Sc Leractinia

Total Page:16

File Type:pdf, Size:1020Kb

Sc Leractinia What are the Scleractinia? They are known as stony corals because of the hard cal- careous skeleton that formed by the polyps. At present there have been 1,334 scleractinian coral species de- scribed, of which 672 lack symbiotic light-dependent algae. Of these, only 26% are found in shallow water (< 40 m), with the majority found at greater depths. Only a quarter of non-symbiotic corals are colonial, the rest are solitary, encasing a single polyp in a calcareous skele- ton. Only colonial corals can create extensive framework reefs, and it is these that the Scleractinia are famous for. Key species of this group There are 497 cold-water stony corals described so far. Of Scleractinia Scleractinia these, there are only six species known to create extensive framework reefs. The key cold-water coral reef-builders are Lophelia pertusa, Madrepora oculata, Enalopsammia pro- funda, Gonicorella dumosa, Solenosmilia variabilis and Oculina varicosa. Life and death of a reef Reef-building stony corals start life on a piece of hard sub- strate. Providing the new recruit is not dislodged, the coral will grow and form a new colony. Reef-building corals have intricate branching, which allows for the reef structure to be strengthened as new coral colonies become engulfed by a developing reef. The living reef can sustain a high diversity of different ani- mals, but coral rubble (the bits broken off by bioerosion or physical damage) has the highest associated biodiversity. These dead coral areas support animals from squat lobsters to sedentary sponges. So is there life after death on a cold- Scleractinia are water coral reef? The answer is no, as the rubble areas need to be replenished by new coral as the rubble areas are stony corals, gradually eroded over time. they are characterised by What are the pictures? a hard, Images from top: A specimen of Madrepora oculata, South calcareous Carolina (© NOAA Ocean Explorer, 2005). Lophelia pertusa skeleton. collected from the Mingulay Reef Complex (© G. Newman, 2005). A crab lives among coral rubble, Porcupine Seabight (© Ifremer & AWI, 2003). Goniocorella dumosa and Desmophyllum dianthus (© exploretheabyss.com, 2005). This fact-sheet was downloaded from www.lophelia.org and produced for the Deep-sea Conservation for the United Kingdom Project. .
Recommended publications
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Habitat-Forming Deep-Sea Corals in the Northeast Pacific Ocean
    Habitat-forming deep-sea corals in the Northeast Pacific Ocean Peter Etnoyer1, Lance E. Morgan2 1 Aquanautix Consulting, 3777 Griffith View Drive, Los Angeles, CA 90039, USA ([email protected]) 2 Marine Conservation Biology Institute, 4878 Warm Springs Rd., Glen Ellen, CA 95442, USA Abstract. We define habitat-forming deep-sea corals as those families of octocorals, hexacorals, and stylasterids with species that live deeper than 200 m, with a majority of species exhibiting complex branching morphology and a sufficient size to provide substrata or refugia to associated species. We present 2,649 records (name, geoposition, depth, and data quality) from eleven institutions on eight habitat- forming deep-sea coral families, including octocorals in the families Coralliidae, Isididae, Paragorgiidae and Primnoidae, hexacorals in the families Antipathidae, Oculinidae and Caryophylliidae, and stylasterids in the family Stylasteridae. The data are ranked according to record quality. We compare family range and distribution as predicted by historical records to the family extent as informed by recent collections aboard the National Oceanic of Atmospheric Administration (NOAA) Office of Ocean Exploration 2002 Gulf of Alaska Seamount Expedition (GOASEX). We present a map of one of these families, the Primnoidae. We find that these habitat-forming families are widespread throughout the Northeast Pacific, save Caryophylliidae (Lophelia sp.) and Oculinidae (Madrepora sp.), which are limited in occurrence. Most coral records fall on the continental shelves, in Alaska, or Hawaii, likely reflecting research effort. The vertical range of these families, based on large samples (N >200), is impressive. Four families have maximum-recorded depths deeper than 1500 m, and minimum depths shallower than 40 m.
