Why Xeon Phi? Which Apps?†

Total Page:16

File Type:pdf, Size:1020Kb

Why Xeon Phi? Which Apps?† Simón Viñals Larruga Intel Corporation Feb 2017 Legal Disclaimers Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com]. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at https://www- ssl.intel.com/content/www/us/en/high-performance-computing/path-to-aurora.html. Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance. 3D XPoint, Intel, the Intel logo, Intel. Experience What’s Inside, the Intel. Experience What’s Inside logo, Intel Xeon Phi, Optane, and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other names and brands may be claimed as the property of others. © 2016 Intel Corporation. All rights reserved. 2 What are the growing challenges in HPC? “The Walls” Divergent Infrastructure Barriers to System Bottlenecks Extending Usage Visualization HPC Optimized Big HPC Data Machine Learning Memory | I/O | Storage Democratization at Every Scale | Cloud Access Energy Efficient Performance Resources Split Among Modeling and Simulation | Big | Exploration of New Parallel Programming Space | Resiliency | Data Analytics | Machine Learning | Visualization Models Unoptimized Software The “walls”, divergent usages, and “democratization” are the top issues 3 What is required to deal with these growing challenges? System Application Innovative Technologies Tighter Integration Modernized Code Cores Community Compute Memory Memory Fabric Fabric ISV Storage System Graphics Software FPGA Proprietary I/O PERFORMANCE I CAPABILITY I PERFORMANCE TIME A “holistic” approach is needed… Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.* Other names and brands Data Center Group may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2016, Intel Corporation. 4 Intel Confidential | NDA Required Fuel Your Insight Intel® Scalable System Framework Small Clusters Through Supercomputers Compute Memory/Storage Compute and Data-Centric Computing Fabric Software Standards-Based Programmability On-Premise and Cloud-Based Intel Silicon Photonics Intel® Xeon® Processors Intel® Solutions for Lustre* Intel® Omni-Path Architecture Intel® HPC Orchestrator Intel® Xeon Phi™ Processors Intel® Optane™ Technology Intel® True Scale Fabric Intel® Software Tools Intel® Xeon Phi™ Coprocessors 3D XPoint™ Technology Intel® Ethernet Intel® Cluster Ready Program Intel® Server Boards and Platforms Intel® SSDs Intel® Silicon Photonics Intel Supported SDVis 5 Intel® SSF Market Momentum HPE/Intel HPC Alliance Project Azimuth Innovation Centers HPC Solutions Frameworks Dell HPC System Portfolio – Stuttgart, Germany – Beijing, China Collaboration Partners Oil & Gas Life Sciences Finance Genomics Manufacturing Research Dell HPC Innovation Lab – University of Oxford Centers of Excellence – Barcelona Supercomputing – Grenoble, France University of Cambridge Centre – Houston, Texas, USA *Other names and brands may be claimed as the property of others 6 Intel® SSF rapid adoption Intel® SSF Design Guidance Simplifies… System Design and Build Software Development Procurement, Deployment, Management Coming Q1’16 Reference Architectures designs for compatibility Reference Designs system build recipes Validation Tools streamlined testing Public statements of adoption since April ‘15 7 Copyright © 2016 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Other Key Customer Determinants Nvidia* GPU Intel® Xeon Phi™ Processor Proprietary CUDA* programming Open-standards based programming Lack of code flexibility, portability Runs x86 workloads Data offloading bottlenecks No PCIe bottlenecks Greater system complexity HPC-optimized (integrated memory, fabric) Higher power requirements Lower power Large memory footprint Future-ready (AVX-512, ecosystem and long-term roadmap) As a host processor that runs x86 code, Intel® Xeon Phi™ is much more than an accelerator Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.* Other names and brands Data Center Group may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2016, Intel Corporation. 88 Introducing the Intel® Xeon Phi™ Processor st Integrated st Host CPU for Highly- st Integrated 1 Fabric 1 Parallel Apps 1 Memory Leadership performance … with all the benefits of a CPU No PCIe Bottleneck Up to Up to Up to Run x86 Workloads GPU GPU 5x 8x 9x Programmability Large Memory Footprint vs. Accelerator Accelerator Perf* Perf/W* Perf/$* Power Efficient Scalability & Future-Ready *Intel measured results as of April 2016; see speakers notes for full configuration and performance disclaimers 9 Intel® Xeon Phi™ Processor: Your Path to Deeper Insight A Foundational Element of Intel® Scalable System Framework Solve Biggest Highly-Parallel Eliminate Bottlenecks Challenges Faster Scalability Realize Power Efficiency Programmability Compelling Value High Utilization Maximize Future-Ready Code Broad