On Coastal Waves and Related Upwellings in the Narva Bay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Numerical Study of the Long- and Short-Term Temperature Variability and Thermal Circulation in the North Sea
JANUARY 2003 LUYTEN ET AL. 37 A Numerical Study of the Long- and Short-Term Temperature Variability and Thermal Circulation in the North Sea PATRICK J. LUYTEN Management Unit of the Mathematical Models, Brussels, Belgium JOHN E. JONES AND ROGER PROCTOR Proudman Oceanographic Laboratory, Bidston, United Kingdom (Manuscript received 3 January 2001, in ®nal form 4 April 2002) ABSTRACT A three-dimensional numerical study is presented of the seasonal, semimonthly, and tidal-inertial cycles of temperature and density-driven circulation within the North Sea. The simulations are conducted using realistic forcing data and are compared with the 1989 data of the North Sea Project. Sensitivity experiments are performed to test the physical and numerical impact of the heat ¯ux parameterizations, turbulence scheme, and advective transport. Parameterizations of the surface ¯uxes with the Monin±Obukhov similarity theory provide a relaxation mechanism and can partially explain the previously obtained overestimate of the depth mean temperatures in summer. Temperature strati®cation and thermocline depth are reasonably predicted using a variant of the Mellor±Yamada turbulence closure with limiting conditions for turbulence variables. The results question the common view to adopt a tuned background scheme for internal wave mixing. Two mechanisms are discussed that describe the feedback of the turbulence scheme on the surface forcing and the baroclinic circulation, generated at the tidal mixing fronts. First, an increased vertical mixing increases the depth mean temperature in summer through the surface heat ¯ux, with a restoring mechanism acting during autumn. Second, the magnitude and horizontal shear of the density ¯ow are reduced in response to a higher mixing rate. -
World Ocean Thermocline Weakening and Isothermal Layer Warming
applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer. -
Shear Dispersion in the Thermocline and the Saline Intrusion$
Continental Shelf Research ] (]]]]) ]]]–]]] Contents lists available at SciVerse ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Research papers Shear dispersion in the thermocline and the saline intrusion$ Hsien-Wang Ou a,n, Xiaorui Guan b, Dake Chen c,d a Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Columbia University, 61 Rt. 9W, Palisades, NY 10964, United States b Consultancy Division, Fugro GEOS, 6100 Hillcroft, Houston, TX 77081, United States c Lamont-Doherty Earth Observatory, Columbia University, United States d State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China article info abstract Article history: Over the mid-Atlantic shelf of the North America, there is a pronounced shoreward intrusion of the Received 11 March 2011 saltier slope water along the seasonal thermocline, whose genesis remains unexplained. Taking note of Received in revised form the observed broad-band baroclinic motion, we postulate that it may propel the saline intrusion via the 15 March 2012 shear dispersion. Through an analytical model, we first examine the shear-induced isopycnal diffusivity Accepted 19 March 2012 (‘‘shear diffusivity’’ for short) associated with the monochromatic forcing, which underscores its varied even anti-diffusive short-term behavior and the ineffectiveness of the internal tides in driving the shear Keywords: dispersion. We then derive the spectral representation of the long-term ‘‘canonical’’ shear diffusivity, Saline intrusion which is found to be the baroclinic power band-passed by a diffusivity window in the log-frequency Shear dispersion space. Since the baroclinic power spectrum typically plateaus in the low-frequency band spanned by Lateral diffusion the diffusivity window, canonical shear diffusivity is simply 1/8 of this low-frequency plateau — Isopycnal diffusivity Tracer dispersion independent of the uncertain diapycnal diffusivity. -
Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., and Zaromskis, R
