Combination of Heating and Preservative Impregnation of Wood for Outdoor Exposure

Total Page:16

File Type:pdf, Size:1020Kb

Combination of Heating and Preservative Impregnation of Wood for Outdoor Exposure LICENTIATE THE SIS Department of Engineering Sciences and Mathematics Division of Wood Science and Engineering for Outdoor Exposure Wood of Impregnation Combination of Heating and Preservative Ekaterina Sidorova ISSN 1402-1757 Combination of Heating and ISBN 978-91-7583-511-2 (print) ISBN 978-91-7583-512-9 (pdf) Preservative Impregnation of Luleå University of Technology 2016 Wood for Outdoor Exposure Ekaterina Sidorova Wood Science and Engineering Combination of heating and preservative impregnation of wood for outdoor exposure Ekaterina Sidorova Luleå University of Technology, Department of Engineering Sciences and Mathematics, Division of Wood Science and Engineering Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1757 ISBN 978-91-7583-511-2 (print) ISBN 978-91-7583-512-9 (pdf) Luleå 2016 www.ltu.se Abstract The research is presented as a composite thesis containing a theoretical explanatory review based on four scientific articles. The thesis covers the investigation of wood modification methods, which in the future could possibly be developed further to enhance the performance of wood products in an efficient and economical way. The target applications for the studied methods were non-structural wooden materials for outdoor exposure, such as cladding, facades and decking. Therefore, weather resistance, appearance and durability were the qualities to be studied. The methods were based on the combination of heat and impregnation with liquid preservatives. The following methods were included in the study: heat treatment in steam, heat treatment in oil with subsequent oil impregnation of heat treated wood and impregnation with artificial chemicals (copper, furfuryl alcohol and phenol formaldehyde) enhanced by preheating the wood. All the treatments were performed mainly on Scots pine, but also on Norwegian spruce and European varieties of ash, aspen, birch and beech. The first article covers the investigation of methods for oil heat treatment and oil impregnation of wood. The oil treatments were designed and performed at laboratory scale. The second and third articles cover studies concerning the behaviour of steam heat treated, oil heat treated and oil impregnated wood boards in terms of their resistance to cyclical climate conditions and brown rot fungi. The climate conditions were recreated in laboratory by letting the samples to soak in water, freeze in a freezer and absorb heat from an infrared lamp. The fourth article covers the study of impregnation of preheated wood with copper-based, furfuryl alcohol and phenol formaldehyde solutions; phenol formaldehyde treated wood was tested in the accelerated weathering test in order to find out if the treatment blocks wood resin coming out from the knots. The results showed that degradation processes within wood during oil heat treatment were similar to the degradation processes during heat treatment in steam, but with the difference of a small oil uptake when heat treating in oil. When heated wood is directly placed to cool down in oil at room temperature, then it absorbs significantly more oil than during the process of heat treatment in oil; similarly, impregnation with copper-based preservative after preheating was deeper compared to impregnation without preheating. However, oil seems to be rather unstable inside wood. After the samples were impregnated with oil in the experiments, the oil migrated throughout the wood and leached out when exposed to water and heat. By visual observation it was found that colour degraded to a certain extent in all untreated and treated species exposed to the cyclical weather conditions used in the study. It could also be noticed that the method used to create the cyclical weather conditions (mentioned above), in which the wood was exposed to periods of soaking, freezing and warming, showed to be an effective method to test the wood for outdoor applications. It was observed that both heat treatment and oil impregnation improved durability of wood against brown rot fungi. However, the oil impregnation method needs, probably, to be further developed to protect wood in the long term due to oil leakage from the wood. It was found that the phenol formaldehyde treatment using hot-and-cold bath process significantly reduced the migration of resin and extractives through knot in painted wood panels. Keywords: Wood weather resistance, heat treated wood, wood outdoor exposure, moisture sorption, climate effect on wood, wood durability, phenol formaldehyde treated wood iii iv List of papers This Licentiate thesis is based on the following research and conference articles, which are referred to in the text by their roman numerals: I. Sidorova, E. “Oil heat treatment of wood.” In: Proceedings of the 4th meeting of the Nordic-Baltic network in wood material science and engineering. 2008. Published. II. Sidorova, E., Morén, T. “Wooden material under extreme climate changes.” In: Proceedings of the 11th International IUFRO Wood Drying Conference. 2010. Published. Authors' contributions Sidorova: experiment performance, data analysis, paper writing Morén: leading the research process, supervision III. Karlsson, O., Sidorova, E., and Morén, T. “Influence of heat transferring media on durability of thermally modified wood.” In: BioResources, 2011, Vol.6, Journal nr. 1, pp. 356-372, ISSN 1930-2126, Published. Authors' contributions Karlsson: paper writing, data analysis Sidorova: experiment performance Morén: leading the research process, supervision IV. Sidorova, E., Elustondo, D., Karlsson, O., and Dagbro, O. “Simplified Method for Modification of Solid Wood: Enhanced Penetration of Liquid Preservatives into the Wood without Using Pressure Equipment.” 