Ecosystem Future Potential Robust Roadmap For discovery and business innovation in science, visualization & analytics 10 For Discovery and Business Innovation in Science, Visualization & Analytics Life Sciences – Energy – Seismic/ Genomics / Financial – Risk Weather Reservoir Sequencing Scientific Big Data Visualization / Simulation, Defense / Analytics / Professional CAE & CFD Security Machine Learning Rendering and other emerging usages… *See the Intel® Xeon Phi™ application showcase for examples of workloads that are most suitable 11 Proof Points and Applications Speed Ups: Verticals Snapshot Up to 3.65X Manufacturing Up to 6.48X Financial Services Up to 2.66X Life Sciences Up to 2.1X Climate and Weather Intel® Xeon Phi™ Processor proof points1: . Various applications compared to NVIDIA* GPU: 2.17X average speed up . Financial Services: 3.45X average speed up . Life Sciences: 1.74X average speed up . Manufacturing: 1.86X average speed up Up to 3.3X Material Sciences . Climate and Weather: 1.46X average speed up . Material Sciences: 1.96X average speed up Up to 2.8X . Physics: 2X average speed up Geophysics Up to 2.44X Physics . Geophysics: 2.17X average speed up 1 - Performance demonstrated in proof points in this presentation Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating12 your contemplated purchases, including the performance of that product when combined with other products. *Other names and brands may be claimed as the property of others. Intel Inside. Software Optimization Outside on the Intel® Xeon Phi™ Product Family Experts from Allinea*, Altair*, Convergent Science*, Kitware*, and LSTC* share some of the use cases and explore the significant advantages of running their applications on the Intel® Xeon Phi™ product family. See what the Intel Xeon Phi Processor can do for key software applications. *Other names and brands may be claimed as the property of others 13 More Intel® Xeon Phi™ Processor Software Enablement http://itpeernetwork.intel.com . Optimizing Automotive Designs with Intel and Altair* . Momentum Grows for Intel Scalable System Framework . Incredible Machine Learning Advancements Made Possible by Intel
Recommended publications
  • インテル® Parallel Studio XE 2020 リリースノート
    インテル® Parallel Studio XE 2020 2019 年 12 月 5 日 内容 1 概要 ..................................................................................................................................................... 2 2 製品の内容 ........................................................................................................................................ 3 2.1 インテルが提供するデバッグ・ソリューションの追加情報 ..................................................... 5 2.2 Microsoft* Visual Studio* Shell の提供終了 ........................................................................ 5 2.3 インテル® Software Manager .................................................................................................... 5 2.4 サポートするバージョンとサポートしないバージョン ............................................................ 5 3 新機能 ................................................................................................................................................ 6 3.1 インテル® Xeon Phi™ 製品ファミリーのアップデート ......................................................... 12 4 動作環境 .......................................................................................................................................... 13 4.1 プロセッサーの要件 ...................................................................................................................... 13 4.2 ディスク空き容量の要件 .............................................................................................................. 13 4.3 オペレーティング・システムの要件 ............................................................................................. 13
    [Show full text]
  • Introduction to Intel Xeon Phi Programming Models
    Introduction to Intel Xeon Phi programming models F.Affinito F. Salvadore SCAI - CINECA Part I Introduction to the Intel Xeon Phi architecture Trends: transistors Trends: clock rates Trends: cores and threads Trends: summarizing... The number of transistors increases The power consumption must not increase The density cannot increase on a single chip Solution : Increase the number of cores GP-GPU and Intel Xeon Phi.. Coupled to the CPU To accelerate highly parallel kernels, facing with the Amdahl Law What is Intel Xeon Phi? 7100 / 5100 / 3100 Series available 5110P: Intel Xeon Phi clock: 1053 MHz 60 cores in-order ~ 1 TFlops/s DP peak performance (2 Tflops SP) 4 hardware threads per core 8 GB DDR5 memory 512-bit SIMD vectors (32 registers) Fully-coherent L1 and L2 caches PCIe bus (rev. 2.0) Max Memory bandwidth (theoretical) 320 GB/s Max TDP: 225 W MIC vs GPU naïve comparison The comparison is naïve System K20s 5110P # cores 2496 60 (*4) Memory size 5 GB 8 GB Peak