One-Way Ticket to Mars: Examining the Law and Options to Regulate Adventurism on Celestial Bodies

Total Page:16

File Type:pdf, Size:1020Kb

One-Way Ticket to Mars: Examining the Law and Options to Regulate Adventurism on Celestial Bodies 2015 Space and Evolution No. 6 2015 Space K.K.and EvolutionNair No. 6:1–16 One-Way Ticket to Mars: Examining the Law and Options to Regulate Adventurism on Celestial Bodies Kiran Krishnan Nair* Background or international, governmental or non-governmental, commercial or personal rests with the concerned na- No tourist seeks a one-way ticket. A tourist re- tion-state. Additionally, nations are bound by the usual turns home after a tour. Adventurers, by contrast, are state responsibility of ensuring the safety and security a different lot. They are far more reckless and seek a of their nationals, irrespective of whether they are different kind of pleasure—not always in conformity directly or indirectly part of any space activity or not with established norms, customs and general trends of involved at all. Thus, the envelope of responsibilities human behaviour. This is particularly true of colonis- on account of human space exploration is wide and ers who take adventure to the other extreme. They devolves on the concerned state, the particular space seek to migrate, establish colonies and appropriate agency as also the participants in the space activity. resources in virgin areas for their own benefit. The Various parties would be involved and there would be fear of the unknown and unexplored fires their imagi- significant overlap and intertwining of responsibili- nation and unlike the average tourist who seeks a large ties, all of which needs regulation well before the first amount of fun and a small measure of adventure, they proposed human space settlements come about. The seek the opposite and rush headlong into their ven- area in this regard is entirely grey and to that extent tures with little or no regard to the attendant dangers, the concept of a one-way ticket to Mars being touted risks and damage. Quite apparently, a one-way ticket by commercial companies as the next great milestone to an unknown, unearthly and unchartered destina- in tourism, exploration and colonisation is grossly tion like Mars seeks to fulfil the urges of adventurers premature. Neither has technology nor legislation and colonisers rather than the average tourist seeking matured to support such an endeavour. In its pres- nothing more than a break from the mundane. Thus, ent state, the idea of colonising Mars is chaotic and it may safely be inferred that those volunteering for fraught with danger to the individual, the state and the a one-way trip to Mars fall in the former category. general public at large. There exists a need to be more The adventurer’s enterprise is at his own risk, the deliberate, more realistic, more mindful and prepared same cannot be said about the tourist. The safety and before undertaking such risks since the risks impact well-being of tourists on Earth is the responsibility of all humanity on earth and not just a section of adven- numerous agencies ranging from the tour operators turers or colonisers. At the same time, the attendant to the states involved as also the public at large. The risks should not be allowed to suppress aspirations of same cannot be said for adventurers and colonisers the general public. The better recourse would be to seeking new pastures on Mars. They fall in an entirely channelize the disparate energies of private players, different category and the implications consequently commercial organisations and state agencies to fulfil are entirely different for the state, the trip operator, humankind’s space aspirations. Towards that end, this the colonisers and the public at large. The privileges paper seeks to examine the shortcomings and risks in and perks, the collective responsibilities of state and the present endeavour and proposes recommendations society as also rules and regulations that ensure the to regulate and streamline the entire affair. safety and well-being of tourists on earth cannot auto- matically be extended to adventurers and colonisers. Examining the Fantasy and Reality of On the contrary, by custom and law, though the Mars Endeavours adventurer or coloniser acts on his own risk, he is obliged to ensure that his acts do not risk or endanger The Sombre Realities of the Adventure those not connected with the adventure. Similarly, The first space craft, Sputnik heralded the arrival agencies facilitating such adventures owe a duty of of the space age in 1957. The first planetary explora- reasonable care to both the adventurer and the gen- tion beyond earth orbit came the very next year with eral public. With regards to the nation-state, as per an attempted lunar orbit by the US’s Pioneer 0. It prevailing space legislation, the final responsibility as failed. The first Mars probe, Marsnik-1 of the Soviet also liability on account of all space activity; national Union launched in 1960 also failed likewise. The first *Joint Director Ops (Space) at Air HQs, New Delhi, India. 