Environment, Interactions Between Trypanosoma Cruzi and Its Host, and Health Meio-Ambiente, Interações Entre Trypanosoma Cruzi

Total Page:16

File Type:pdf, Size:1020Kb

Environment, Interactions Between Trypanosoma Cruzi and Its Host, and Health Meio-Ambiente, Interações Entre Trypanosoma Cruzi S32 REVISÃO REVIEW Environment, interactions between Trypanosoma cruzi and its host, and health Meio-ambiente, interações entre Trypanosoma cruzi e seu hospedeiro e saúde humana Antonio R. L. Teixeira 1 Clever Gomes 1 Silene P. Lozzi 1 Mariana M. Hecht 1 Ana de Cássia Rosa 1 Pedro S. Monteiro 1 Ana Carolina Bussacos 1 Nadjar Nitz 1 Concepta McManus 1 Abstract The ancient game 1 Faculdade de Medicina, An epidemiological chain involving Trypanoso- To understand the relationships amongst liv- Universidade de Brasília, Brasília, Brasil. ma cruzi is discussed at the environmental level, ing organisms with extensive epidemiological and in terms of fine molecular interactions in chains, affecting both health and species surviv- Correspondence invertebrate and vertebrate hosts dwelling in dif- al, requires that we begin when life began, in salt A. R. L. Teixeira 1,2 Laboratório Multidisciplinar ferent ecosystems. This protozoan has a complex, water . During the early Proterozoic era (the de Pesquisa em Doenças genetically controlled plasticity, which confers pre-Cambrian period) approximately 4.5 billion de Chagas, Faculdade de adaptation to approximately 40 blood-sucking years ago, primitive life forms such as eubacte- Medicina, Universidade de Brasília. triatomine species and to over 1,000 mammalian ria and archeabacteria emerged from the organic C. P. 04536, Brasília, DF species, fulfilling diverse metabolic requirements soup on the earth’s crust. These pro-karion mi- 70919-970, Brazil. in its complex life-cycle. The Tr. cruzi infections croorganisms incorporated organic constituents [email protected] are deeply embedded in countless ecotypes, where (proteins, nucleic acids, lipids and carbohy- they are difficult to defeat using the control meth- drates) which gave rise to life. In the presence of ods that are currently available. Many more field these ingredients, microorganisms initiated the and laboratory studies are required to obtain data synthesis of ATP (adenosine-triphosphate), uni- and information that may be used for the control versally used for energy storage 2,3. and prevention of Tr. cruzi infections and their Every miniscule organism on earth may come various disease manifestations. Emphasis should in to contact with every other, given sufficient be placed on those sensitive interactions at cellu- time 4. This “game” resulted in a revolution ap- lar and environmental levels that could become proximately 1.5 billion years ago. The approxi- selected targets for disease prevention. In the mation of archea and eubacteria led eventually short term, new technologies for social mobiliza- to their association. Subsequently, a biochemi- tion should be used by people and organizations cal event probably determined cooperation and working for justice and equality through health exchange of nutrients among these organisms. information and promotion. A mass media di- Extreme solidarity became symbiosis, resulting rected program could deliver education, informa- in the formation of undulipodia. This ancient tion and communication to protect the inhabit- protozoan retained its flagellum, which emerged ants at risk of contracting Tr. cruzi infections. from the mitochondrion of an archea bacteria spirochete. Other organelles from eubacteria Trypanosoma cruzi; Chagas Disease; Host-Para- completed the biochemical machinery of this eu- site Interactions; Environment karion, a unicellular living microorganism which Cad. Saúde Pública, Rio de Janeiro, 25 Sup 1:S32-S44, 2009 ENVIRONMENT, INTERACTIONS BETWEEN Tr. cruzi AND ITS HOST, AND HEALTH S33 contained membrane-wrapped DNA, in a pack- ment and a constant change in the temperature. age-type nucleus. In this environment macroscopic plants grew, At present, morphological evidence at the ul- with roots for uptake from soils and vascular sys- tra structural and molecular levels are consistent tems for distribution through the plant; in turn, with this pathway of primitive life 2. these plants became a major source of food for An occurrence 670 million years ago resulted animals. Those changes made grounds for co- in ancestral eu-karion undulipodia giving rise to evolution of Annelida-Molusca, which are close primitive trypanosomes, which were promptly relatives of Arthropods, and of vascular plants. recognized in fish. The flagellate protozoa Try- Paleontological data indicate that the invasion panosoma gray, which occurs in crocodiles, of the terrestrial environment