performance 3.52 TFlops 2 TFlops (SP) Peak performance 1.17 TFlops 1 TFlops (DP) Clock rate 0.706 GHz 1.053 GHz Memory bandwidth 208 GB/s (ECC off) 320 GB/s Terminology MIC = Many Integrated Cores is the name of the architecture Xeon Phi = Commercial name of the Intel product based on the MIC architecture Knight's corner, Knight's landing, Knight's ferry are development names of MIC architectures We will often refer to the CPU as HOST and Xeon Phi as DEVICE Is it an accelerator? YES: It can be used to “accelerate” hot-spots of the code that are highly parallel and computationally extensive In this sense, it works alongside the CPU It can be used as an accelerator using the “offload” programming model An important bottleneck is represented by the communication between host and device (through PCIe) Under this respect, it is very similar to a GPU Is it an accelerator? / 2 NOT ONLY: the Intel Xeon Phi can behave as a many-core X86 node.
    [Show full text]
  • Introduction to High Performance Computing
    Introduction to High Performance Computing Shaohao Chen Research Computing Services (RCS) Boston University Outline • What is HPC? Why computer cluster? • Basic structure of a computer cluster • Computer performance and the top 500 list • HPC for scientific research and parallel computing • National-wide HPC resources: XSEDE • BU SCC and RCS tutorials What is HPC? • High Performance Computing (HPC) refers to the practice of aggregating computing power in order to solve large problems in science, engineering, or business. • Purpose of HPC: accelerates computer programs, and thus accelerates work process. • Computer cluster: A set of connected computers that work together. They can be viewed as a single system. • Similar terminologies: supercomputing, parallel computing. • Parallel computing: many computations are carried out simultaneously, typically computed on a computer cluster. • Related terminologies: grid computing, cloud computing. Computing power of a single CPU chip • Moore‘s law is the observation that the computing power of CPU doubles approximately every two years. • Nowadays the multi-core technique is the key to keep up with Moore's law. Why computer cluster? • Drawbacks of increasing CPU clock frequency: --- Electric power consumption is proportional to the cubic of CPU clock frequency (ν3). --- Generates more heat. • A drawback of increasing the number of cores within one CPU chip: --- Difficult for heat dissipation. • Computer cluster: connect many computers with high- speed networks. • Currently computer cluster is the best solution to scale up computer power. • Consequently software/programs need to be designed in the manner of parallel computing. Basic structure of a computer cluster • Cluster – a collection of many computers/nodes. • Rack – a closet to hold a bunch of nodes.
    [Show full text]
  • Accelerators for HP Proliant Servers Enable Scalable and Efficient High-Performance Computing
    Family data sheet Accelerators for HP ProLiant servers Enable scalable and efficient high-performance computing November 2014 Family data sheet | Accelerators for HP ProLiant servers HP high-performance computing has made it possible to accelerate innovation at any scale. But traditional CPU technology is no longer capable of sufficiently scaling performance to address the skyrocketing demand for compute resources. HP high-performance computing solutions are built on HP ProLiant servers using industry-leading accelerators to dramatically increase performance with lower power requirements. Innovation is the foundation for success What is hybrid computing? Accelerators are revolutionizing high performance computing A hybrid computing model is one where High-performance computing (HPC) is being used to address many of modern society’s biggest accelerators (known as GPUs or coprocessors) challenges, such as designing new vaccines and genetically engineering drugs to fight diseases, work together with CPUs to perform computing finding and extracting precious oil and gas resources, improving financial instruments, and tasks. designing more fuel efficient engines. As parallel processors, accelerators can split computations into hundreds or thousands of This rapid pace of innovation has created an insatiable demand for compute power. At the same pieces and calculate them simultaneously. time, multiple strict requirements are placed on system performance, power consumption, size, response, reliability, portability, and design time. Modern HPC systems are rapidly evolving, Offloading the most compute-intensive portions of already reaching petaflop and targeting exaflop performance. applications to accelerators dramatically increases both application performance and computational All of these challenges lead to a common set of requirements: a need for more computing efficiency.
