CHAPTER 6 Specific Cholinesterase Inhibitors: a Potential Tool to Assist in Management of Alzheimer Disease Nigel H

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 6 Specific Cholinesterase Inhibitors: a Potential Tool to Assist in Management of Alzheimer Disease Nigel H Send Orders for Reprints to [email protected] 366 Frontiers in Drug Design & Discovery, Vol. 6, 2014, 366-386 CHAPTER 6 Specific Cholinesterase Inhibitors: A Potential Tool to Assist in Management of Alzheimer Disease Nigel H. Grieg1, Mohammad A. Kamal2,*, Nasimudeen R. Jabir2, Shams Tabrez2, Faizul H. Nasim3, Adel M. Abuzenadah2 and Gjumrakch Aliev4,5 1Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; 2King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; 3Department of Chemistry, BJ Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; 4Department of Health Science and Healthcare Administration, University of Atlanta, Atlanta, GA, USA, and 5GALLY International Biomedical Research Consulting LLC, San Antonio, TX, USA Abstract: Accompanying the gradual rise in the average age of the population of most industrialized countries is a regrettable escalation in individuals afflicted with progressive neurodegenerative disorders, epitomized by Alzheimer's disease (AD). The development of effective new treatment strategies for AD has therefore become one of the most critical challenges in current neuroscience. Cholinesterase inhibitors (ChEIs) remain the primary therapeutic strategy for AD, and act by amplifying residual cholinergic activity, a neurotransmitter system central in cognitive processing that is reported to be depleted in the AD brain. With the recent failure of current drug classes focused towards the molecular events known to underpin AD, including the generation of amyloid-β peptide (Aβ) containing plaques and neurofibrillary tangles (hyper- phosphorylated tau). The development of new generation of cholinergic drugs has been accomplished to take advantage of the known modulatory action of the cholinergic system on Aβ, tau production as well as the maintenance synapses, which are known to be lost in AD. Following upon the development of acetylcholinesterase inhibitors (AChE-Is), phenserine, that additionally possessed amyloid precursor protein (APP) synthesis inhibitory actions to lower the generation of Aβ. Selective butyrylcholinesterase inhibitors (BuChE-Is), cymserine analogues, have been developed on the same chemical backbone during further anti-AD research advancement. The above mentioned inhibitors retain actions on APP as well as Aβ and amplify central cholinergic actions without the classical dose-limiting adverse effect profile; therefore, these current BuChE-Is are now moving into AD clinical trials. *Address correspondence to Mohammad A. Kamal: Metabolomics and Enzymology Unit, Fundamental and Applied Biology, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Tel: +612-98644812; Fax: +15016368847; E-mail: [email protected] Atta-ur-Rahman / M. Iqbal Choudhary (Eds.) All rights reserved-© 2014 Bentham Science Publishers Specific Cholinesterase Inhibitors Frontiers in Drug Design & Discovery, Vol. 6 367 Keywords: Acetylcholinesterase, acetylcholinesterase inhibitors, Alzheimer disease, amyloid-β peptide, amyloid precursor protein, butyrylcholinesterase inhibitors, cholinesterases, clinical trials, cymserine, dementia, glial cells, inhibitors, kinetic analysis, muscle disorders, neurodegenerative disorders, neurotransmitters, synaptic cleft, tau protein. INTRODUCTION A significant segment of career of several scientists’ in the field of anti- Alzheimer's research is spending in elucidating the interaction of various anti- Alzheimer agents on the key enzyme acetylcholinesterase (AChE), which is fundamental to nervous system function and life. There are various challenging tasks in the development of the novel drug such as in case of phenserine from laboratory to the clinic by Nigel H Greig. Specifically, the essential elucidation of the kinetics of particular agent's interaction with AChE or butyrylcholinesterase (BuChE) become the base in its application and approval for an Investigational New Drug Application by the United States Government Food and Drug Administration (US-FDA) to allow the use of the compound in humans to assess its utility in the treatment of Alzheimer's dementia. It is worthwhile, to mention in a similar