Of Conservation Interest in the Submarine Canyons of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Fireworks anemone (Pachycerianthus multiplicatus) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Catherine Wilding & Emily Wilson 2008-04-24 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1272]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Wilding, C. & Wilson, E. 2008. Pachycerianthus multiplicatus Fireworks anemone. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on- line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1272.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-04-24 Fireworks anemone (Pachycerianthus multiplicatus) - Marine Life Information Network See online review for distribution map Individual with out-stretched tentacles. -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Cold-Water Corals in the Cap De Creus Canyon, Northwestern Mediterranean: Spatial Distribution, Density and Anthropogenic Impact
Vol. 397: 37–51, 2009 MARINE ECOLOGY PROGRESS SERIES Published December 17 doi: 10.3354/meps08314 Mar Ecol Prog Ser Contribution to the Theme Section ‘Conservation and management of deep-sea corals and coral reefs’ OPENPEN ACCESSCCESS Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact Covadonga Orejas1, 4,*, Andrea Gori1, Claudio Lo Iacono2, Pere Puig1, Josep-Maria Gili1, Mark R. T. Dale3 1Instituto de Ciencias del Mar (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Unidad de Tecnología Marina (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain 3University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada 4Centro Oceanográfico de Santander (IEO) Promontorio de San Martin s/n, 93004 Santander, Spain ABSTRACT: The occurrence and density of 3 cold-water coral (CWC) species (Madrepora oculata, Lophelia pertusa and Dendrophyllia cornigera) were investigated in the Cap de Creus canyon (north- western Mediterranean) by conducting and analysing 22 video survey transects. Species distribution patterns were also investigated at 3 spatial extents (km, 100s of m and m) across 3 of the transects using spatial statistics. Additionally, the locations of snagged benthic long-line fishing gear were logged across these 3 transects. Video surveys were carried out by both remotely operated vehicles (ROVs) and the JAGO manned submersible. CWCs were present in 15 of the 22 survey transects, pre- dominantly those covering areas with hard substrate (boulders or hardrock outcrops). M. oculata was the most abundant CWC species in the survey transects, whereas L. -
Revision of the Genus Ceriantheomorphe (Cnidaria, Anthozoa, Ceriantharia) with Description of a New Species from the Gulf of Mexico and Northwestern Atlantic
A peer-reviewed open-access journal ZooKeys 874: 127–148Revision (2019) of the genus Ceriantheomorphe (Cnidaria, Anthozoa, Ceriantharia)... 127 doi: 10.3897/zookeys.847.35835 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Revision of the genus Ceriantheomorphe (Cnidaria, Anthozoa, Ceriantharia) with description of a new species from the Gulf of Mexico and northwestern Atlantic Celine S.S. Lopes1,2, Hellen Ceriello1,2, André C. Morandini3,4, Sérgio N. Stampar1,2 1 Universidade Estadual Paulista (UNESP), Departamento de Ciências Biológicas, Laboratório de Evolução e Diversidade Aquática – LEDA/FCL, Avenida Dom Antônio, 2100 – Parque Universitário, Assis, São Paulo, Brazil 2 Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Zoologia, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250 – Distrito de Rubião Junior, Botucatu, São Paulo, Brazil 3 Uni- versidade de São Paulo (USP), Instituto de Biociências – Departamento de Zoologia, Rua do Matão, Travessa 14, 101, Cidade Universitária, São Paulo, Brazil 4 Universidade de São Paulo (USP), Centro de Biologia Marinha (CEBIMar), Rodovia Manoel Hypólito do Rego, Km 131.50, Praia do Cabelo Gordo, São Sebastião, São Paulo, Brazil Corresponding author: Celine S.S. Lopes ([email protected]) Academic editor: James Reimer | Received 30 April 2019 | Accepted 29 July 2019 | Published 9 September 2019 http://zoobank.org/5723F36A-EA44-48E3-A8F5-C8A3FF86F88C Citation: Lopes CSS, Ceriello H, Morandini AC, Stampar SN (2019) Revision of the genus Ceriantheomorphe (Cnidaria, Anthozoa, Ceriantharia) with description of a new species from the Gulf of Mexico and northwestern Atlantic. ZooKeys 874: 127–148. https://doi.org/10.3897/zookeys.874.35835 Abstract The present study presents a revision of the genusCeriantheomorphe Carlgren, 1931, including redescrip- tions of the two presently recognized species, Ceriantheomorphe ambonensis (Kwietniewski, 1898) and Ceriantheomorphe brasiliensis (Mello-Leitão, 1919), comb. -