    [Show full text]
  • Quick-Reference Guide to Optimization with Intel® Compilers
    Quick Reference Guide to Optimization with Intel® C++ and Fortran Compilers v19.1 For IA-32 processors, Intel® 64 processors, Intel® Xeon Phi™ processors and compatible non-Intel processors. Contents Application Performance .............................................................................................................................. 2 General Optimization Options and Reports ** ............................................................................................. 3 Parallel Performance ** ................................................................................................................................ 4 Recommended Processor-Specific Optimization Options ** ....................................................................... 5 Optimizing for the Intel® Xeon Phi™ x200 product family ............................................................................ 6 Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options ................................ 7 Fine-Tuning (All Processors) ** ..................................................................................................................... 8 Floating-Point Arithmetic Options .............................................................................................................. 10 Processor Code Name With Instruction Set Extension Name Synonym .................................................... 11 Frequently Used Processor Names in Compiler Options ...........................................................................
    [Show full text]
  • Broadwell Skylake Next Gen* NEW Intel NEW Intel NEW Intel Microarchitecture Microarchitecture Microarchitecture
    15 лет доступности IOTG is extending the product availability for IOTG roadmap products from a minimum of 7 years to a minimum of 15 years when both processor and chipset are on 22nm and newer process technologies. - Xeon Scalable (w/ chipsets) - E3-12xx/15xx v5 and later (w/ chipsets) - 6th gen Core and later (w/ chipsets) - Bay Trail (E3800) and later products (Braswell, N3xxx) - Atom C2xxx (Rangeley) and later - Не включает в себя Xeon-D (7 лет) и E5-26xx v4 (7 лет) 2 IOTG Product Availability Life-Cycle 15 year product availability will start with the following products: Product Discontinuance • Intel® Xeon® Processor Scalable Family codenamed Skylake-SP and later with associated chipsets Notification (PDN)† • Intel® Xeon® E3-12xx/15xx v5 series (Skylake) and later with associated chipsets • 6th Gen Intel® Core™ processor family (Skylake) and later (includes Intel® Pentium® and Celeron® processors) with PDNs will typically be issued no later associated chipsets than 13.5 years after component • Intel Pentium processor N3700 (Braswell) and later and Intel Celeron processors N3xxx (Braswell) and J1900/N2xxx family introduction date. PDNs are (Bay Trail) and later published at https://qdms.intel.com/ • Intel® Atom® processor C2xxx (Rangeley) and E3800 family (Bay Trail) and late Last 7 year product availability Time Last Last Order Ship Last 15 year product availability Time Last Last Order Ship L-1 L L+1 L+2 L+3 L+4 L+5 L+6 L+7 L+8 L+9 L+10 L+11 L+12 L+13 L+14 L+15 Years Introduction of component family † Intel may support this extended manufacturing using reasonably Last Time Order/Ship Periods Component family introduction dates are feasible means deemed by Intel to be appropriate.