by vascular plants, is related to mammal trypanosomes 5. It was, arthropods and higher vertebrates occurred rela- therefore, assumed that reptiles and batrachi- tively late, after the invertebrate phyla were well ans were primitive vehicles that brought these established in marine environments. Among the flagellates onto solid ground. The presence of vascular plants, the pteridophytes relied upon trypanosomatids in the blood of aquatic inverte- spores for dispersal. Among animals, complete brates and vertebrates favored secondary acqui- adaptation to plant-sucking resulted from the sition of whole microorganisms by a host during development of mouth-parts with a pump con- the Phanerozoic period, 570 million years ago 4. nected to the proboscis 5. Experiments using pte- These interactions among the trypanosomes and ridophytes and living arthropods indicate that cold-blooded animals require further study. The some spores remain viable after passing through construction and remodeling of the undulipodia the gut and hence it is believed that this feeding served to fabricate metazoans. These occurrenc- habit may have also been advantageous to some es explain multicellular organization, which de- early plants for propagule dispersion 6. It has pends on relationships at molecular and physi- been proposed that many occurrences provided ological levels. The concepts in this review paper the grounds for diversification into over a mil- show that life is a continuous process and con- lion species of arthropods in the Class Insecta: stantly changing. Hemiptera that presently inhabit the earth 7. This The protozoa that belong to the Class Zoo- reasoning can help to explain the happenings mastigophorea (Eukaryota, Excavata, Eugleno- during the Devonian epoch, 360 million years zoa) include the Kinetoplastid flagellates of the ago, where accounts of wide scale exchange of Trypanosomatidae family and have a major im- organelles, messengers and moieties have been pact on public health and veterinarian medicine. reported among early species of life 2,8. Numer- Phylogenetic analyses have placed the protozoan ous representatives of the Class Insecta may have Tr. gray, that can be found in the blood of croc- become second stage vehicles for the delivery of odiles and possibly date to around 480 million macromolecules which were widely exchanged years ago, at the root of the kinetoplastids, next between species. It appears that these insects to bodonids (Bodo saltans). These kinetoplastids became dependent on vascular plant carbohy- include Tr. cruzi, the agent of Chagas disease in drates that were sucked in by its mouth parts, the Americas, Tr. brucei, the agent responsible for leading to the accumulation of large energy sur- sleeping sickness in Africa, and the Leishmania pluses. These surpluses could be readily used for species that infect mammals and produce differ- subsequent transportation and delivery of whole ent forms of diseases worldwide 3. The life-cycles microorganisms or their spare-parts during fur- of these trypanosomatids account for their major ther interactions with newcomers. division into Salivarian and Stercorarian branch- es, completing the infective metacyclic stages, respectively, in the salivary gland and in the hind Efficient oxygen transportation system gut of invertebrate vectors. This feature intro- in warm-blooded animals duces important diversifications in the mode of infection transmission to mammals. During early life, the plant and animal kingdoms branched into two different energy-producing systems. Photosynthetic chloroplasts in green Vascular plants and the emergence of plants captured energy directly from the solar invertebrate-vectors system, and mitochondrion cytochrome in ex- tant microorganisms used anaerobic metabo- During the Paleozoic and Silurian periods, around lism which enabled them to survive during a time 434 million years ago, drastic changes in the mix- when oxygen on the earth’s surface was scarce ture of atmospheric gases led to an increase in 2,8. Following modifications in the gas composi- the oxygen diffusion coefficient in the environ- tion of the atmosphere, a respiratory chain de- Cad. Saúde Pública, Rio de Janeiro, 25 Sup 1:S32-S44, 2009 S34 Teixeira ARL et al. veloped in vertebrate animals that carry ionized reptiles were ancient reservoirs of Tr. cruzi pop- Fe2+ in the hemoglobin molecule. A constant ulations, now infecting man and domesticated flux of hemoglobin-rich red blood cells made mammals. Some insects deciphered that hema- it possible for hemin-bound Fe2+ to become an tophagy helped their development and growth, important link in a metabolic pathway which hence small animals that populated the Ameri- is closely related to species fertility and repro- can Continent became providers of blood for duction 9,10. In vertebrate animals, an increase these predators. in oxygen led to complex biochemical pathways Triatomine and Tr. cruzi coevolution is gener- using a high consumption of glucose and energy ally considered to have been amazingly success- production, resulting from