1 2015 Space and Evolution No. 6 K.K. Nair successful Mars fly-by came in 1964 and the first the subject and the vast panoply of technicalities sur- successful orbit in 1971. Efforts have continued ever rounding the issues related to the means and ends of since with both the US and Russia making more than space exploration, travel, habitation etc. do not make twenty one and nineteen Mars exploration attempts. the subject immediately appealing to the lay person. In the recent past, China and India have also joined in Aspiring and fascinating on the subject of planetary the attempts with their Mars orbiters Yinghuo-1 and exploration and Mars settlements is the easier aspect, Mangalyaan in years 2011 and 2013 respectively.1 attaining credible information, knowledge and making However, five decades of efforts have yielded it appealing to lay public is a tougher proposition. For relatively little public knowledge and information instance, an average adventure camp enthusiast could on these state endeavours. The opportunities and deliver an absorbing talk on survival techniques to the challenges of the endeavour are not widely known general public. It would be appealing, credible and No great reservoir of information and knowledge on useful to one and all. But, a credible brief on Mars human space flight and settlements is known to exist; survival or habitation would demand the services of at least none exists in public domain.2 This could be a super specialist. The services of an average space attributed to lack of information or because nations are scientist or doctor may not suffice. One would at a reticent in sharing the hard earned gains of their ef- minimum require the services of specialists dealing forts. Nations dedicate enormous efforts, resource and with the myriad topics of space physical sciences or hence are perhaps reticent to share hard earned gains. dedicated aerospace medicine specialists or a space Or perhaps, decades of experience in the endeavour systems architect dealing with space habitation etc. make them cognisant of the complexities and chal- Correspondingly, the audience would also need to rea- lenges inherent in the endeavour and consequently sonably knowledgeable, interested and familiar with they remain guarded in sharing data and information the subject. The point is, at present, little is known which may be incomplete, inconsistent and immature about the subject and hence assumptions and generali- at best for sharing with the public at large. Either way, sations abound amongst the lay public. The area is a not much information of scientific or academic value fertile breeding ground for fantasies and reality in the is available with the lay public. process is glossed over. But such general knowledge On the other hand, the lay public also doesn’t ap- of the issue would not suffice. This is particularly so, pear keen on such information. Googling “NASA Mars since the subject is not frivolous and deals with life and Mission” returns a measly 15.5 Million hits compared death. Fantasies should not be allowed to fog the banal to over 134 Million hits of “Mars One”.3 By contrast, realities, risks and dangers inherent in the venture. earthly issues like “food” and “movies” return over The reality is that space exploration is inherently a thousand million hits. Perhaps, the complexity of complex and costly (Table 1). Additionally, a year Table 1. The cost of exploring Mars. 2 2015 Space and Evolution No. 6 K.K. Nair 1991 US Government Office of Technology Assess- such activity. The US has reportedly spent over $ 9 ment (OTA) study estimated cost of one-way human Billion on Mars vehicles already and the FSU6/Russia Mars missions at $ 550 billion over a 35 year period, may also be assumed to have spent likewise. Japan depending on capabilities desired and the exploration spent over $ 848 Million on a failed mission and gave schedule. It also emphasized that the need to support up while the ESA spent over $ 150 Million and slowed human life in the extremely harsh environment of down.7 More than fifty years of efforts and billions of Mars would drive the costs of human exploration to as Dollars appear to have yielded little apart from around much as 10 to 100 times the cost of robotic explora- three8 robotic contraptions on the surface of Mars. The tion.4 A more recent US report of the Congressional efforts have drawn substantially on national resources Budget Office (year 2011) stressed on the need to and tend to be perceived as a drain, especially when eliminate human space exploration altogether to con- no dramatic achievements are visible. Convincing tain rising costs.5 As a matter of fact, the 1991 OTA tax payers is a difficult exercise and consequently, report was prescient in highlighting the need to scale nations tend to advertise their advances and down- back ambitious plans or greatly extend the timescale play failures.9 The list of failures also inspires little for landing on Mars.
Recommended publications
  • Americans and the Moon Treaty Nancy L
    Journal of Air Law and Commerce Volume 46 | Issue 3 Article 6 1981 Americans and the Moon Treaty Nancy L. Griffin Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation Nancy L. Griffin, Americans and the Moon Treaty, 46 J. Air L. & Com. 729 (1981) https://scholar.smu.edu/jalc/vol46/iss3/6 This Comment is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Comments AMERICANS AND THE MOON TREATY NANCY L. GRIFFIN O N JULY 20, 1969, the United States successfully completed a technological space maneuver to place man on the moon for the first time.' Man's physical presence on the lunar surface represented such significant progress that the existing international law governing activities in outer space was no longer adequate to deal with the consequent legal questions.' The United States had taken a major step toward making the future occupation and ex- ploitation of the moon a reality. This event created a particular 1 TIME, July 25, 1969, at 10. SIn 1969, the international law governing states' activities in outer space consisted of United Nations General Assembly resolutions and two treaties: the Outer Space Treaty of 1967, 18 U.S.T. 2410, T.I.A.S. No. 6347, 610 U.N.T.S. 206, and the Rescue and Return Agreement of 1969, 19 U.S.T. 7570, T.IA.S.