    [Show full text]
  • Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing Processor
    Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing Processor Douglas Doerfler, Jack Deslippe, Samuel Williams, Leonid Oliker, Brandon Cook, Thorsten Kurth, Mathieu Lobet, Tareq Malas, Jean-Luc Vay, and Henri Vincenti Lawrence Berkeley National Laboratory {dwdoerf, jrdeslippe, swwilliams, loliker, bgcook, tkurth, mlobet, tmalas, jlvay, hvincenti}@lbl.gov Abstract The Roofline Performance Model is a visually intuitive method used to bound the sustained peak floating-point performance of any given arithmetic kernel on any given processor architecture. In the Roofline, performance is nominally measured in floating-point operations per second as a function of arithmetic intensity (operations per byte of data). In this study we determine the Roofline for the Intel Knights Landing (KNL) processor, determining the sustained peak memory bandwidth and floating-point performance for all levels of the memory hierarchy, in all the different KNL cluster modes. We then determine arithmetic intensity and performance for a suite of application kernels being targeted for the KNL based supercomputer Cori, and make comparisons to current Intel Xeon processors. Cori is the National Energy Research Scientific Computing Center’s (NERSC) next generation supercomputer. Scheduled for deployment mid-2016, it will be one of the earliest and largest KNL deployments in the world. 1 Introduction Moving an application to a new architecture is a challenge, not only in porting of the code, but in tuning and extracting maximum performance. This is especially true with the introduction of the latest manycore and GPU-accelerated architec- tures, as they expose much finer levels of parallelism that can be a challenge for applications to exploit in their current form.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • FY18Q2 Marketwide Shopping Event
    $130 BRIGHTON AREA SCHOOL DISTRICT LAPTOP PRESIDENTS DAY EARLY ACCESS STARTS 2/12 DOORBUSTERS ALL WEEK AT 11AM ET 11.6" A DOORBUSTER 11AM ET, 2/16 A: Inspiron 11 3000 Market value* $199.99 | Save $70 $12999 Intel® Celeron® Processor, Windows 10 Home, 2GB memory* & 32GB storage, 11.6" HD display DOORBUSTER 11AM ET, 2/13 23.8" B B: Dell 24 Monitor - S2418NX Market value* $259.99 | Save $100 $15999 23.8" widescreen In nityEdge monitor, C Full HD 1920 x 1080, Dell HDR DOORBUSTER 11AM ET, 2/14 C: Inspiron Small Desktop Market value* $319.99 | Save $100 $21999 Intel® Pentium® processor, Windows 10 Home, 4GB memory* & 1TB* hard drive Limited quantities available at these prices SAVE BIG ON INCREDIBLE COLOR, SOUND AND STREAMING WITH DELL CINEMA PCs. www.Dell.com/BrightonASD US3936579 *See reverse for important details. Netflix streaming membership required. Screen images are simulated. EARLY ACCESS TO DOORBUSTERS PRESIDENTS DAY SALE STARTS EARLY FOR MEMBERS SAVE UP TO 40% A 15.6" B 27" C 15.6" DOORBUSTER 11AM ET, 2/12 DOORBUSTER 11AM ET, 2/15 D A: Inspiron 15 3000 B: New Inspiron Gaming Desktop Market value* $299.99 | Save $70 Market value* $799.99 | Save $100 $22999 $69999 Intel® Celeron® Processor, Windows 10 Home, 8th Gen Intel® Core™ i5 processor, Windows 10 Home, 4GB memory*, 500GB* hard drive, 15.6" HD 8GB memory*, 1TB* hard drive, 3GB* NVIDIA® display GeForce® GTX 1060 graphics card* DOORBUSTER 11AM ET, 2/14 DOORBUSTER 11AM ET, 2/13 C: Dell UltraSharp 27 D: Inspiron 15 5000 2-in-1 4K Monitor - U2718Q Market value* $499.99 | Save $100 Market value* $739.99 | Save $260 $ 99 $ 99 399 479 7th Gen Intel® Core™ i3 processor, 27" 4K In nityEdge monitor, 3840 x 2160 Windows 10 Home, 4GB memory* & 1TB* resolution, Dell HDR hard drive, 15.6" Full HD Touch display *Limited quantities available at these prices.
    [Show full text]
  • Future Computing Platforms for Science in a Power Constrained Era
    Future Computing Platforms for Science in a Power Constrained Era David Abdurachmanov1, Peter Elmer2, Giulio Eulisse1, Robert Knight3 1 Fermilab, Batavia, IL 60510, USA 2 Department of Physics, Princeton University, Princeton, NJ 08540, USA 3 Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08540, USA E-mail: [email protected] Abstract. Power consumption will be a key constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics (HEP). This makes performance-per-watt a crucial metric for selecting cost-efficient computing solutions. For this paper, we have done a wide survey of current and emerging architectures becoming available on the market including x86-64 variants, ARMv7 32-bit, ARMv8 64-bit, Many-Core and GPU solutions, as well as newer System-on-Chip (SoC) solutions. We compare performance and energy efficiency using an evolving set of standardized HEP-related benchmarks and power measurement techniques we have been developing. We evaluate the potential for use of such computing solutions in the context of DHTC systems, such as the Worldwide LHC Computing Grid (WLCG). 1. Introduction and Motivation The data produced by the four experiments at the Large Hadron Collider (LHC) [1] or similar High Energy Physics (HEP) experiments requires a significant amount of human and computing resources which cannot be provided by research institute or even country. For this reasons the various parties involved created the Worldwide LHC Computing Grid (WLCG) in order to tackle the data processing challenges posed by such a large amount of data. The WLGC consists of a arXiv:1510.03676v1 [cs.DC] 28 Jul 2015 highly federated union of computing centers sparse in 40 countries and it represents an admirable example of international organization.