Recommended publications
  • Chagas Disease in Europe September 2011
    Listed for Impact Factor Europe’s journal on infectious disease epidemiology, prevention and control Special edition: Chagas disease in Europe September 2011 This special edition of Eurosurveillance reviews diverse aspects of Chagas disease that bear relevance to Europe. It covers the current epidemiological situation in a number of European countries, and takes up topics such as blood donations, the absence of comprehensive surveillance, detection and treatment of congenital cases, and difficulties of including undocumented migrants in the national health systems. Several papers from Spain describe examples of local intervention activities. www.eurosurveillance.org Editorial team Editorial board Based at the European Centre for Austria: Reinhild Strauss, Vienna Disease Prevention and Control (ECDC), Belgium: Koen De Schrijver, Antwerp 171 83 Stockholm, Sweden Belgium: Sophie Quoilin, Brussels Telephone number Bulgaria: Mira Kojouharova, Sofia +46 (0)8 58 60 11 38 or +46 (0)8 58 60 11 36 Croatia: Borislav Aleraj, Zagreb Fax number Cyprus: Chrystalla Hadjianastassiou, Nicosia +46 (0)8 58 60 12 94 Czech Republic: Bohumir Križ, Prague Denmark: Peter Henrik Andersen, Copenhagen E-mail England and Wales: Neil Hough, London [email protected] Estonia: Kuulo Kutsar, Tallinn Editor-in-Chief Finland: Hanna Nohynek, Helsinki Ines Steffens France: Judith Benrekassa, Paris Germany: Jamela Seedat, Berlin Scientific Editors Greece: Rengina Vorou, Athens Kathrin Hagmaier Hungary: Ágnes Csohán, Budapest Williamina Wilson Iceland: Haraldur
    [Show full text]
  • Related Protozoan Pathogens, Different Diseases
    Kinetoplastids: related protozoan pathogens, different diseases Ken Stuart, … , Steve Reed, Rick Tarleton J Clin Invest. 2008;118(4):1301-1310. https://doi.org/10.1172/JCI33945. Review Series Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better. Find the latest version: https://jci.me/33945/pdf Review series Kinetoplastids: related protozoan pathogens, different diseases Ken Stuart,1 Reto Brun,2 Simon Croft,3 Alan Fairlamb,4 Ricardo E. Gürtler,5 Jim McKerrow,6 Steve Reed,7 and Rick Tarleton8 1Seattle Biomedical Research Institute and University of Washington, Seattle, Washington, USA. 2Swiss Tropical Institute, Basel, Switzerland. 3Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom. 4School of Life Sciences, University of Dundee, Dundee, United Kingdom. 5Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina. 6Sandler Center for Basic Research in Parasitic Diseases, UCSF, San Francisco, California, USA.
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Trypanosoma Cruzi Genome 15 Years Later: What Has Been Accomplished?
    Tropical Medicine and Infectious Disease Review Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Jose Luis Ramirez Instituto de Estudios Avanzados, Caracas, Venezuela and Universidad Central de Venezuela, Caracas 1080, Venezuela; [email protected] Received: 27 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: On 15 July 2020 was the 15th anniversary of the Science Magazine issue that reported three trypanosomatid genomes, namely Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. That publication was a milestone for the research community working with trypanosomatids, even more so, when considering that the first draft of the human genome was published only four years earlier after 15 years of research. Although nowadays, genome sequencing has become commonplace, the work done by researchers before that publication represented a huge challenge and a good example of international cooperation. Research in neglected diseases often faces obstacles, not only because of the unique characteristics of each biological model but also due to the lower funds the research projects receive. In the case of Trypanosoma cruzi the etiologic agent of Chagas disease, the first genome draft published in 2005 was not complete, and even after the implementation of more advanced sequencing strategies, to this date no final chromosomal map is available. However, the first genome draft enabled researchers to pick genes a la carte, produce proteins in vitro for immunological studies, and predict drug targets for the treatment of the disease or to be used in PCR diagnostic protocols. Besides, the analysis of the T. cruzi genome is revealing unique features about its organization and dynamics.