manner, Greig's and his colleagues studied in the development of novel agents such as cymserine and analogues, to test the radically new hypothesis that selective BuChE inhibition is of value in the therapy of Alzheimer's disease (AD). Drugs of this class are currently in preclinical development and are expected to translate into the clinic soon. There are several research articles available in the literature related with kinetic analysis for such type of new agents such as tetrahydro-furobenzofuran cymserine, a potent BuChE inhibitor and experimental Alzheimer drug candidate [1]. Mostly these types of agents are focused on syntheses of specific carbamates related to physostigmine to figure out their anticholinesterase activities and action on amyloid precursor protein (APP). According to one study, administration of AChE inhibitors increases the ratio of APP forms in platelets of patients with AD, suggesting a potential effect of AChE inhibitors (AChE-Is) on APP trafficking or processing in a peripheral cell [2]. Overall, the conclusive progress of inhibitors of cholinesterases (ChEIs) involved in the cognitive responses, i.e. AD management is still under progress due to various factors such as variability in ChEIs treatment. 368 Frontiers in Drug Design & Discovery, Vol. 6 Grieg et al. ALZHEIMER'S DISEASE Consequent to improvements in preventative, diagnostic and medical treatment for cardiovascular and oncological diseases, the mean age of most industrialized countries humans, continues to steadily climb. Sadly, allied with this rise in life span there has been a steady increase in the number of individuals afflicted with age-related debilitating neurodegenerative disorders, in particular AD. Indeed, in excess of 20 million people worldwide are afflicted with AD. Neurodegenerative diseases are not only amongst the most common causes of death but are currently among the most debilitating illnesses and force an enormous strain, not only on the afflicted and their families, but on both social and healthcare budgets throughout the world. In case of the AD brain, neural dysfunction allied to the induction of numerous biological cascades that cause the classical pathological hallmarks of disease. This is characterized by the presence of (i) amyloid deposits, extra-neuronally, that contain a small toxic cleavage product of APP processing, (ii) neurofibrillary tangles, intra-neuronally, that comprise of hyperphosphorylated tau and, (iii) a dramatic synaptic loss. Of the neurotransmitters involved, the cholinergic system is the earliest and most affected, and hence has received the greatest attention with regard to drug design and development. The primary therapeutic strategy, to date, involves the use of ChEIs to amplify remaining cholinergic activity, which improve cognition and global performance and reduce psychiatric and behavioral disturbances. AD, although an irreversible and progressive disorder, is currently treated with palliative, symptomatic therapy; primarily with AChE-Is to amplify remaining cholinergic activity. The first ChEIs approved for AD treatment was, tacrine (Cognex) in 1993, but it was proved to be relatively short-acting, unselective between the two ChE enzymes, and associated with a high incidence of reversible hepatotoxicity. In contrast, the second generation ChEIs, donepezil hydrochloride (Aricept), rivastigmine (Exelon) and galatamine (Reminyl), approved by US-FDA in the year 1996, 2000 and 2002 respectively, remain in current use, are better tolerated and have been found useful in treating mild to moderate AD patients. However, these improvements are unfortunately, quite modest. In fact, recent clinical trials have triggered considerable controversy concerning the relevance and the benefit of this class of drugs. Such concern has instigated two avenues of Specific Cholinesterase Inhibitors Frontiers in Drug Design & Discovery, Vol. 6 369 research. One to develop a new class of ChEIs with activity beyond the modest symptomatic one associated with initial agents, and another to optimize current agents based on a greater understanding of enzyme/inhibitor interactions. New agents that can affect disease progression are sorely needed. Cholinergic loss is the single most replicated neurotransmitter deficiency in AD and has led to the use of AChE-Is as the mainstay of treatment [1]. AChE-Is, however, induce dose- limiting