2015. Submitted. Authors' contributions Sidorova: experiment performance, data analysis, paper writing and editing Elustondo: leading the research process, supervision, experiment performance, data analysis, paper writing and editing Karlsson: supervision, experiment performance, paper editing Dagbro: paper editing v vi Contents ABSTRACT ...................................................................................................................... III LIST OF PAPERS ............................................................................................................ V CONTENTS .................................................................................................................. VII ABBREVIATIONS ......................................................................................................VIII 1. INTRODUCTION ....................................................................................................... 1 1.1 Wood and its chemical structure ............................................................................... 1 1.1.1 Cellulose ..................................................................................................................................... 2 1.1.2 Hemicelluloses ........................................................................................................................... 4 1.1.3 Lignin .......................................................................................................................................... 5 1.1.4 Extractives .................................................................................................................................. 7 1.2 Wood degradation ....................................................................................................... 7 1.2.1 Chemical degradation ............................................................................................................... 7 1.2.2 Thermal degradation ................................................................................................................ 7 1.2.3 Moisture degradation ............................................................................................................... 8 1.2.4 Mechanical degradation ........................................................................................................... 8 1.2.5 Ultraviolet degradation ............................................................................................................ 8 1.2.6 Biological degradation .............................................................................................................. 9 1.3 Wood modification of solid wood with liquid preservatives and heating ........ 10 1.3.1 Wood impregnation with liquid preservatives ................................................................... 10 1.3.2 Wood treatment with heating ............................................................................................... 13 1.4 Objectives ................................................................................................................... 13 2. MATERIALS ............................................................................................................... 15 3. METHODS .................................................................................................................. 16 3.1 Heat treatment ............................................................................................................ 16 3.1.1 HT in steam ............................................................................................................................. 19 3.1.2 HT in hot oil ............................................................................................................................ 20 3.2 Simplified method for wood modification:
Recommended publications
  • Chapter 296-78 WAC, Sawmills and Woodworking
    Chapter 296-78 WAC Introduction Sawmills and Woodworking Operations _________________________________________________________________________________________________________ Chapter 296-78 WAC Sawmills and Woodworking Operations (Form Number F414-010-000) This book contains rules for Safety Standards for sawmills and woodworking operations, as adopted under the Washington Industrial Safety and Health Act of 1973 (Chapter 49.17 RCW). The rules in this book are effective March 2018. A brief promulgation history, set within brackets at the end of this chapter, gives statutory authority, administrative order of promulgation, and date of adoption of filing. TO RECEIVE E-MAIL UPDATES: Sign up at https://public.govdelivery.com/accounts/WADLI/subscriber/new?topic_id=WADLI_19 TO PRINT YOUR OWN PAPER COPY OR TO VIEW THE RULE ONLINE: Go to https://www.lni.wa.gov/safety-health/safety-rules/rules-by-chapter/?chapter=78/ DOSH CONTACT INFORMATION: Physical address: 7273 Linderson Way Tumwater, WA 98501-5414 (Located off I-5 Exit 101 south of Tumwater.) Mailing address: DOSH Standards and Information PO Box 44810 Olympia, WA 98504-4810 Telephone: 1-800-423-7233 For all L&I Contact information, visit https://www.lni.wa.gov/agency/contact/ Also available on the L&I Safety & Health website: DOSH Core Rules Other General Workplace Safety & Health Rules Industry and Task-Specific Rules Proposed Rules and Hearings Newly Adopted Rules and New Rule Information DOSH Directives (DD’s) See http://www.lni.wa.gov/Safety-Health/ Chapter 296-78 WAC Table of Contents Sawmills and Woodworking Operations _________________________________________________________________________________________________________ Chapter 296-78 WAC SAFETY STANDARDS FOR SAWMILLS AND WOODWORKING OPERATIONS WAC Page WAC 296-78-500 Foreword.