    [Show full text]
  • Introduction to Intel Xeon Phi (“Knights Landing”) on Cori
    Introduction to Intel Xeon Phi (“Knights Landing”) on Cori" Brandon Cook! Brian Friesen" 2017 June 9 - 1 - Knights Landing is here!" • KNL nodes installed in Cori in 2016 • “Pre-produc=on” for ~ 1 year – No charge for using KNL nodes – Limited access (un7l now!) – Intermi=ent down7me – Frequent so@ware changes • KNL nodes on Cori will soon enter produc=on – Charging Begins 2017 July 1 - 2 - Knights Landing overview" Knights Landing: Next Intel® Xeon Phi™ Processor Intel® Many-Core Processor targeted for HPC and Supercomputing First self-boot Intel® Xeon Phi™ processor that is binary compatible with main line IA. Boots standard OS. Significant improvement in scalar and vector performance Integration of Memory on package: innovative memory architecture for high bandwidth and high capacity Integration of Fabric on package Three products KNL Self-Boot KNL Self-Boot w/ Fabric KNL Card (Baseline) (Fabric Integrated) (PCIe-Card) Potential future options subject to change without notice. All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification. - 3 - Knights Landing overview TILE CHA 2 VPU 2 VPU Knights Landing Overview 1MB L2 Core Core 2 x16 X4 MCDRAM MCDRAM 1 x4 DMI MCDRAM MCDRAM Chip: 36 Tiles interconnected by 2D Mesh Tile: 2 Cores + 2 VPU/core + 1 MB L2 EDC EDC PCIe D EDC EDC M Gen 3 3 I 3 Memory: MCDRAM: 16 GB on-package; High BW D Tile D D D DDR4: 6 channels @ 2400 up to 384GB R R 4 36 Tiles 4 IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset C DDR MC connected by DDR MC C Node: 1-Socket only H H A 2D Mesh A Fabric: Omni-Path on-package (not shown) N Interconnect N N N E E L L Vector Peak Perf: 3+TF DP and 6+TF SP Flops S S Scalar Perf: ~3x over Knights Corner EDC EDC misc EDC EDC Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
    [Show full text]
  • Intel® Omni-Path Architecture Overview and Update
    The architecture for Discovery June, 2016 Intel Confidential Caught in the Vortex…? Business Efficiency & Agility DATA: Trust, Privacy, sovereignty Innovation: New Economy Biz Models Macro Economic Effect Growth Enablers/Inhibitors Intel® Solutions Summit 2016 2 Intel® Solutions Summit 2016 3 Intel Confidential 4 Data Center Blocks Reduce Complexity Intel engineering, validation, support Data Center Blocks Speed time to market Begin with a higher level of integration HPC Cloud Enterprise Storage Increase Value VSAN Ready HPC Compute SMB Server Block Reduce TCO, value pricing Block Node Fuel innovation Server blocks for specific segments Focus R&D on value-add and differentiation Intel® Solutions Summit 2016 5 A Holistic Design Solution for All HPC Needs Intel® Scalable System Framework Small Clusters Through Supercomputers Compute Memory/Storage Compute and Data-Centric Computing Fabric Software Standards-Based Programmability On-Premise and Cloud-Based Intel Silicon Photonics Intel® Xeon® Processors Intel® Solutions for Lustre* Intel® Omni-Path Architecture HPC System Software Stack Intel® Xeon Phi™ Processors Intel® SSDs Intel® True Scale Fabric Intel® Software Tools Intel® Xeon Phi™ Coprocessors Intel® Optane™ Technology Intel® Ethernet Intel® Cluster Ready Program Intel® Server Boards and Platforms 3D XPoint™ Technology Intel® Silicon Photonics Intel® Visualization Toolkit Intel Confidential 14 Parallel is the Path Forward Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel How do we attain extremely high compute
    [Show full text]