjust their behavior to conform to the heat pump’s Southern Traditions Development capabilities. If a heat pump cannot meet a higher water draw demand, the heater http://southerntraditionsdev.com/ will switch to electric resistance to provide a higher heating rate. This flexibility Consortium for Advanced provides the energy savings of heat pump mode (when possible) while perform- Residential Buildings www.carb-swa.com ing as an electric resistance water heater (ERWH) during periods of high DHW demand. Furthermore, an HPWH’s operational byproduct is cooling and dehu- Building Component: Domestic hot water midification, which can be particularly beneficial in hot-humid climates. Application: Retrofit, single family For a 6-month period, the Consortium for Advanced Residential Buildings, a Year Tested: 2012 U.S. Department of Energy Building America team, monitored the performance Applicable Climate Zone(s): Hot-humid of a GE Geospring HPWH in Windermere, Florida. The study included hourly energy simulation analysis using the National Renewable Energy Laboratory’s PERFORMANCE DATA Building Energy Optimization-Energy Plus (BEopt) v1.3 software.
    [Show full text]
  • District Energy Enters the 21St Century
    TECHNICAL FEATURE This article was published in ASHRAE Journal, July 2015. Copyright 2015 ASHRAE. Posted at www.www.burnsmcd.com .org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. District Energy Enters The 21st Century BY STEVE TREDINNICK, P.E., MEMBER ASHRAE; DAVID WADE, P.E., LIFE MEMBER ASHRAE; GARY PHETTEPLACE, PH.D., P.E., MEMBER ASHRAE The concept of district energy is undergoing a resurgence in some parts of the United States and the world. Its roots in the U.S. date back to the 19th century and through the years many technological advancements and synergies have developed that help district energy efficiency. This article explores district energy and how ASHRAE has supported the industry over the years. District Energy’s Roots along with systems serving groups of institutional build- District energy systems supply heating and cooling ings, were initiated and prospered in the early decades to groups of buildings in the form of steam, hot water of the 1900s and by 1949 there were over 300 commercial or chilled water using a network of piping from one or systems in operation throughout the United States. Of more central energy plants. The concept has been used course, systems in the major cities of Europe also gained in the United States for more than 140 years with the favor in Paris, Copenhagen and Brussels. In many cases first recognized commercial district energy operation district steam systems were designed to accept waste originating in Lockport, N.Y.
    [Show full text]
  • Design of a Heat Pump Assisted Solar Thermal System Kyle G
    Purdue University Purdue e-Pubs International High Performance Buildings School of Mechanical Engineering Conference 2014 Design of a Heat Pump Assisted Solar Thermal System Kyle G. Krockenberger Purdue University, United States of America / Department of Mechanical Engineering Technology, [email protected] John M. DeGrove [email protected] William J. Hutzel [email protected] J. Christopher Foreman [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/ihpbc Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; and Foreman, J. Christopher, "Design of a Heat Pump Assisted Solar Thermal System" (2014). International High Performance Buildings Conference. Paper 146. http://docs.lib.purdue.edu/ihpbc/146 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html 3572 , Page 1 Design of a Heat Pump Assisted Solar Thermal System Kyle G. KROCKENBERGER 1*, John M. DEGROVE 1*, William J. HUTZEL 1, J. Chris FOREMAN 2 1Department of Mechanical Engineering Technology, Purdue University, West Lafayette, Indiana, United States. [email protected], [email protected], [email protected] 2Department of Electrical and Computer Engineering Technology, Purdue University, West Lafayette, Indiana, United States. [email protected] * Corresponding Author ABSTRACT This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture.
    [Show full text]