    [Show full text]
  • Care and Preservation of Furniture and Wooden Objects by Louise Beck, Conservator, the Henry Ford
    The Care and Preservation of Furniture and Wooden Objects by Louise Beck, Conservator, The Henry Ford. Introduction Antique furniture and wooden objects can be maintained for years of use and enjoyment provided that some basic care and attention is given to their preservation. The conservation staff at The Henry Ford have compiled the information in this fact sheet to help individuals care for their objects and collections. The first step in the care of collections is to understand and minimize or eliminate conditions that can cause damage. The second step is to follow basic guidelines for care, handling and cleaning. Types of Damage For most antique furniture owners, the desire to both utilize their collections and at the same time preserve them presents a formidable challenge. These two objectives are often at odds with each other. Improper handling/usage/display, environment, cleaning, and repair are the most common causes of damage to furniture and wooden objects. The primary cause of damage to furniture is careless handling and use, resulting in damage to surfaces or structural damage to the object. Inappropriate environment, both in terms of light and relative humidity, can lead to damage. Excessive light can accelerate the aging and degradation of finishes resulting in a cracked, brittle or "alligatored" appearance; it can also cause fading or softening of the finish. Since wood is a porous material it readily absorbs water when humidity levels are high. This absorption of moisture causes wood to swell. Conversely, wood shrinks in a dry environment. The shrinkage of wood in dry environments leads to the formation of structural cracks, lifting veneer and inlays, gaps in joints and the embrittlement of adhesives.
    [Show full text]
  • Annex 2B: OSB (Oriented Strand Board)
    Panel Guide Version 4 Annex 2B: OSB (oriented strand in panels from different manufacturers; in panels from different manufacturers it is possible to obtain ratios board) of property levels in the machine- to cross-direction of Description 1.25:1 to 2.5:1, thereby emulating the ratios found in OSB is an engineered wood-based panel material in plywood. which long strands of wood are bonded together with a synthetic resin adhesive. OSB is usually composed Appearance of three layers, with the strands of the outer two layers OSB is readily identified by its larger and longer wood orientated in a particular direction, more often than strands, compared to particleboard. The orientation not in the long direction of the panel. While there is an of the surface strands is not always visually apparent, orientation, it is often hard to see because there is quite especially in small pieces of panel. The panel tends to a large degree of variability in this orientation among have a number of holes on the surface due to the overlap adjacent strands in the panels from any one production of strands, but a smoother surface can be obtained by line, as well as between panels from different producers. sanding. However, OSB will never possess the smooth- ness of surface found in fibreboards and particleboards: rather its merits lie in the field of mechanical perfor- mance which is directly related to the use of longer and larger strands of wood. OSB varies in colour from a light straw colour to a medium brown depending on species used, resin system adopted and pressing conditions employed.
    [Show full text]
  • Woodworking Master
    OHIO STATE UNIVERSITY EXTENSION OHIO 4-H MASTER PROJECTS 4-H 560M Woodworking Master By Doug Dill, Faculty Emeritus, Extension Educator, Ohio State University Extension, and Assistant Superintendent, Ohio State Fair 4-H Woodworking Day. Reviewed by Randall Reeder, Faculty Emeritus, Department of Food, Agricultural, and Biological Sciences, The Ohio State University The Woodworking Master project is for members who want to continue with woodworking after completing the Ohio 4-H woodworking projects (556 Measuring Up, 557 Making the Cut, 558 Nailing It Together, and 559 Finishing Up). Members of any age may complete this project, but must have completed the existing projects, must have woodworking experience comparable to what is required for other advanced-level 4-H projects, and must be able to plan and complete the project on their own with minimal supervision or assistance. NAME __________________________________________________________________________ AGE (as of January 1 of the current year): ______________________________________________ COUNTY: _______________________________________________________________________ CLUB NAME: _____________________________________________________________________ ADVISOR: _______________________________________________________________________ ohio4h.org CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information: go.osu.edu/cfaesdiversity. Project Guidelines 1. Plan, design, build, and evaluate at least one 6. If possible, have someone take pictures of you woodworking project. What you make should be working on your project at different stages as you different from what you can make within the progress from the beginning through completion, guidelines of other 4-H woodworking projects, or and attach copies of the photos in section 6 or in require specialized or professional-level skills to a separate project scrapbook. complete (beyond what would be expected in 7.