    [Show full text]
  • Parasitic Infections Seen in Impoverished Areas
    44 INFECTIOUS DISEASES NOVEMBER 15, 2010 • FAMILY PRACTICE NEWS Parasitic Infections Seen in Impoverished Areas The prevalence of Trichomonas vaginalis in the grate and encyst in humans but do not treatment. Visceral disease is treated develop into adults or reproduce in with 5 days of albendazole; cortico- United States is estimated at 20 million people. humans. steroids may be used for allergic symp- According to data from the National toms. Ocular toxocariasis is treated with BY KERRI WACHTER acute infection, a blood smear, hemo- Health and Nutrition Examination Sur- 2-4 weeks of albendazole, along with ag- culture, and polymerase chain reaction vey (NHANES), approximately 14% of gressive anti-inflammatory treatment FROM A TELECONFERENCE SPONSORED BY THE CENTERS FOR DISEASE CONTROL (PCR) tests are useful. For chronic in- the U.S. population is infected. The high- with corticosteroids, and surgery. Al- AND PREVENTION fection, serologic tests are useful. How- est prevalence is in the southern United bendazole is not approved by the FDA ever, there is no preferred test. States (less than 17%). Toxocariasis af- for this indication. ertain infectious diseases can con- Tests for acute infection are sensitive, fects non-Hispanic blacks more than oth- centrate in impoverished areas but the acute phase often is not recog- er groups and is associated with pover- Trichomoniasis Cand disproportionately affect mi- nized. Tests for chronic infection have is- ty, low education level, and dog Trichomonas vaginalis is a parasite that is norities, women, and other disadvan- sues with sensitivity and specificity, and ownership. spread through sexual contact. It’s esti- taged groups, according to Dr.
    [Show full text]
  • Parasitology – First Quadrimester, 2021
    AAB PARASITOLOGY – FIRST QUADRIMESTER, 2021 American Association of Bioanalysts Proficiency Testing 11931 Wickchester Ln., Ste. 200 Houston, TX 77043 800-234-5315 ♦ 281-436-5357 Q1 2021 Parasitology Sample 1 Referees Extent 1 Extent 2 Total Code - Organism Frequency % No. % No. % No. % No. 525 – No parasites found None 50% 5 11.1% 1 44.4% 8 33.3% 9 544 – Endolimax nana 44.4% 4 11.1% 2 22.2% 6 533 – Dientamoeba fragilis Few 40.0% 4 0.0% 0 27.8% 5 18.5% 5 546 – Entamoeba hartmanii Few 10.0% 1 11.1% 1 11.1% 2 11.1% 3 524 – parasite(s) found referred for ID 33.3% 3 0.0% 0 11.1% 3 553 – Cryptosporidium sp. 0.0% 0 5.6% 1 3.7% 1 Due to a lack of consensus, Sample 1 was not evaluated this event. The intended organism was 533-Dientamoeba fragilis. SPECIMEN 1: FORMALIN: Specimen 1A was a fecal suspension in 10% formalin for direct wet mount examination; concentration was not necessary. The specimen was to be examined for all parasites unstained, with iodine or other acceptable wet mount stain. The specimen contains Dientamoeba fragilis trophozoites. Typically, it is very difficult if not impossible to identify these organisms from a wet mount examination. SPECIMEN 1: PERMANENT SMEAR FOR STAINING: Specimen 1B was the smear to be stained and examined. This specimen contains Dientamoeba fragilis. Due to a lack of participant consensus, Specimen 1 was not evaluated for this event. However, 40% of the Referees correctly reported Dientamoeba fragilis. Many Referees (50%) and Participants (33.3%) reported the specimen as negative.