    [Show full text]
  • EMC18 Abstracts
    EUROPEAN MARS CONVENTION 2018 – 26-28 OCT. 2018, LA CHAUX-DE-FONDS, SWITZERLAND EMC18 Abstracts In alphabetical order Name title of presentation Page n° Théodore Besson: Scorpius Prototype 3 Tomaso Bontognali Morphological biosignatures on Mars: what to expect and how to prepare not to miss them 4 Pierre Brisson: Humans on Mars will have to live according to both Martian & Earth Time 5 Michel Cabane: Curiosity on Mars : What is new about organic molecules? 6 Antonio Del Mastro Industrie 4.0 technology for the building of a future Mars City: possibilities and limits of the application of a terrestrial technology for the human exploration of space 7 Angelo Genovese Advanced Electric Propulsion for Fast Manned Missions to Mars and Beyond 8 Olivia Haider: The AMADEE-18 Mars Simulation OMAN 9 Pierre-André Haldi: The Interplanetary Transport System of SpaceX revisited 10 Richard Heidman: Beyond human, technical and financial feasibility, “mass-production” constraints of a Colony project surge. 11 Jürgen Herholz: European Manned Space Projects 12 Jean-Luc Josset Search for life on Mars, the ExoMars rover mission and the CLUPI instrument 13 Philippe Lognonné and the InSight/SEIS Team: SEIS/INSIGHT: Towards the Seismic Discovering of Mars 14 Roland Loos: From the Earth’s stratosphere to flying on Mars 15 EUROPEAN MARS CONVENTION 2018 – 26-28 OCT. 2018, LA CHAUX-DE-FONDS, SWITZERLAND Gaetano Mileti Current research in Time & Frequency and next generation atomic clocks 16 Claude Nicollier Tethers and possible applications for artificial gravity
    [Show full text]
  • REASONS to MIND ASTEROIDS with the Rapid Progress Made In
    ASTEROID MINING & ITS LEGAL IMPLICATIONS Neil Modi & Devanshu Ganatra Presentation ID- IAC- 16.E7.IP.23.x32357 REASONS TO MINE ASTEROIDS With the rapid progress made in technology, humans are taking huge steps in space today. There is huge potential in space, and particularly in asteroid mining. ENERGY CRISIS RARE EARTH METALS • Non-renewable fossil fuels like coal, oil currently account for 81% of • Many of the metals widely used in almost all industrial products the world’s primary energy. were always limited and are now in SHORT SUPPLY leading to skyrocketing manufacturing costs. • EARLIER, renewable energy could not compete with non-renewable sources because it relied on metals in short supply. Resources found • These include Platinum Group Metals (PMGS) and others like on asteroids would solve this problem completely. gold, cobalt, iron, molybdenum etc. Image Credit-The U.S. Energy Image Credit- FuelSpace.org- ‘How Asteroids Can Information Administration Save Mankind’ PROJECTED SCARCITY OF RESOURCES ON EARTH Image Credit-Shackleton Energy Company Image Credit- Chris Clugston’s ‘An Oil Drum- An Analysis’ (2010) THE NEED FOR WATER 1. SUPPORT SYSTEM FOR ASTRONAUTS- Since the main constituents of water HYDRATION AND OXYGEN are hydrogen and oxygen, it is a source of oxygen for life support. TO ASTRONAUTS 2. PROTECTION FROM RADIATION- Water absorbs and blocks infrared radiation, which means that by storing heat it helps to maintain temperature. 3. ROCKET FUEL- Rocket propellant is hydrogen and oxygen based, with a large percentage of the weight of a spacecraft taken up by fuel. 4. SPACE EXPLORATION- A GAS STATION IN SPACE KEY TO SPACE BLOCKS EXPLORATION WATER RADIATION Today billions of dollars are spent in rocket fuel to sustain space explorations.