    [Show full text]
  • Cold-Water Corals in the Cap De Creus Canyon, Northwestern Mediterranean: Spatial Distribution, Density and Anthropogenic Impact
    Vol. 397: 37–51, 2009 MARINE ECOLOGY PROGRESS SERIES Published December 17 doi: 10.3354/meps08314 Mar Ecol Prog Ser Contribution to the Theme Section ‘Conservation and management of deep-sea corals and coral reefs’ OPENPEN ACCESSCCESS Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact Covadonga Orejas1, 4,*, Andrea Gori1, Claudio Lo Iacono2, Pere Puig1, Josep-Maria Gili1, Mark R. T. Dale3 1Instituto de Ciencias del Mar (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Unidad de Tecnología Marina (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain 3University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada 4Centro Oceanográfico de Santander (IEO) Promontorio de San Martin s/n, 93004 Santander, Spain ABSTRACT: The occurrence and density of 3 cold-water coral (CWC) species (Madrepora oculata, Lophelia pertusa and Dendrophyllia cornigera) were investigated in the Cap de Creus canyon (north- western Mediterranean) by conducting and analysing 22 video survey transects. Species distribution patterns were also investigated at 3 spatial extents (km, 100s of m and m) across 3 of the transects using spatial statistics. Additionally, the locations of snagged benthic long-line fishing gear were logged across these 3 transects. Video surveys were carried out by both remotely operated vehicles (ROVs) and the JAGO manned submersible. CWCs were present in 15 of the 22 survey transects, pre- dominantly those covering areas with hard substrate (boulders or hardrock outcrops). M. oculata was the most abundant CWC species in the survey transects, whereas L.
    [Show full text]
  • The Growth History of a Shallow Inshore Lophelia Pertusa Reef
    Growth of North-East Atlantic Cold-Water Coral Reefs and Mounds during the Holocene: A High Resolution U-Series and 14C Chronology Mélanie Douarin1, Mary Elliot1, Stephen R. Noble2, Daniel Sinclair3, Lea- Anne Henry4, David Long5, Steven G. Moreton6,J. Murray Roberts4,7,8 1: School of Geosciences, The University of Edinburgh, Grant Institute, The King’s Buildings, West Mains Road, Edinburgh, Scotland, EH9 3JW, UK; [email protected] 2: NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, England, NG12 5GG, UK 3: Marine Biogeochemistry & Paleoceanography Group, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901-8525, USA 4: Centre for Marine Biodiversity & Biotechnology, School of Life Sciences, Heriot- Watt University, Edinburgh, Scotland, EH14 4AS, UK 5: British Geological Survey, West Mains Road, Edinburgh, Scotland, EH9 3LA, UK 6: NERC Radiocarbon Facility (Environment), Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Glasgow, Scotland, G75 0QF, UK 7: Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK 8: Center for Marine Science, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403-5928, USA 1. Abstract We investigate the Holocene growth history of the Mingulay Reef Complex, a seascape of inshore cold-water coral reefs off western Scotland, using U-series dating of 34 downcore and radiocarbon dating of 21 superficial corals. Both chronologies reveal that the reef framework-forming scleractinian coral Lophelia pertusa shows episodic occurrence during the late Holocene. Downcore U-series dating revealed unprecedented reef growth rates of up to 12 mm a-1 with a mean rate of 3 – 4 mm a-1.
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
    Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • (Anthozoa) from the Lower Oligocene (Rupelian) of the Eastern Alps, Austria
    TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 59 (3), 2020, 319-336. Modena C N O A S S. P. I. Scleractinian corals (Anthozoa) from the lower Oligocene (Rupelian) of the Eastern Alps, Austria Rosemarie Christine Baron-Szabo* & Diethard Sanders R.C. Baron-Szabo, Department of Invertebrate Zoology, Smithsonian Institution, NMNH, W-205, MRC 163, P.O. Box 37012, Washington DC, 20013- 7012 USA; Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany; [email protected]; Rosemarie.Baron- [email protected] *corresponding author D. Sanders, Institut für Geologie, Universität of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; [email protected] KEY WORDS - Scleractinia, taxonomy, paleoecology, paleobiogeography. ABSTRACT - In the Werlberg Member (Rupelian pro parte) of the Paisslberg Formation (Eastern Alps), an assemblage of colonial corals of eleven species pertaining to eleven genera and eleven families was identified:Stylocoenia carryensis, Acropora lavandulina, ?Colpophyllia sp., Dendrogyra intermedia, Caulastraea pseudoflabellum, Hydnophyllia costata, Pindosmilia cf. brunni, Actinacis rollei, Pavona profunda, Agathiphyllia gregaria, and Faksephyllia faxoensis. This is the first Oligocene coral assemblage reported from the Paisslberg Formation (Werlberg Member) of the Eastern Alps, consisting exclusively of colonial forms. The assemblage represents the northernmost fauna of reefal corals reported to date for Rupelian time. The Werlberg Member accumulated during marine transgression onto a truncated succession of older carbonate rocks. The corals grew as isolated colonies and in carpets in a protected shoreface setting punctuated by high-energy events. Coral growth forms comprise massive to sublamellar forms, and branched (dendroid, ramose) forms.