adverse effects [1]. Inhibition of brain BuChE represents a new drug target for AD treatment. Current studies indicated that selective BuChE-Is elevate acetylcholine (ACh) in brain, which augment long-term potentiation and improve cognitive performance in rodents without the classic adverse effects of AChE-Is. BuChE-Is thereby represent a new strategy to ameliorate AD, particularly since AChE activity is depleted in AD brain, in line with ACh levels, whereas BuChE activity is elevated [1]. The BuChE to AChE ratio hence changes dramatically in cortical regions affected by AD from 0.2 up to as much as 11. This altered ratio in AD brain likely modifies the normal role of BuChE in the nervous system of hydrolyzing, excess ACh to depleting already reduced levels of the neurotransmitter. TYPES
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0371260 A1 Moebius (43) Pub
    US 20140371260A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0371260 A1 Moebius (43) Pub. Date: Dec. 18, 2014 (54) COMBINATION THERAPY USING (60) Provisional application No. 60/420,918, filed on Oct. 1-AMINOCYCLOHEXANEDERVATIVES 24, 2002. AND ACETYLCHOLINESTERASE INHIBITORS Publication Classification (71) Applicant: MERZ PHARMA GmbH & CO. (51) Int. Cl KGaA, Frankfurt Am Main (GE) A613 L/473 (2006.01) A613 L/445 (2006.01) (72)72). InventorI tor: talHans-J is: Moebius.Oebus, FraFrankfurt Am A63/325 (2006.01) A613 L/13 (2006.01) (73) Assignee: MERZPHARMA GmbH & CO. (52) U.S. Cl. KGaA, Frankfurt Am Main (GE) CPC ............... A61 K3I/473 (2013.01); A61K3I/13 (2013.01); A61 K3I/445 (2013.01); A61 K (21) Appl. No.: 14/280,405 31/325 (2013.01) USPC ............................ 514/297: 514/319; 514/479 (22) Filed: May 16, 2014 Related U.S. Application Data (57) ABSTRACT (60) Continuation of application No. 12/661,639, filed on The invention relates to a novel drug combination therapy Mar. 22, 2010, which is a continuation of application useful in the treatment of dementia comprising administering No. 12/072,539, filed on Feb. 27, 2008, now aban an 1-aminocyclohexane derivative such as memantine or ner doned, which is a division of application No. 10/691, amexane and an acetylcholinesterase inhibitor (AChEI) such 895, filed on Oct. 23, 2003, now abandoned. as galantamine, tacrine, donepezil, or rivastigmine. Patent Application Publication Dec. 18, 2014 Sheet 2 of 3 US 2014/0371260 A1 Patent Application Publication Dec. 18, 2014 Sheet 3 of 3 US 2014/0371260 A1 US 2014/0371260 A1 Dec.
    [Show full text]
  • Global Current Trends in Drug Designing for Management of Type-2 Diabetes and Neurodegenerative Disorders
    Haque et al., Drug Des 2013, 2:2 Drug Designing: Open Access http://dx.doi.org/10.4172/2169-0138.1000e120 Editorial Open Access Global Current Trends in Drug Designing for Management of Type-2 Diabetes and Neurodegenerative Disorders Haque A, Alam Q, Alam MZ and Kamal MA* Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia Abstract Neurodegenerative diseases (NDs) and Type 2 diabetes (T2D) are progressive disorder often advances with age. T2D is characterized by hyperglycaemia, insulin resistance or relative lack of insulin uptake whereas NDs are characterized by the decline in cognitive function, diffuse deposition of amyloid plaques and neurofibrillary tangles in AD and degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels in PD. Since conventional drugs fail to surpass the natural CNS protective barriers, therefore, in order to overcome these hurdles, targeted drug delivery is of foremost significance for the treatment of AD and PD. New generation of drugs has discovered through innovative nanotechnology approaches such as polymeric nanoparticles are promising candidates in the investigation of AD because nanoparticles are capable of opening the tight junctions, crossing the BBB. Thus, there is a need to adopt current trend and newer strategies such as nanotechnological, computational and gene therapy approaches for drug design and delivery. Keywords: Alzheimer disease; Type-2 diabetes; Insulin; Amyloid; function, diffuse deposition of amyloid plaques and neurofibrillary Nanotechnology; Nanodiagnostics; Nanomedicine; Neurodegenerative tangles. Various multi-disciplinary studies (epidemiologic and clinical) disorders; Drug design were carried out in an effort to identifying the etiology, pathogenesis and risk factors linked with AD.