    [Show full text]
  • The Emergence of Space Law
    THE EMERGENCE OF SPACE LAW Steve Doyle* I. INTRODUCTION Space law exists today as a widely regarded, separate field of jurisprudence; however, it has many overlapping features involving other fields, including international law, contract law, tort law, and administrative law, among others.1 Development of space law concepts began early in the twentieth century and blossomed during the second half of the century into its present state. It is not yet widely taught in law schools, but space law is gradually being accorded more space in law school curricula. Substantial notional law and concepts of space law emerged prior to the first orbiting of a man made satellite named Sputnik in 1957. During the next decade (1958-1967), an intense effort was made to bring law into compliance with the realities of expanding spaceflight activities. During the 1960s, numerous national and international regulatory laws emerged to deal with satellite launches and space radio uses and to ensure greater international awareness and governmental presence in the oversight of ongoing activities in space. Just as gradually developed bodies of maritime law emerged to regulate the operation of global shipping, aeronautical law emerged to regulate the expansion of global civil aviation, and telecommunication law emerged to regulate the global uses of radio and wire communication systems, a new body of law is emerging to regulate the activities of nations in astronautics. We know that new body of law as Space Law. * Stephen E. Doyle is Honorary Director, International Institute of Space Law, Paris. Mr. Doyle worked fifteen years in federal civil service (1966-1981), fifteen years in the aerospace industry (1981-1996), and fifteen years in the power production industry (1996-2012).
    [Show full text]
  • The Space Industry Act 2018 (Commencement No
    STATUTORY INSTRUMENTS 2021 No. 817 (C. 45) SPACE INDUSTRY The Space Industry Act 2018 (Commencement No. 2, Transitional and Savings Provisions) Regulations 2021 Made - - - - at 9.35 a.m. on 8th July 2021 The Secretary of State, in exercise of the powers conferred by section 70 of the Space Industry Act 2018( a), makes the following Regulations. PART 1 Preliminary Citation, extent and interpretation 1. —(1) These Regulations may be cited as the Space Industry Act 2018 (Commencement No. 2, Transitional and Savings Provisions) Regulations 2021. (2) These Regulations extend to England and Wales, Scotland and Northern Ireland, subject as follows. (3) In the Schedule, paragraphs 73, 82 to 85 and 113 do not extend to Northern Ireland. (4) In the Schedule, paragraphs 86 to 87 and 116 extend to Northern Ireland only. (5) In the Schedule, paragraph 117 has, for the purposes of the commencement of each amendment of an enactment made by Schedule 12 to the Act, the same extent as the enactment amended. (6) In these Regulations— “the Act” means the Space Industry Act 2018 and a reference to a section without more is a reference to a section of the Act; “cabin crew” means individuals who take part in spaceflight activities( b) on board a launch vehicle to perform duties assigned by the spaceflight operator or the pilot in command of the launch vehicle, but who are not members of the flight crew; “carrier aircraft” means an aircraft which is carrying a launch vehicle which is to separate from that aircraft before the aircraft lands; “crew” means— (a) members of the cabin crew, and (b) members of the flight crew; (a) 2018 c.
    [Show full text]
  • Foi-R--5077--Se
    Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman FOI-R--5077--SE Januari 2021 Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet FOI-R--5077--SE Titel Omvärldsanalys Rymd 2020 – Fokus på försvar och säkerhet Title Global Space Trends 2020 for Defence and Security Rapportnr/Report no FOI-R--5077--SE Månad/Month Januari Utgivningsår/Year 2021 Antal sidor/Pages 127 ISSN 1650-1942 Kund/Customer Försvarsmakten Forskningsområde Flygsystem och rymdfrågor FoT-område Sensorer och signaturanpassningsteknik Projektnr/Project no E60966 Godkänd av/Approved by Lars Höstbeck Ansvarig avdelning Försvars- och säkerhetssystem Bild/Cover: Tre gröna lasrar från Starfire Optical Range på Kirtland Air Force Base i New Mexico, USA. Anläggningen används bland annat för inmätning av objekt i låga satellitbanor. Den allmänna uppfattningen (men ej officiell) är att lasern även kan användas som ASAT-vapen. Källa: Directed Energy Directorate, US Air Force. Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI.