    [Show full text]
  • Final Corals Supplemental Information Report
    Supplemental Information Report on Status Review Report And Draft Management Report For 82 Coral Candidate Species November 2012 Southeast and Pacific Islands Regional Offices National Marine Fisheries Service National Oceanic and Atmospheric Administration Department of Commerce Table of Contents INTRODUCTION ............................................................................................................................................. 1 Background ............................................................................................................................................... 1 Methods .................................................................................................................................................... 1 Purpose ..................................................................................................................................................... 2 MISCELLANEOUS COMMENTS RECEIVED ...................................................................................................... 3 SRR EXECUTIVE SUMMARY ........................................................................................................................... 4 1. Introduction ........................................................................................................................................... 4 2. General Background on Corals and Coral Reefs .................................................................................... 4 2.1 Taxonomy & Distribution .............................................................................................................
    [Show full text]
  • Scleractinia Fauna of Taiwan I
    Scleractinia Fauna of Taiwan I. The Complex Group 台灣石珊瑚誌 I. 複雜類群 Chang-feng Dai and Sharon Horng Institute of Oceanography, National Taiwan University Published by National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan Table of Contents Scleractinia Fauna of Taiwan ................................................................................................1 General Introduction ........................................................................................................1 Historical Review .............................................................................................................1 Basics for Coral Taxonomy ..............................................................................................4 Taxonomic Framework and Phylogeny ........................................................................... 9 Family Acroporidae ............................................................................................................ 15 Montipora ...................................................................................................................... 17 Acropora ........................................................................................................................ 47 Anacropora .................................................................................................................... 95 Isopora ...........................................................................................................................96 Astreopora ......................................................................................................................99
    [Show full text]
  • First Observations of the Cold-Water Coral Lophelia Pertusa in Mid-Atlantic Canyons of the USA
    Deep-Sea Research II 104 (2014) 245–251 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA Sandra Brooke a,n, Steve W. Ross b a Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA b University of North Carolina at Wilmington, Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, USA article info abstract Available online 26 June 2013 The structure-forming, cold-water coral Lophelia pertusa is widely distributed throughout the North fi Keywords: Atlantic Ocean and also occurs in the South Atlantic, North Paci c and Indian oceans. This species has fl USA formed extensive reefs, chie y in deep water, along the continental margins of Europe and the United Norfolk Canyon States, particularly off the southeastern U.S. coastline and in the Gulf of Mexico. There were, however, no Baltimore Canyon records of L. pertusa between the continental slope off Cape Lookout, North Carolina (NC) (∼341N, 761W), Submarine canyon and the rocky Lydonia and Oceanographer canyons off Cape Cod, Massachusetts (MA) (∼401N, 681W). Deep water During a research cruise in September 2012, L. pertusa colonies were observed on steep walls in both Coral Baltimore and Norfolk canyons. These colonies were all approximately 2 m or less in diameter, usually New record hemispherical in shape and consisted entirely of live polyps. The colonies were found between 381 m Lophelia pertusa and 434 m with environmental observations of: temperature 6.4–8.6 1C; salinity 35.0–35.6; and dissolved oxygen 2.06–4.41 ml L−1, all of which fall within the range of known L.
    [Show full text]
  • In Deep-Sea Habitats Around the Iberian Margin
    Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Taxonomy, distribution and ecology of the order Phyllodocida (Annelida, Polychaeta) in deep-sea habitats around the Iberian margin Ascensão Ravara a,n, Diana Ramos b, Marcos A.L. Teixeira c, Filipe O. Costa c, Marina R. Cunha a a Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal b Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal c Centro de Biologia Molecular Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Braga, Portugal article info abstract The polychaetes of the order Phyllodocida (excluding Nereidiformia and Phyllodociformia incertae sedis) Keywords: collected from deep-sea habitats of the Iberian margin (Bay of Biscay, Horseshoe continental rise, Gulf of Polychaeta Cadiz and Alboran Sea), and Atlantic seamounts (Gorringe Bank, Atlantis and Nameless) are reported Phyllodocida herein. Thirty-six species belonging to seven families – Acoetidae, Pholoidae, Polynoidae, Sigalionidae, Deep-sea Glyceridae, Goniadidae and Phyllodocidae, were identified. Amended descriptions and/or new illustra- Iberian margin tions are given for the species Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Lepidasthenia Barcoding brunnea and Polynoe sp. Relevant taxonomical notes are provided for other seventeen species. Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Harmothoe evei, Eumida longicirrata and Glycera noelae, pre- viously known only from their type localities were found in different deep-water places of the studied areas and constitute new records for the Iberian margin. The geographic distributions and the bathy- metric range of thirteen and fifteen species, respectively, are extended. The morphology-based biodi- versity inventory was complemented with DNA sequences of the mitochondrial barcode region (COI barcodes) providing a molecular tag for future reference.
    [Show full text]