    [Show full text]
  • Methods and Combination Therapies for Treating Alzheimer's Disease
    (19) & (11) EP 2 420 235 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 22.02.2012 Bulletin 2012/08 A61K 31/437 (2006.01) A61K 31/445 (2006.01) A61K 45/06 (2006.01) A61P 25/28 (2006.01) (21) Application number: 11181674.0 (22) Date of filing: 26.10.2007 (84) Designated Contracting States: • Protter, Andrew Asher AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Palo Alto, CA California CA 94301 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Sexton, Jane Helen J.A. Kemp & Co. (30) Priority: 27.10.2006 US 854866 P 14 South Square Gray’s Inn (62) Document number(s) of the earlier application(s) in London WC1R 5JJ (GB) accordance with Art. 76 EPC: 07867284.7 / 2 086 538 Remarks: This application was filed on 16-09-2011 as a (71) Applicant: Medivation Neurology, Inc. divisional application to the application mentioned San Francisco, CA 94105 (US) under INID code 62. (72) Inventors: • Hung, David T. Redwood City, CA California CA 94062 (US) (54) Methods and combination therapies for treating alzheimer’s disease (57) The invention provides methods and combina- bon) in conjunction with another compound, pharmaceu- tion therapies for treating and/or preventing and/or slow- tically acceptable salt thereof or therapy for Alzheimer’s ing the onset and/or development of Alzheimer’s disease disease. using a hydrogenated pyrido (4,3-b) indole (e.g., dime- EP 2 420 235 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 420 235 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims priority to U.S.
    [Show full text]
  • Screening for Cholinesterase Inhibitors in Selected Fruits and Vegetables, Ejpau, 15(2), #06
    Electronic Journal of Polish Agricultural Universities (EJPAU) founded by all Polish Agriculture Universities presents original papers and review articles relevant to all aspects of agricultural sciences. It is target for persons working both in science and industry, regulatory agencies or teaching in agricultural sector. Covered by IFIS Publishing (Food Science and Technology Abstracts), ELSEVIER Science - Food Science and Technology Program, CAS USA (Chemical Abstracts), CABI Publishing UK and ALPSP (Association of Learned and Professional Society Publisher - full membership). Presented in the Master List of Thomson ISI. ELECTRONIC 2012 JOURNAL Volume 15 OF POLISH Issue 2 AGRICULTURAL Topic BIOTECHNOLOGY UNIVERSITIES Copyright © Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, ISSN 1505-0297 SZWAJGIER D., BOROWIEC K., 2012. SCREENING FOR CHOLINESTERASE INHIBITORS IN SELECTED FRUITS AND VEGETABLES, EJPAU, 15(2), #06. Available Online http://www.ejpau.media.pl SCREENING FOR CHOLINESTERASE INHIBITORS IN SELECTED FRUITS AND VEGETABLES Dominik Szwajgier, Kamila Borowiec Lublin University of Natural Sciences, Department of Biotechnology, Human Nutrition and Science of Food Commodities ABSTRACT Plants deliver a great number of compounds among which some of them can exert a beneficial therapeutic role in the treatment of Alzheimer’s disease (e.g. huperzine A, galanthamine, physostigmine). In the present study it was shown that 17 edible fruits or vegetables effectively inhibited AChE and/or BChE. The highest anti-ChE activity was demonstrated in the case of the juice produced from peach (Prunus persica L.), water extracts prepared from dill leaves, wild strawberry fruit, potato tubers and juices produced using apples var. Idared and Champion. Extracts from parsley (leaves) and celery exhibited significantly higher activity towards AChE than BChE.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0157420 A1 Schneider (43) Pub