    [Show full text]
  • Space Industry Bulletin January 2019
    VOLUME 2 • ISSUE 1 www.spaceindustrybulletin.com Space Industry Bulletin Market analysis and business intelligence for the space community Space Industry Act heralds UK sovereign launch capability ith the granting of The SIA is intended to create Indeed, to this end, the bulk of Royal Assent to the the necessary legal framework the SIA resembles a piece of WSpace Industry Act for the expansion and growth of planning legislation. CONTENTS 2018, the UK is taking legislative the UK space industry. The However, turning to the new steps to regain sovereign launch drafters of the legislation have licencing and liability regime, Industry news 2 l Boeing invests in Isotropic capacity. The Space Industry tried to respond to the demands there is no detail in the Act ex - Systems Act (SIA) represents an of the space industry, sacrificing plaining how this will operate in l Contract to develop ambitious attempt to re- detail and scrutiny upfront for practice. It appears that such constellation satellite bus awarded establish independent launch flexibility in the future. operational matters will be to Airbus capacity and a launch facility Significantly the SIA provides fleshed out by means of dele - l Sector deal questions iraised in the House of Commons within the UK to complement its authority and the bare bones of gated legislation. l ‘Managed’ no-deal Brexit won’t burgeoning small satellite a regulatory framework for the The draft regulations for these be enough industry. authorisation of launches from delegated powers have not yet l First satellite capable of being within the UK. There is provision been promulgated and this lack reprogrammed after launch leaves the UK for assembly and test within the SIA for the creation of detail provoked some contro - l Global defence spending rises at and management of spaceports.
    [Show full text]
  • An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
    DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program .........................................................................................................................
    [Show full text]
  • Grail): Extended Mission and Endgame Status
    44th Lunar and Planetary Science Conference (2013) 1777.pdf GRAVITY RECOVERY AND INTERIOR LABORATORY (GRAIL): EXTENDED MISSION AND ENDGAME STATUS. Maria T. Zuber1, David E. Smith1, Sami W. Asmar2, Alexander S. Konopliv2, Frank G. Lemoine3, H. Jay Melosh4, Gregory A. Neumann3, Roger J. Phillips5, Sean C. Solomon6,7, Michael M. Watkins2, Mark A. Wieczorek8, James G. Williams2, Jeffrey C. Andrews-Hanna9, James W. Head10, Wal- ter S. Kiefer11, Isamu Matsuyama12, Patrick J. McGovern11, Francis Nimmo13, G. Jeffrey Taylor14, Renee C. Weber15, Sander J. Goossens16, Gerhard L. Kruizinga2, Erwan Mazarico3, Ryan S. Park2 and Dah-Ning Yuan2. 1Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02129, USA ([email protected]); 2Jet Propulsion Laboratory, California Institute of Technol- ogy, Pasadena, CA 91109, USA; 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; 4Dept. of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA; 5Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA; 6 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA; 7Dept. of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA; 8Institut de Physique du Globe de Paris, 94100 Saint Maur des Fossés, France; 9Dept. of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA; 10Dept. of Geological Sciences, Brown University, Providence, RI 02912, USA; 11Lunar and Planetary Institute, Houston, TX 77058, USA; 12Lunar and Planetary Laborato- ry, University of Arizona, Tucson, AZ 85721, USA; 13Dept. of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA; 14Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA; 15NASA Marshall Space Flight Center, Huntsville, AL 35805, USA, 16University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
    [Show full text]
  • Educator's Guide
    EDUCATOR’S GUIDE ABOUT THE FILM Dear Educator, “ROVING MARS”is an exciting adventure that This movie details the development of Spirit and follows the journey of NASA’s Mars Exploration Opportunity from their assembly through their Rovers through the eyes of scientists and engineers fantastic discoveries, discoveries that have set the at the Jet Propulsion Laboratory and Steve Squyres, pace for a whole new era of Mars exploration: from the lead science investigator from Cornell University. the search for habitats to the search for past or present Their collective dream of Mars exploration came life… and maybe even to human exploration one day. true when two rovers landed on Mars and began Having lasted many times longer than their original their scientific quest to understand whether Mars plan of 90 Martian days (sols), Spirit and Opportunity ever could have been a habitat for life. have confirmed that water persisted on Mars, and Since the 1960s, when humans began sending the that a Martian habitat for life is a possibility. While first tentative interplanetary probes out into the solar they continue their studies, what lies ahead are system, two-thirds of all missions to Mars have NASA missions that not only “follow the water” on failed. The technical challenges are tremendous: Mars, but also “follow the carbon,” a building block building robots that can withstand the tremendous of life. In the next decade, precision landers and shaking of launch; six months in the deep cold of rovers may even search for evidence of life itself, space; a hurtling descent through the atmosphere either signs of past microbial life in the rock record (going from 10,000 miles per hour to 0 in only six or signs of past or present life where reserves of minutes!); bouncing as high as a three-story building water ice lie beneath the Martian surface today.
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]