Modelling Dust Liberation in Bulk Material Handling Systems
Total Page:16
File Type:pdf, Size:1020Kb
Delft University of Technology Modelling dust liberation in bulk material handling systems Derakhshani, Sayed Mohammadebrahim DOI 10.4233/uuid:0d8c6401-fc4e-4b7b-babc-6eb9573d79b3 Publication date 2016 Document Version Final published version Citation (APA) Derakhshani, S. M. (2016). Modelling dust liberation in bulk material handling systems. Delft, The Netherlands. https://doi.org/10.4233/uuid:0d8c6401-fc4e-4b7b-babc-6eb9573d79b3 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Modelling Dust Liberation in Bulk Material Handling Systems Sayed Mohammadebrahim DERAKHSHANI Modelling Dust Liberation in Bulk Material Handling Systems Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 3 mei 2016 om 10.00 uur door Sayed Mohammadebrahim DERAKHSHANI Master of Science in Mechanical Engineering, Iran University of Science and Technology, Iran geboren te Isfahan, Iran. Dit proefschrift is goedgekeurd door de Promotor: Prof. dr. ir. G. Lodewijks Copromotor: Dr. ir. D. L. Schott Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof. dr. ir. G. Lodewijks, Technische Universiteit Delft, promotor Dr. ir. D. L. Schott, Technische Universiteit Delft, copromotor Independent members: Prof. dr. ir. B. J. Boersma, Technische Universiteit Delft Prof. dr. ir. J. R. van Ommen, Technische Universiteit Delft Prof. dr. Ing. A. Katterfeld, Universitat Magdeburg Prof. dr. ir. J. A. M. Kuipers, Technische Universiteit Eindhoven Dr. ir. A. Thornton, Universiteit Twente Sayed Mohammadebrahim Derakhshani, Modelling Dust Liberation in Bulk Material Handling Systems, Ph.D. Thesis Delft University of Technology, with summary in Dutch. Published and distributed by: Sayed Mohammadebrahim Derakhshani E-mail: [email protected] Keywords: Dust liberation phenomenon, Discrete Element Method (DEM), Computational Fluid Dynamics (CFD), Conveyor, Transfer point. Copyright © 2016 by Sayed Mohammadebrahim Derakhshani All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of the copyright owner. ISBN 978-94-6186-643-1 Printed in the Netherlands. To my lovely wife “Even under the assumption that God’s existence is unlikely, the potential benefits of believing are so vast as to make betting on theism rational.” Blaise Pascal, 1623-1662 Contents Contents i 1 Introduction1 1.1 Dust liberation phenomenon...........................1 1.2 Thesis objectives and research question....................3 1.3 Research methodology..............................4 1.4 Outline of thesis.................................4 2 Numerical Methods for Modelling the Particulate Flows9 2.1 Modelling the particle-fluid two-phase flow................... 10 2.1.1 Review of numerical methods for modelling the particulate flows.. 11 2.1.2 Selecting the suitable method for modelling dust liberation..... 13 2.2 Discrete Element Model (DEM)......................... 15 2.2.1 Contact model.............................. 15 2.2.2 Governing equations of rolling resistance................ 17 2.2.3 DEM time step.............................. 18 2.3 CFD-DEM coupling method........................... 18 2.3.1 The governing equations of the particle and fluid phases....... 19 2.3.2 Drag force models............................ 21 2.3.3 Voidage models.............................. 23 2.4 Conclusions.................................... 24 3 CFD-DEM Modelling of the Single Particle Sedimentation 31 3.1 The analytical framework of the SPS...................... 32 3.2 Benchmarking tests................................ 34 3.2.1 Test set-up................................ 35 3.2.2 Calibration, verification, and validation plan............. 35 3.2.3 The accuracy of CFD-DEM model................... 36 3.3 The CFD-DEM modelling of the SPS..................... 37 3.3.1 The CFD-DEM calibration....................... 37 i ii Contents 3.3.2 The CFD-DEM verification....................... 41 3.3.3 The CFD-DEM validation........................ 42 3.4 Conclusions.................................... 42 4 Determination of Micro-Macro Properties of Quartz Sand 47 4.1 The physical properties of quartz sand..................... 48 4.1.1 Particle Size Distribution (PSD).................... 48 4.1.2 Particle and bulk density........................ 49 4.2 Benchmarking tests................................ 