    US 2012O157420A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0157420 A1 Schneider (43) Pub. Date: Jun. 21, 2012 (54) TREATMENT AND PREVENTION OF A 6LX 3L/505 (2006.01) SECONDARY INTURY AFTER TRAUMA OR A6IP 29/00 (2006.01) DAMAGE TO THE CENTRAL NERVOUS A6II 3/47 (2006.01) SYSTEM A6IP 25/00 (2006.01) A6IP3/06 (2006.01) (76) Inventor: Eric B Schneider, Glen Arm, MD A6IP 9/00 (2006.01) (US) A6IP 25/22 (2006.01) A6IP 25/24 (2006.01) (21) Appl. No.: 13/392,371 A63L/366 (2006.01) A6II 3/40 (2006.01) (22) PCT Filed: Aug. 31, 2010 (52) U.S. Cl. ......... 514/171; 514/460, 514/419:514/510; (86). PCT No.: PCT/US 10/472O6 514/277; 514/275: 514/423: 514/311 S371 (c)(1), (57) ABSTRACT (2), (4) Date: Feb. 24, 2012 A method of administering one or multiple medications to human patients with CNS injury through oral or parenteral Related U.S. Application Data (including transdermal, intravenous, Subcutaneous, intra (60) Provisional application No. 61/238,453, filed on Aug. muscular) routes. Inflammatory and immunological pro 31, 2009. cesses have been shown to cause secondary damage to CNS s tissues in individuals with acute CNS injury. The present O O invention administers one or more of the following medica Publication Classification tions, which have properties that mitigate the inflammatory (51) Int. Cl. and immunological processes that lead to secondary CNS A6 IK3I/56 (2006.01) damage, via trans-dermal absorption: a statin compound A6 IK 3/405 (2006.01) (e.g., a HMG-CoA reductase inhibitor), a progesterone com A6 IK 3L/25 (2006.01) pound, or a cholinesterase inhibiting compound, among oth A6 IK 3/448 (2006.01) ers, either alone or in combination with other compounds.
    [Show full text]
  • Acetylcholinesterase Inhibitors of Natural Origin
    ® International Journal of Biomedical and Pharmaceutical Sciences ©2009 Global Science Books Acetylcholinesterase Inhibitors of Natural Origin Melanie-Jayne R. Howes1* • Peter J. Houghton2 1 Royal Botanic Gardens, Jodrell Laboratory, Kew, Richmond, Surrey, United Kingdom 2 Department of Pharmacy, King's College London, Franklin-Wilkins Building, London, United Kingdom Corresponding author : * [email protected] ABSTRACT The endogenous neurotransmitter acetylcholine (ACh), found in vertebrates, stimulates cholinergic (muscarinic and nicotinic) receptors to mediate cholinergic neuronal transmission. ACh has a short half-life, as it is rapidly hydrolysed in the neuronal synaptic cleft by the enzyme acetylcholinesterase (AChE). Modulation of cholinergic function has been recognised as a therapeutic target in some disease states and one approach to achieve this is to prolong the action of ACh through the use of AChE inhibitors. Consequently, AChE inhibitors have been investigated for a number of therapeutic applications including glaucoma, myasthenia gravis, anti-muscarinic poisoning and dementia. Many inhibitors of AChE have been derived from natural sources, with alkaloids generally being the most potent, although other compounds including some terpenoids have also been shown to inhibit AChE. It is particularly interesting that of the four drugs currently licensed in Europe to alleviate cognitive symptoms in Alzheimer’s disease, two (galantamine and rivastigmine) are derived from natural sources. Natural products continue to be investigated