    [Show full text]
  • Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil
    DISPATCHES Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil Sandra R. Maruyama,1 Alynne K.M. de Santana,1,2 performed whole-genome sequencing of 2 clinical isolates Nayore T. Takamiya, Talita Y. Takahashi, from a patient with a fatal illness with clinical characteris- Luana A. Rogerio, Caio A.B. Oliveira, tics similar to those of VL. Cristiane M. Milanezi, Viviane A. Trombela, Angela K. Cruz, Amélia R. Jesus, The Study Aline S. Barreto, Angela M. da Silva, During 2011–2012, we characterized 2 parasite strains, LVH60 Roque P. Almeida,3 José M. Ribeiro,3 João S. Silva3 and LVH60a, isolated from an HIV-negative man when he was 64 years old and 65 years old (Table; Appendix, https:// Through whole-genome sequencing analysis, we identified wwwnc.cdc.gov/EID/article/25/11/18-1548-App1.pdf). non-Leishmania parasites isolated from a man with a fatal Treatment-refractory VL-like disease developed in the man; visceral leishmaniasis–like illness in Brazil. The parasites signs and symptoms consisted of weight loss, fever, anemia, infected mice and reproduced the patient’s clinical mani- festations. Molecular epidemiologic studies are needed to low leukocyte and platelet counts, and severe liver and spleen ascertain whether a new infectious disease is emerging that enlargements. VL was confirmed by light microscopic exami- can be confused with leishmaniasis. nation of amastigotes in bone marrow aspirates and promas- tigotes in culture upon parasite isolation and by positive rK39 serologic test results. Three courses of liposomal amphotericin eishmaniases are caused by ≈20 Leishmania species B resulted in no response.
    [Show full text]
  • Maintenance of Trypanosoma Cruzi, T. Evansi and Leishmania Spp
    IJP: Parasites and Wildlife 7 (2018) 398–404 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border T ∗ Grasiela Edith de Oliveira Porfirioa, Filipe Martins Santosa, , Gabriel Carvalho de Macedoa, Wanessa Teixeira Gomes Barretob, João Bosco Vilela Camposa, Alyssa C. Meyersc, Marcos Rogério Andréd, Lívia Perlesd, Carina Elisei de Oliveiraa, Samanta Cristina das Chagas Xaviere, Gisele Braziliano de Andradea, Ana Maria Jansene, Heitor Miraglia Herreraa,b a Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil b Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Costa e Silva Avenue, Cep 79070-900, Campo Grande, Mato Grosso do Sul, Brazil c Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, 4458, College Station, Texas, USA d Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Prof. Paulo Donato Castelane Street, Cep 14884-900, Jaboticabal, São Paulo, Brazil e Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil Avenue, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil ARTICLE INFO ABSTRACT Keywords: Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate Canine the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and Neglected diseases co-infections in the Urucum settlement, near the Brazil-Bolivian border.
    [Show full text]
  • Plants As Sources of Anti-Protozoal Compounds
    PLANTS AS SOURCES OF ANTI- PROTOZOAL COMPOUNDS Thesis presented by Angela Paine for the degree of Doctor of Philosophy in the Faculty of Medicine of the University of London Department of Pharmacognosy The School of Pharmacy University of London 1995 ProQuest Number: 10104878 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10104878 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 dedicated to my late father Abstract The majority of the world's population relies on traditional medicine, mainly plant-based, for the treatment of disease. This study focuses on plant remedies used to treat tropical diseases caused by protozoan parasites. The following protozoal diseases: African trypanosomiasis, leishmaniasis. South American trypanosomiasis and malaria, and the traditional use of plant remedies in their treatment, are reviewed in a world wide context. In the present work, vector and mammalian forms of Trypanosoma b. brucei, the vector forms of Leishmania donovani and Trypanosoma cruzi and the mammalian forms of Plasmodium falciparum were maintained in culture in vitro in order to evaluate the activity of a series of plant extracts, pure natural products and synthetic analogues against these protozoan parasites in vitro.
    [Show full text]
  • American Trypanosomiasis and Leishmaniasis Trypanosoma Cruzi
    American Trypanosomiasis and Leishmaniasis Trypanosoma cruzi Leishmania sp. American Trypanosomiasis History Oswaldo Cruz Trypanosoma cruzi - Chagas disease Species name was given in honor of Oswaldo Cruz -mentor of C. Chagas By 29, Chagas described the agent, vector, clinical symptoms Carlos Chagas - new disease • 16-18 million infected • 120 million at risk • ~50,000 deaths annually • leading cause of cardiac disease in South and Central America Trypanosoma cruzi Intracellular parasite Trypomastigotes have ability to invade tissues - non-dividing form Once inside tissues convert to amastigotes - Hela cells dividing forms Ability to infect and replicate in most nucleated cell types Cell Invasion 2+ Trypomatigotes induce a Ca signaling event 2+ Ca dependent recruitment and fusion of lysosomes Differentiation is initiated in the low pH environment, but completed in the cytoplasm Transient residence in the acidic lysosomal compartment is essential: triggers differentiation into amastigote forms Trypanosoma cruzi life cycle Triatomid Vectors Common Names • triatomine bugs • reduviid bugs >100 species can transmit • assassin bugs Chagas disease • kissing bugs • conenose bugs 3 primary vectors •Triatoma dimidiata (central Am.) •Rhodnius prolixis (Colombia and Venezuela) •Triatoma infestans (‘southern cone’ countries) One happy triatomid! Vector Distribution 4 principal vectors 10-35% of vectors are infected Parasites have been detected in T. sanguisuga Enzootic - in animal populations at all times Many animal reservoirs Domestic animals Opossums Raccoons Armadillos Wood rats Factors in Human Transmission Early defication - during the triatome bloodmeal Colonization of human habitats Adobe walls Thatched roofs Proximity to animal reservoirs Modes of Transmission SOURCE COMMENTS Natural transmission by triatomine bugs Vector through contamination with infected feces. A prevalent mode of transmission in urban Transfusion areas.