Text below is updated version of the chapter in book: Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., and Zaromskis, R. (2013). The Baltic States - Estonia, Latvia and Lithuania. Panzini, E. and Williams, A. (Toim.). Coastal erosion and protection in Europe (47 - 80). UK, US and Canada: Routledge. More can be found: Kont, A.; Endjärv, E.; Jaagus, J.; Lode, E.; Orviku, K.; Ratas, U.; Rivis, R.; Suursaar, Ü.; Tõnisson, H. (2007). Impact of climate change on Estonian coastal and inland wetlands — a summary with new results. Boreal Environment Research, 12, 653 - 671. It is also available online: http://www.borenv.net/BER/pdfs/ber12/ber12-653.pdf Introduction Estonia is located in a transition zone between regions having a maritime climate in the west and continental climate in the east and is a relatively small country (45,227 km2), but its geographical location between the Fenno-scandian Shield and East European Platform and comparatively long coastline (over 4000 km) due to numerous peninsulas, bays and islands (>1,500 island), results in a variety of shore types and ecosystems. The western coast is exposed to waves generated by prevailing westerly winds, with NW waves dominant along the north-facing segment beside the Gulf of Finland, contrasting with southern relatively sheltered sectors located on the inner coasts of islands and along the Gulf of Livonia (Riga). The coastline classification is based on the concept of wave processes straightening initial irregular outlines via erosion of Capes/bay deposition, or a combination (Orviku, 1974, Orviku and Granö, 1992, Gudelis, 1967). Much coast (77%) is irregular with the geological composition of Capes and bays being either hard bedrock or unconsolidated Quaternary deposits, notably glacial drift. -
From Small Scales to Large Scales –The Gulf of Finland Science Days
Gulf of Finland Co-operation From small scales to large scales –The Gulf of Finland Science Days 2017 9th-10th October 2017 Estonian Academy of Sciences, Tallinn Photo: Riku Lumiaro Photo: Gulf of Finland Contents Co-operation ORAL PRESENTATIONS V. Andreeva, E. Voyakina* Phytoplankton structure in eastern part of Gulf of Finland A. Antsulevich*, S. Titov Development of the program for combined restoration of European pearl mussel (Margaritifera margaritifera) and salmonid fishes local populations in two rivers inflowing to the Gulf of Finland in nature protected areas of Leningrad Oblast. R. Aps*, M. Fetissov, F. Goerlandt, P. Kujala, A. Piel, J. Thomas Systems approach based maritime traffic safety management in the Gulf of Finland (Baltic Sea) J. Kotta*, R. Aps, M. Futter, K. Herkül Assessing the environmental impacts and nutrient removal potential of mussel farms in the northeastern Baltic Sea J. Björkqvist*, O. Vähä-Piikkiö, L. Tuomi, V. Alari A spatially extensive validation of three different wave models in the Helsinki coastal archipelago A. Ivanchenko, D. Burkov* The state and environmental consequences of pollution air pool of the Gulf of Finland transport emissions K. Rubtsova, T. Mironenko, E. Daev* Preliminary assessment of water and sediment pollutions in littoral zone of the Kotlin Island. P. Ekholm*, M. Ollikainen, E. Punttila, S. Puroila, A. Kosenius Reducing agricultural phosphorus load by gypsum: results from the first year after amendment M. Fetissov*, R. Aps, P. Heinla, J. Kinnunen, O. Korneev, L. Lees, R. Varjopuro Ecosystem-based Maritime Spatial Planning – impact on navigational safety from offshore renewable energy developments V. Fleming-Lehtinen*, H. Parner, J. -
Nord Stream 2 Economic Impact on Europe
Nord Stream 2 Economic Impact on Europe Follow-up analysis of effects on job creation and GDP during the construction phase May, 2019 Content Executive summary 3 1. Introduction 6 2. Statistical overview of expected economic benefts 8 3. Overview of suppliers interviewed 10 4. Many companies shared their experiences 11 5. The Nord Stream 2 pipeline – status report 18 6. Economic benefts by country 30 7. Subcontractors engaged on various scopes 46 8. Pioneering industry solutions 48 9. Conclusions 50 Appendices 52 Authors: Michael Kruse Annette Berkhahn Blyhammar Partner Energy & Utilities Senior Advisor Energy & Utilities Frankfurt Stockholm [email protected] [email protected] Disclaimer This report was commissioned by Nord Stream 2 AG on terms specifcally limiting the liability of Arthur D. Little. Our conclusions are the result of the exercise of our best professional judgment, based in part on materials and information provided to us by Nord Stream 2 AG and others. Use of this report by any third party for whatever purpose should not, and does not, absolve such third party from using due diligence in verifying the report’s contents. Any use which a third party makes of this document, or any reliance on it, or decisions to be made based on it, are the responsi- bility of such third party. Arthur D. Little accepts no duty of care or liability of any kind whatsoever to any such third party, and no responsibility for damages, if any, suffered by any third party as a result of decisions made, or not made, or actions taken, or not taken, based on this document. -
Upwelling As a Source of Nutrients for the Great Barrier Reef Ecosystems: a Solution to Darwin's Question?