49 4.2.1 The hourglass............................... 49 4.2.2 The conical pile formation........................ 50 4.2.3 The rectangular container........................ 51 4.3 Experimental results............................... 52 4.3.1 Uncertainty of experimental results................... 52 4.3.2 Determining the PSD of quartz sand.................. 52 4.3.3 Particle and bulk density of quartz sand................ 53 4.3.4 The hourglass test............................ 53 4.3.5 The Conical pile formation test..................... 54 4.3.6 The rectangular container test..................... 55 4.4 Determining the microscopic properties of quartz sand............ 56 4.4.1 Accuracy assessment of the numerical results............. 57 4.4.2 DEM calibration: Modelling the hourglass............... 58 4.4.3 DEM validation: Modelling the conical pile formation........ 61 4.4.4 CFD-DEM modelling of the hourglass................. 61 4.4.5 Modelling the rectangular container.................. 64 4.5 Conclusions.................................... 65 5 Modelling a Fluidized Bed of Quartz Sand 69 5.1 Basic principles of a fluidized bed........................ 70 5.1.1 Macroscopic parameters......................... 70 5.1.2 Flow regimes in the fluidized bed................... 72 5.2 Benchmarking test................................ 74 5.2.1 Experimental setup............................ 74 5.2.2 Measurement methodology....................... 75 5.2.3 Experimental plan............................ 76 5.2.4 Numerical settings of the CFD-DEM model.............. 76 5.3 Experimental results............................... 77 5.3.1 Determining the Minimum Fluidization Velocity (MFV)....... 77 5.3.2 The flow regime of fluidized bed.................... 79 5.3.3 The coefficient of sliding friction between the sand and the Plexiglass wall.................................... 79 5.4 CFD-DEM results................................ 80 5.4.1 Grid dependency analysis........................ 80 Contents iii 5.4.2 The penetration effect.......................... 81 5.4.3 Drag force models............................ 82 5.4.4 The effect of particle size........................ 83 5.4.5 Periodic and wall boundary conditions................. 86 5.4.6 Particle-wall friction coefficient..................... 87 5.4.7 Determining the Coefficient of Restitution............... 88 5.5 Conclusions.................................... 89 6 Modelling Dust Liberation at the Transfer Point 93 6.1 A review of the dust liberation modelling techniques............. 94 6.2 Basic principles of the dust liberation..................... 96 6.3 Experimental set-up and numerical settings.................. 97 6.3.1 The belt conveyor set-up........................ 98 6.3.2 The experimental plan.......................... 99 6.3.3 The CFD-DEM settings and simulation plan............. 101 6.4 Experimental results............................... 104 6.4.1 Determination of µs,pb .......................... 104 6.4.2 The position of the feeder........................ 105 6.4.3 Measuring the mass flow rate of feeder................. 105 6.4.4 The discharge trajectory of the sand particles............. 105 6.4.5 Inclined conveyor............................. 107 6.4.6 Utilization of impact plate........................ 108 6.5 CFD-DEM results................................ 109 6.5.1 Determination of the CFD domain size................. 109 6.5.2 Determination of µr,pb .......................... 109 6.5.3 Comparison between DEM and CFD-DEM results.......... 111 6.5.4 The speed of belt conveyor....................... 111 6.5.5 Inclined belt conveyor.......................... 113 6.5.6 Utilizing the impact plates....................... 114 6.6 Dust liberation modelling............................ 115 6.6.1 The particle size effect.......................... 115 6.6.2 The effect of particle density...................... 116 6.6.3 The effect of belt speed......................... 116 6.6.4 The effect of airflow speed........................ 117 6.6.5 Investigating the viscous effect..................... 120 6.6.6 The effect of coefficients of restitution................. 124 6.7 Conclusions.................................... 125 7 Conclusions and Recommendations 131 7.1 Conclusions.................................... 131 7.2 Recommendations