    [Show full text]
  • Creating a Timber Frame House
    Creating a Timber Frame House A Step by Step Guide by Brice Cochran Copyright © 2014 Timber Frame HQ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording or otherwise, without the prior written permission of the author. ISBN # 978-0-692-20875-5 DISCLAIMER: This book details the author’s personal experiences with and opinions about timber framing and home building. The author is not licensed as an engineer or architect. Although the author and publisher have made every effort to ensure that the information in this book was correct at press time, the author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause. Except as specifically stated in this book, neither the author or publisher, nor any authors, contributors, or other representatives will be liable for damages arising out of or in connection with the use of this book. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory; direct, indirect or consequential damages; income or profit; loss of or damage to property and claims of third parties. You understand that this book is not intended as a substitute for consultation with a licensed engineering professional. Before you begin any project in any way, you will need to consult a professional to ensure that you are doing what’s best for your situation.
    [Show full text]
  • What Is Woodworking?
    What is woodworking? Accident prevention in woodworking literally starts Never carry sharp or pointed tools in your pock- from the ground up — the floor. Whether you’re ets or use tools with burred or mushroomed heads. cutting, drilling, shaping or sanding, you will per- Check for and repair loose or damaged tool handles. form the operation more safely in a clean, unclut- tered workplace. When handling small tools, follow these suggestions: • Select the right tool for the job. Makeshift It’s easier and safer to work in a clean area tools are dangerous; • Sharp tools in good condition are safer; Remove sawdust, wood shavings and chips, • Give tools to co-workers by the handle first; and scrap lumber from the work area frequently • Carry only as many tools as you can safety throughout the day to eliminate slipping and trip- manage; ping hazards. • When carrying sharp or pointed tools, keep sharp edges and points down and never put Immediately clean up oil, grease and other liquids them in your pockets. spilled on the floor. Stop machine completely when unattended Pieces of lumber extending into aisles, materials lying around machinery and improperly stacked Unattended machinery is dangerous. The safe lumber make performing your job difficult and worker makes sure the machine is completely create hazards. stopped, not just switched off, before leaving it because an unsuspecting worker unfamiliar with the The floor itself also can become hazardous. Loose machine may touch the revolving cutting edge. All boards, protruding nails, splinters, holes or other woodworking machinery should have a magnetic surface defects can result in serious injuries if you start and stop button.
    [Show full text]
  • Woodworking Joints.Key
    Woodworking making joints Using Joints Basic Butt Joint The butt joint is the most basic woodworking joint. Commonly used when framing walls in conventional, stick-framed homes, this joint relies on mechanical fasteners to hold the two pieces of stock in place. Learn how to build a proper butt joint, and when to use it on your woodworking projects. Basic Butt Joint The simplest of joints is a butt joint - so called because one piece of stock is butted up against another, then fixed in place, most commonly with nails or screws. The addition of glue will add some strength, but the joint relies primarily upon its mechanical fixings. ! These joints can be used in making simple boxes or frames, providing that there will not be too much stress on the joint, or that the materials used will take nails or screws reliably. Butt joints are probably strongest when fixed using glued dowels. Mitered Butt Joint ! A mitered butt joint is basically the same as a basic butt joint, except that the two boards are joined at an angle (instead of square to one another). The advantage is that the mitered butt joint will not show any end grain, and as such is a bit more aesthetically pleasing. Learn how to create a clean mitered butt joint. Mitered Butt Joint The simplest joint that requires any form of cutting is a miter joint - in effect this is an angled butt joint, usually relying on glue alone to construct it. It requires accurate 45° cutting, however, if the perfect 90° corner is to result.