Vol. 8: 257-269, 1982 MARINE ECOLOGY - PROGRESS SERIES Published May 28 Mar. Ecol. Prog. Ser. / I Upwelling as a Source of Nutrients for the Great Barrier Reef Ecosystems: A Solution to Darwin's Question? John C. Andrews and Patrick Gentien Australian Institute of Marine Science, Townsville 4810, Queensland, Australia ABSTRACT: The Great Barrier Reef shelf ecosystem is examined for nutrient enrichment from within the seasonal thermocline of the adjacent Coral Sea using moored current and temperature recorders and chemical data from a year of hydrology cruises at 3 to 5 wk intervals. The East Australian Current is found to pulsate in strength over the continental slope with a period near 90 d and to pump cold, saline, nutrient rich water up the slope to the shelf break. The nutrients are then pumped inshore in a bottom Ekman layer forced by periodic reversals in the longshore wind component. The period of this cycle is 12 to 25 d in summer (30 d year round average) and the bottom surges have an alternating onshore- offshore speed up to 10 cm S-'. Upwelling intrusions tend to be confined near the bottom and phytoplankton development quickly takes place inshore of the shelf break. There are return surface flows which preserve the mass budget and carry silicate rich Lagoon water offshore while nitrogen rich shelf break water is carried onshore. Upwelling intrusions penetrate across the entire zone of reefs, but rarely into the Lagoon. Nutrition is del~veredout of the shelf thermocline to the living coral of reefs by localised upwelling induced by the reefs. -
A Laboratory Model of Thermocline Depth and Exchange Fluxes Across Circumpolar Fronts*
656 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts* CLAUDIA CENEDESE Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOHN MARSHALL Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts J. A. WHITEHEAD Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 6 January 2003, in ®nal form 7 July 2003) ABSTRACT A laboratory experiment has been constructed to investigate the possibility that the equilibrium depth of a circumpolar front is set by a balance between the rate at which potential energy is created by mechanical and buoyancy forcing and the rate at which it is released by eddies. In a rotating cylindrical tank, the combined action of mechanical and buoyancy forcing builds a strati®cation, creating a large-scale front. At equilibrium, the depth of penetration and strength of the current are then determined by the balance between eddy transport and sources and sinks associated with imposed patterns of Ekman pumping and buoyancy ¯uxes. It is found 2 that the depth of penetration and transport of the front scale like Ï[( fwe)/g9]L and weL , respectively, where we is the Ekman pumping, g9 is the reduced gravity across the front, f is the Coriolis parameter, and L is the width scale of the front. Last, the implications of this study for understanding those processes that set the strati®cation and transport of the Antarctic Circumpolar Current (ACC) are discussed. If the laboratory results scale up to the ACC, they suggest a maximum thermocline depth of approximately h 5 2 km, a zonal current velocity of 4.6 cm s21, and a transport T 5 150 Sv (1 Sv [ 106 m3 s 21), not dissimilar to what is observed. -
Chapter 3 Impacts of Climate Change on the Physical Oceanography of the Great Barrier Reef
Part I: Introduction Chapter 3 Impacts of climate change on the physical oceanography of the Great Barrier Reef Craig Steinberg Sea full of life, the nourisher of kinds, Purger of earth, and medicines of men; Creating a sweet climate by my breath… Ralph Waldo Emerson, Sea shore, (1803–1882) American Philosopher and Poet. Part I: Introduction 3.1 Introduction The oceans function as vast reservoirs of heat, the top three metres of the ocean alone stores all the equivalent heat energy contained within the atmosphere29. This is due to the high specific heat of water, which is a measure of the ability of matter to absorb heat. The ocean therefore has by far the largest heat capacity and hence energy retention capability of any other climate system component. Surface ocean currents (significantly forced by large scale winds) play a major role in redistributing the earth’s heat energy around the globe by transporting it from the tropical regions poleward principally via western boundary currents such as the East Australian Current (EAC). These currents therefore have a major affect on maritime and continental weather and climate. It is important to understand the temporal and spatial scales that influence ocean processes. Energy is imparted to the ocean by sun, wind and gravitational tides. The energy of the resulting large-scale motions is transmitted progressively to smaller and smaller scales of motion through to molecular vibrations where energy is finally dissipated as heat 42. The oceans therefore play an important role in climate control and change, and Figure 3.1 shows the ranges of time and space, which characterise physical processes in the ocean and their hierarchical nature. -
Nord Stream 2