    [Show full text]
  • Biomolecular Screening for Inhibitors of Butyrylcholinesterase
    DANIELA KARLSSONDANIELA Daniela Karlsson | BIOMOLECULAR SCREENING FOR INHIBITORS OF BUTYRYLCHOLINESTERASE | OF BUTYRYLCHOLINESTERASE BIOMOLECULAR SCREENING FOR INHIBITORS BIOMOLECULAR SCREENING FOR INHIBITORS OF BUTYRYLCHOLINESTERASE: Identification and characterization using in vitro and in silico tools PHARMACEUTICAL SCIENCES DEPARTMENT OF BIOSCIENCES ÅBO AKADEMI UNIVERSITY TURKU, FINLAND 2013 2013 9 789521 229671 ISBN 978-952-12-2967-1 BIOMOLECULAR SCREENING FOR INHIBITORS OF BUTYRYLCHOLINESTERASE: IDENTIFICATION AND CHARACTERIZATION USING IN VITRO AND IN SILICO TOOLS Daniela Sofia Karlsson Pharmaceutical Sciences Department of Biosciences Åbo Akademi University Turku, Finland 2013 Supervised by Docent Adyary Fallarero Pharmaceutical Sciences, Department of Biosciences Åbo Akademi University Turku, Finland Professor Pia Vuorela Pharmaceutical Sciences, Department of Biosciences Åbo Akademi University Turku, Finland Division of Pharmaceutical Biology, Faculty of Pharmacy University of Helsinki Helsinki, Finland Reviewed by Professor Jari Yli-Kauhaluoma Division of Pharmaceutical Chemistry, Faculty of Pharmacy University of Helsinki Helsinki, Finland Professor Raimo Tuominen Division of Pharmacology and Toxicology, Faculty of Pharmacy University of Helsinki Helsinki, Finland Opponent Professor Anders Backlund Division of Pharmacognosy, Department of Medicinal Chemistry Uppsala University Uppsala, Sweden Cover: Front, from left: A 96-well microplate containing compounds for screening, chemical space occupied by a synthetic (yellow) and natural (green) compound library and the structure of butyrylcholinesterase (PDB: 1POI) drawn with PyMOL. Back: Picture by Lindén-Montes Photography. ISBN 978-952-12-2967-1 Painosalama Oy – Turku, Finland 2013 ABSTRACT Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0152.108A1 Hung Et Al
    US 20100152.108A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0152.108A1 Hung et al. (43) Pub. Date: Jun. 17, 2010 (54) METHODS AND COMBINATION THERAPIES Related U.S. Application Data FORTREATING ALZHEMERS DISEASE (60) Provisional application No. 60/854.866, filed on Oct. (75) Inventors: David T. Hung, Redwood City, CA 27, 2006. (US); Andrew Asher Protter, Palo Alto, CA (US) Publication Classification Correspondence Address: (51) Int. Cl. MORRISON & FOERSTER LLP A638/18 (2006.01) 7SS PAGE MILL RD A63L/437 (2006.01) PALO ALTO, CA 94304-1018 (US) A6IP 25/28 (2006.01) A6II 3/55 (2006.01) (73) Assignee: MEDIVATION NEUROLOGY, INC., San Francisco, CA (US) (52) U.S. Cl. ............................ 514/12: 514/292; 514/215 (21) Appl. No.: 12/447,448 (57) ABSTRACT (22) PCT Filed: Oct. 26, 2007 The invention provides methods and combination therapies for treating and/or preventing and/or slowing the onset and/or (86). PCT No.: PCT/US2007/022645 development of Alzheimer's disease using a hydrogenated pyrido (4.3-b) indole (e.g., dimebon) in conjunction with S371 (c)(1), another compound, pharmaceutically acceptable salt thereof (2), (4) Date: Feb. 16, 2010 or therapy for Alzheimer's disease. US 2010/0152.108A1 Jun. 17, 2010 METHODS AND COMBINATION THERAPES central depressive and anti-inflammatory activity (U.S. Pat. FORTREATING ALZHEMIERS DISEASE No. 3,718,657, filed Dec. 3, 1970), neuroleptic activity (Her bert C.A., Plattner S.S., Welch W. M., Mol. Pharm. 1980, Vol. CROSS-REFERENCE TO RELATED 17, No. 1, p. 38-42) and others.