    [Show full text]
  • Fine Woodworking Gallery Submission Form See Your Work In
    Fine Woodworking Gallery Submission Form See your work in The Gallery In each issue of Fine Woodworking we publish more than a dozen photos of furniture and woodwork in our Readers Gallery, celebrating the work of hobbyist and professionals. We also publish more photos in the FineWoodworking.com Readers Gallery. To have your work considered for publication in print or on our Web site, please read the information below and follow the directions provided. Photographing your work Taking good photos of your work is one way to improve your chance of being featured in the magazine or on FineWoodworking.com. Here are some tips: • Shoot your work against a neutral background; a bed sheet or drop cloth will suffice. • Make sure you have plenty of indirect light from windows or light fixtures. • Take photos from many angles, overall and up close, to provide a complete presentation of your work. • Clean the furniture, and don't clutter the object with items such as books or collectibles. • Do not alter the images or remove the background electronically. How to make a submission Print and complete this form and send it along with any photos (prints, slides, or digital images on a photo CD) to: Fine Woodworking Readers Gallery The Taunton Press 63 South Main Street Newtown, CT 06470-5506 Or, you can email your photos and information to [email protected]. Digital photos should be in high-resolution format and unaltered. If you would like your materials returned, please include a self-addressed envelope with proper postage. Name: _____________________________________________ Address: ___________________________________________ ____________________________________________ ____________________________________________ Daytime telephone number: ( ______ ) ___________________ Email: _____________________________________________ Furniture type: (table, chair, etc.): _______________________ Wood: _____________________________________________ Other materials: _____________________________________ Finish: _____________________________________________ Approx.
    [Show full text]
  • Fire Before Matches
    Fire before matches by David Mead 2020 Sulang Language Data and Working Papers: Topics in Lexicography, no. 34 Sulawesi Language Alliance http://sulang.org/ SulangLexTopics034-v2 LANGUAGES Language of materials : English ABSTRACT In this paper I describe seven methods for making fire employed in Indonesia prior to the introduction of friction matches and lighters. Additional sections address materials used for tinder, the hearth and its construction, some types of torches and lamps that predate the introduction of electricity, and myths about fire making. TABLE OF CONTENTS 1 Introduction; 2 Traditional fire-making methods; 2.1 Flint and steel strike- a-light; 2.2 Bamboo strike-a-light; 2.3 Fire drill; 2.4 Fire saw; 2.5 Fire thong; 2.6 Fire plow; 2.7 Fire piston; 2.8 Transporting fire; 3 Tinder; 4 The hearth; 5 Torches and lamps; 5.1 Palm frond torch; 5.2 Resin torch; 5.3 Candlenut torch; 5.4 Bamboo torch; 5.5 Open-saucer oil lamp; 5.6 Footed bronze oil lamp; 5.7 Multi-spout bronze oil lamp; 5.8 Hurricane lantern; 5.9 Pressurized kerosene lamp; 5.10 Simple kerosene lamp; 5.11 Candle; 5.12 Miscellaneous devices; 6 Legends about fire making; 7 Additional areas for investigation; Appendix: Fire making in Central Sulawesi; References. VERSION HISTORY Version 2 [13 June 2020] Minor edits; ‘candle’ elevated to separate subsection. Version 1 [12 May 2019] © 2019–2020 by David Mead All Rights Reserved Fire before matches by David Mead Down to the time of our grandfathers, and in some country homes of our fathers, lights were started with these crude elements—flint, steel, tinder—and transferred by the sulphur splint; for fifty years ago matches were neither cheap nor common.
    [Show full text]
  • 4-H Woodworking North Dakota 4-H Project Sheet
    Science, Engineering and Technology 4-H Woodworking North Dakota 4-H Project Sheet Pass it on! Woodworking is a Now that you know how, share it with others. Here valuable skill for a hobby, are ideas to get you started. household repairs or even a Communication career. Learn about types of Conduct a wood-finishing seminar. wood, uses for various Prepare an exhibit that kinds of wood, how to explains types of wood and the best applications for each. make connections and joints, safety tips, common tools Give a safety demonstration for safe woodworking tool and project ideas from the very simple to impressive. usage. Develop an understanding for fiber products of the forest. Citizenship Develop skills in the selection and uses of various types of wood and wood Build a bird feeder for a products. neighbor. Develop skills in the selection, care, and safe use of woodworking tools and Make a bench and donate it to machines. charity. Learn about environmental protection and the wise use of natural resources. Join a Habitat for Humanity building project. Here’s what you can do all year! Leadership Conduct a basic building Starting Out Learning More Expanding Horizons workshop for a younger club. Basic/Level 1 Intermediate/Level 2 Advanced/Levels 3 & 4 Organize your club to help older community members Identify tools and needs Learn how to use the Discover joining, with winterizing their home. for your work area. right hand tools. clamping and connecting Be a project helper for younger Learn safety rules, tool Determine which woods techniques. members in woodworking.