    [Show full text]
  • Antichagasic and Trichomonacidal Activity of 1-Substituted 2-Benzyl-5-Nitroindazolin-3-Ones and 3-Alkoxy-2-Benzyl-5-Nitro-2H-Ind
    European Journal of Medicinal Chemistry 115 (2016) 295e310 Contents lists available at ScienceDirect European Journal of Medicinal Chemistry journal homepage: http://www.elsevier.com/locate/ejmech Research paper Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl- 5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H- indazoles* Cristina Fonseca-Berzal a, b, Alexandra Ibanez-Escribano~ a, b, Felipe Reviriego a, c, Jose Cumella c, Paula Morales c, Nadine Jagerovic c, Juan Jose Nogal-Ruiz a, b, Jose Antonio Escario a, b, Patricia Bernardino da Silva d, Maria de Nazare C. Soeiro d, ** * Alicia Gomez-Barrio a, b, , Vicente J. Aran a, c, a Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain b Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, 28040, Madrid, Spain c Instituto de Química Medica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006, Madrid, Spain d Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900, Rio de Janeiro, Brazil article info abstract Article history: Two series of new 5-nitroindazole derivatives, 1-substituted 2-benzylindazolin-3-ones (6e29, series A) Received 23 November 2015 and 3-alkoxy-2-benzyl-2H-indazoles (30e37, series B), containing differently functionalized chains at Received in revised form position 1 and 3, respectively, have been synthesized starting from 2-benzyl-5-nitroindazolin-3-one 5, 26 February 2016 and evaluated against the protozoan parasites Trypanosoma cruzi and Trichomonas vaginalis, etiological Accepted 14 March 2016 agents of Chagas disease and trichomonosis, respectively.
    [Show full text]
  • The Main Neglected Tropical Diseases
    The main neglected tropical diseases Dengue is a mosquito‐borne viral infection that occurs in tropical and subtropical regions worldwide. The flavivirus is transmitted mainly by female Aedes aegypti mosquitoes and, to a lesser extent, by female A. albopictus mosquitoes. Infection causes flu‐like illness, and occasionally develops into a potentially lethal complication called severe dengue (previously known as dengue haemorrhagic fever). Severe dengue is a leading cause of serious illness and death among children in some Asian and Latin American countries. Rabies is a preventable viral disease that is mainly transmitted to humans through the bite of an infected dog. Once symptoms develop, the disease is invariably fatal in humans unless they promptly receive post‐exposure prophylaxis. Human rabies has been successfully prevented and controlled in North America and in a number of Asian and Latin American countries by implementing sustained dog vaccination campaigns, managing dog populations humanely and providing post‐exposure prophylaxis. Trachoma is a bacterial infection caused by Chlamydia trachomatis, which is transmitted through contact with eye discharge from infected people, particularly young children. It is also spread by flies that have been in contact with the eyes and nose of infected people. Untreated, this condition leads to the formation of irreversible corneal opacities and blindness. Buruli ulcer is a chronic debilitating skin infection caused by the bacterium Mycobacterium ulcerans, which can lead to permanent disfigurement and disability. Patients who are not treated early suffer severe destruction of the skin, bone and soft tissue. Endemic treponematoses – yaws, endemic syphilis (bejel) and pinta – are a group of chronic bacterial infections caused by infection with treponemes that mainly affect the skin and bone.
    [Show full text]