ASSESSMENT OF ALTERNATIVES FOR THE RUSSIAN SECTION Nord Stream 2 ASSESSMENT OF ALTERNATIVES FOR THE RUSSIAN SECTION Document number W-PE-MSC-LFR-REP-837-RALTEREN-06 Rev. Date Description 01 2016-07-26 02 2016-11-09 03 2016-11-05 04 2016-12-21 05 2017-03-29 06 2017-04-04 FRECOM LLC 1 W-PE-MSC-LFR-REP-837-RALTEREN-06 ASSESSMENT OF ALTERNATIVES FOR THE RUSSIAN SECTION Table of Contents 1 Executive Summary 5 2 Introduction 6 2.1 Project History 6 2.2 Objectives of the Report 7 2.3 Technical characteristics of the proposed pipeline system 8 2.3.1 Construction 10 2.3.2 Operational aspects 10 2.3.3 Decommissioning 10 2.4 Regulatory basis for the alternative assessment 11 2.5 Methodology of the Assessment of Alternatives 12 3 Stage 1. Bundling of Nord Stream 2 with the Nord Stream pipeline system 14 3.1 Inland routing 14 3.2 Construction of a compressor station 15 3.3 Pipeline landfall 15 4 Stage 2. Selecting areas on the southern coast of the Gulf of Finland 17 4.1 Section 1: Saint Petersburg – Sosnovy Bor 17 4.1.1 Dense residential development along the coastline 18 4.1.2 Historical and cultural sites of global importance 19 4.1.3 Saint Petersburg flood defences 19 4.1.4 Presence of special conservation areas 21 4.1.5 Complex coastal geological conditions 22 4.1.6 Proximity to navigation channels 23 4.1.7 Conclusion on the feasibility of using Section 1 24 4.2 Section 2: Sosnovy Bor - Ust-Luga 24 4.2.1 Coastal development 25 4.2.2 The Leningrad nuclear power plant and associated complex of hazardous processes and facilities 25 4.2.3 Existing and proposed SCAs and IBAs 26 4.2.4 Restricted areas offshore 29 4.2.5 Complex coastal geological conditions 29 4.2.6 Proximity to the port of Ust-Luga and its shipping routes 30 4.2.7 Conclusion on the feasibility of using Section 2 30 4.3 Section 3 Ust-Luga - Russian-Estonian border 30 4.3.1 Presence of special conservation areas 31 4.3.2 Conclusion on the feasibility of using Section 3 34 4.4 Conclusions of Stage 2 34 5 Stage 3. -
Using an Autonomous Underwater Vehicle to Track the Thermocline Based on Peak-Gradient Detection Yanwu Zhang, Senior Member, IEEE, James G
544 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 37, NO. 3, JULY 2012 Peer-Reviewed Technical Communication Using an Autonomous Underwater Vehicle to Track the Thermocline Based on Peak-Gradient Detection Yanwu Zhang, Senior Member, IEEE, James G. Bellingham,Member,IEEE, Michael A. Godin, and John P. Ryan Abstract—The thermocline plays a key role in underwateracous- visually identify the thermocline. Then, we set a narrowtem- tics and marine ecology. In oceanographic surveys, it is often desir- perature envelope (i.e., lower and upper temperature bounds) able to detect the thermocline and track its spatio–temporal varia- around the thermocline, and commanded the vehicle to run tion. Mobility of an autonomous underwater vehicle (AUV) makes it an efficient platform for thermocline tracking. In this paper, we within the temperature envelope, thereby closely tracking the present an autonomous algorithm for detecting and tracking the thermocline. This method was not fully autonomous because it thermocline by an AUV. The key is detection and close tracking of required human intervention (i.e., data analysis) in a prelimi- the maximum vertical gradient of temperature. On August 31 and nary survey to set temperature bounds for thermocline tracking. September 1, 2010, the Tethys AUV ran the algorithm to closely In some other experiments that used AUVs for thermocline track the thermocline across a sharp temperature front in Mon- terey Bay, CA. tracking [5], [6], human intervention was required to define a preset threshold of the vertical temperature gradient. Index Terms—Autonomous underwater vehicle (AUV), Petillo et al. presented an autonomous thermocline-tracking peak-gradient detection, thermocline. -
Atlantic Ocean Equatorial Currents
188 ATLANTIC OCEAN EQUATORIAL CURRENTS ATLANTIC OCEAN EQUATORIAL CURRENTS S. G. Philander, Princeton University, Princeton, Centered on the equator, and below the westward NJ, USA surface Sow, is an intense eastward jet known as the Equatorial Undercurrent which amounts to a Copyright ^ 2001 Academic Press narrow ribbon that precisely marks the location of doi:10.1006/rwos.2001.0361 the equator. The undercurrent attains speeds on the order of 1 m s\1 has a half-width of approximately Introduction 100 km; its core, in the thermocline, is at a depth of approximately 100 m in the west, and shoals to- The circulations of the tropical Atlantic and PaciRc wards the east. The current exists because the west- Oceans have much in common because similar trade ward trade winds, in addition to driving divergent winds, with similar seasonal Suctuations, prevail westward surface Sow (upwelling is most intense at over both oceans. The salient features of these circu- the equator), also maintain an eastward pressure lations are alternating bands of eastward- and west- force by piling up the warm surface waters in the ward-Sowing currents in the surface layers (see western side of the ocean basin. That pressure force Figure 1). Fluctuations of the currents in the two is associated with equatorward Sow in the thermo- oceans have similarities not only on seasonal but cline because of the Coriolis force. At the equator, even on interannual timescales; the Atlantic has where the Coriolis force vanishes, the pressure force a phenomenon that is the counterpart of El Ninoin is the source of momentum for the eastward Equa- the PaciRc.