    [Show full text]
  • Neuroprotective Natural Products Neuroprotective Natural Products
    Neuroprotective Natural Products Neuroprotective Natural Products Clinical Aspects and Mode of Action Edited by Goutam Brahmachari Editor All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. Goutam Brahmachari editors, and publisher do not warrant the Visva-Bharati (a Central University) information contained in these books, including Department of Chemistry, Laboratory this book, to be free of errors. Readers are of Natural Products and Organic Synthesis, advised to keep in mind that statements, data, Santiniketan illustrations, procedural details or other items West Bengal 731 235 may inadvertently be inaccurate. India Cover Library of Congress Card No.: applied for Neurons: © fotolia_ktsdesign British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http:// dnb.d-nb.de. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are
    [Show full text]
  • Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer Я-Amyloid Pepti
    Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer ␤-amyloid peptide in rodent Nigel H. Greig*†, Tadanobu Utsuki*‡, Donald K. Ingram§, Yue Wang*, Giancarlo Pepeu¶, Carla Scali¶, Qian-Sheng Yu*, Jacek Mamczarz§, Harold W. Holloway*, Tony Giordano‡, DeMao Chenʈ, Katsutoshi Furukawa*, Kumar Sambamurti**, Arnold Brossi††, and Debomoy K. Lahiriʈ *Laboratory of Neurosciences and §Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224; ¶Department of Pharmacology, University of Florence, 50139 Florence, Italy; ‡Department of Biochemistry and Molecular Biology, Louisiana State University, Shreveport, LA 71130; **Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC 29425; ††University of North Carolina, Chapel Hill, NC 27599; and ʈDepartment of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 Communicated by Isabella L. Karle, Naval Research Laboratory, Washington, DC, September 30, 2005 (received for review May 20, 2005) Like acetylcholinesterase , butyrylcholinesterase (BChE) inactivates In healthy human brain, AChE predominates over BChE activity the neurotransmitter acetylcholine (ACh) and is hence a viable (1), but the latter likely has been previously underestimated (8). therapeutic target in Alzheimer’s disease, which is characterized by Whereas, histochemically, AChE is localized mainly to neurons, a cholinergic deficit. Potent, reversible, and brain-targeted BChE BChE is associated primarily with glial cells, as well as to endothelial inhibitors (cymserine analogs) were developed based on binding cells and neurons (9). An important feature distinguishing BChE domain structures to help elucidate the role of this enzyme in the from AChE is its kinetic response to concentrations of ACh; central nervous system.
    [Show full text]
  • Fig. 2 ACADIA
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 26 March 2009 (26.03.2009) PCT WO 2009/039460 A2 (51) International Patent Classification: (74) Agent: HART, Daniel; Knobbe Martens Olson & Bear A61K 31/4468 (2006.01) A61P 25/00 (2006.01) LLP, 2040 Main Street, 14th Floor, Irvine, CA 92614 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2008/077139 kind of national protection available): AE, AG, AL, AM, AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (22) International Filing Date: CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, 19 September 2008 (19.09.2008) EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (25) Filing Language: English LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, (26) Publication Language: English RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW 60/974,426 2 1 September 2007 (21.09.2007) US 60/986,250 7 November 2007 (07. 11.2007) US (84) Designated States (unless otherwise indicated, for every 61/050,976 6 May 2008 (06.05.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): ACADIA ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), PHARMACEUTICALS, INC.
    [Show full text]
  • Botulinum Toxin
    Botulinum toxin From Wikipedia, the free encyclopedia Jump to: navigation, search Botulinum toxin Clinical data Pregnancy ? cat. Legal status Rx-Only (US) Routes IM (approved),SC, intradermal, into glands Identifiers CAS number 93384-43-1 = ATC code M03AX01 PubChem CID 5485225 DrugBank DB00042 Chemical data Formula C6760H10447N1743O2010S32 Mol. mass 149.322,3223 kDa (what is this?) (verify) Bontoxilysin Identifiers EC number 3.4.24.69 Databases IntEnz IntEnz view BRENDA BRENDA entry ExPASy NiceZyme view KEGG KEGG entry MetaCyc metabolic pathway PRIAM profile PDB structures RCSB PDB PDBe PDBsum Gene Ontology AmiGO / EGO [show]Search Botulinum toxin is a protein and neurotoxin produced by the bacterium Clostridium botulinum. Botulinum toxin can cause botulism, a serious and life-threatening illness in humans and animals.[1][2] When introduced intravenously in monkeys, type A (Botox Cosmetic) of the toxin [citation exhibits an LD50 of 40–56 ng, type C1 around 32 ng, type D 3200 ng, and type E 88 ng needed]; these are some of the most potent neurotoxins known.[3] Popularly known by one of its trade names, Botox, it is used for various cosmetic and medical procedures. Botulinum can be absorbed from eyes, mucous membranes, respiratory tract or non-intact skin.[4] Contents [show] [edit] History Justinus Kerner described botulinum toxin as a "sausage poison" and "fatty poison",[5] because the bacterium that produces the toxin often caused poisoning by growing in improperly handled or prepared meat products. It was Kerner, a physician, who first conceived a possible therapeutic use of botulinum toxin and coined the name botulism (from Latin botulus meaning "sausage").
    [Show full text]