    [Show full text]
  • A Method for Preparing a Wood Veneer Plate Verfahren Zur Herstellung Einer Holzfurnierplatte Procédé De Préparation D’Un Panneau En Feuilles Minces De Bois
    (19) TZZ ¥¥¥_T (11) EP 2 373 463 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B27D 1/04 (2006.01) B32B 21/14 (2006.01) 02.03.2016 Bulletin 2016/09 B32B 27/20 (2006.01) C08G 12/38 (2006.01) (21) Application number: 09831517.9 (86) International application number: PCT/FI2009/050961 (22) Date of filing: 30.11.2009 (87) International publication number: WO 2010/066944 (17.06.2010 Gazette 2010/24) (54) A METHOD FOR PREPARING A WOOD VENEER PLATE VERFAHREN ZUR HERSTELLUNG EINER HOLZFURNIERPLATTE PROCÉDÉ DE PRÉPARATION D’UN PANNEAU EN FEUILLES MINCES DE BOIS (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR GB-A- 1 353 546 GB-A- 1 353 546 HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL JP-A- 2000 143 751 US-A- 3 470 134 PT RO SE SI SK SM TR US-A- 3 470 134 US-A1- 2003 201 054 (30) Priority: 08.12.2008 FI 20086176 • CONROD KEVIN GROVES: "New Method for Online Measurement of Veneer Glue (43) Date of publication of application: Distribution", SECOND INTERNATIONAL 12.10.2011 Bulletin 2011/41 SYMPOSIUM ON VENEER PROCESSING AND PRODUCTS, MAY 09-10, 2006, VANCOUVER, BC, (73) Proprietors: CANADA, XX, CA, 9 May 2006 (2006-05-09), pages • Metsäliitto Osuuskunta 1-6, XP008143786, 02020 Metsä (FI) • WALKER JOHN C F ED - WALKER J C F: "Primary • Dynea Austria GmbH wood processing : principles and practice, 3500 Krems (AT) passage",1 January 2006(2006-01-01), PRIMARY WOOD PROCESSING: PRINCIPLES AND (72) Inventors: PRACTICE (SECOND EDITION), SPRINGER, • SOKKA, Kasperi PAGE(S) 412 - 414, XP008143789, ISBN: FI-40520 Jyväskylä (FI) 1-4020-4392-9 * the whole document * • SILVENTOINEN, Ilpo • JUVONEN N.
    [Show full text]
  • Woodworking Facilities
    Safety guide woodworking facilities >00 Contents 01.Introduction. 2 02.Macroeconomic sector information . 3 03.Raw materials and manufacturing processes. 5 3.1. Raw materials . 5 3.2. Manufacturing processes . 8 04.General hazards in woodworking facilities . 10 4.1. Risk for workers . 10 4.2. Dangerous fire starting points . 12 4.3. Damages caused by external agents. 13 05.Hazardous situations in woodworking facilities . 14 5.1. Hazardous operations . 14 5.2. Handling and storage of dangerous products. 18 5.3. Environment . 19 06.Fire protection means . 22 6.1. Active fire protection . 22 Basic level . 22 Advisable level . 24 6.2. Passive fire protection. 25 6.3. Other protections. 27 07.Conclusions . 29 Appendix: Hot work permit . 31 [1] Due to the high fire load of wood and the nessman in this sector when it comes to presence of dust or sawdust, along with the identifying and analyzing the risks associa- existence of volatile organic compounds ted with this activity, as well as the adoption present in varnishing, painting or lacquering and implementation of prevention and con- operations, woodworking is an industrial trol measures, all of this aimed at achieving activity with a high risk of fire. This Guide is reasonable safety levels for persons and intended to serve as support for the busi- properties. [2] Safety guide woodworking facilities The use of wood and its application as the predomi- The furniture industry is a basic activity in the eco- nant element in furniture production is one of the nomy of industrialized countries, representing bet- most antique industrial activities which has adapted ween 2% and 4% of the production value in the through time to the market needs thanks to, among manufacturing industry, around 2% of the GDP and other things, the technological advances.
    [Show full text]