Ica Nature Park (Adriatic Sea, Croatia)
NAT. CROAT. VOL. 16 No 4 233¿266 ZAGREB December 31, 2007 original scientific paper / izvorni znanstveni rad ANTHOZOAN FAUNA OF TELA[]ICA NATURE PARK (ADRIATIC SEA, CROATIA) PETAR KRU@I] Faculty of Science, Department of Zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia ([email protected]) Kru`i}, P.: Anthozoan fauna of Tela{}ica Nature Park (Adriatic Sea, Croatia). Nat. Croat., Vol. 16, No. 4., 233–266, 2007, Zagreb. Sixty-five anthozoan species were recorded and collected in the area of Tela{}ica Nature Park during surveys from 1999 to 2006. General and ecological data are presented for each species, as well as distribution and local abundance. The recorded species account for about 56% of the antho- zoans known in the Adriatic Sea, and for about 38% of the anthozoans known in the Mediterra- nean Sea. From Tela{}ica Nature Park, 16 species are considered to be Mediterranean endemics. The heterogeneity of the substrates and benthic communities in the bay and cliffs is considerable in Tela{}ica Nature Park; anthozoans are present on most of the different kinds of substrates and in a wide range of benthic communities. Key words: marine fauna, Anthozoa, Tela{}ica Nature Park, Adriatic Sea. Kru`i}, P.: Fauna koralja Parka prirode Tela{}ica (Jadransko more, Hrvatska). Nat. Croat., Vol. 16, No. 4., 233–266, 2007, Zagreb. Prilikom istra`ivanja podmorskog dijela Parka prirode Tela{}ica u razdoblju od 1999. do 2006. godine zabilje`eno je i sakupljeno 65 vrsta koralja. Za svaku vrstu izneseni su op}i i ekolo{ki podaci, te su zabilje`eni nalazi i lokalna brojnost. -
In Deep-Sea Habitats Around the Iberian Margin
Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Taxonomy, distribution and ecology of the order Phyllodocida (Annelida, Polychaeta) in deep-sea habitats around the Iberian margin Ascensão Ravara a,n, Diana Ramos b, Marcos A.L. Teixeira c, Filipe O. Costa c, Marina R. Cunha a a Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal b Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal c Centro de Biologia Molecular Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Braga, Portugal article info abstract The polychaetes of the order Phyllodocida (excluding Nereidiformia and Phyllodociformia incertae sedis) Keywords: collected from deep-sea habitats of the Iberian margin (Bay of Biscay, Horseshoe continental rise, Gulf of Polychaeta Cadiz and Alboran Sea), and Atlantic seamounts (Gorringe Bank, Atlantis and Nameless) are reported Phyllodocida herein. Thirty-six species belonging to seven families – Acoetidae, Pholoidae, Polynoidae, Sigalionidae, Deep-sea Glyceridae, Goniadidae and Phyllodocidae, were identified. Amended descriptions and/or new illustra- Iberian margin tions are given for the species Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Lepidasthenia Barcoding brunnea and Polynoe sp. Relevant taxonomical notes are provided for other seventeen species. Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Harmothoe evei, Eumida longicirrata and Glycera noelae, pre- viously known only from their type localities were found in different deep-water places of the studied areas and constitute new records for the Iberian margin. The geographic distributions and the bathy- metric range of thirteen and fifteen species, respectively, are extended. The morphology-based biodi- versity inventory was complemented with DNA sequences of the mitochondrial barcode region (COI barcodes) providing a molecular tag for future reference. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Cold-Water Coral Reefs: out of Sight
(Ä,.- �··ß II MILJ0VERNDEPARTEMENTET �� UNEP WCMC Norwegian Ministry of the Environment WWF Cold-water coral reefs Out of sight - no longer out of mind Andre Freiwald, Jan Helge Fossa, Anthony Grehan, Tony Koslow and J. Murray Roberts <« t�J(/- ,� - UNEP WCMCM UNEP World Conservation Monitoring Centre Supporting organizations 219 Hunttngdon Road Oepartment of the Environment, Heritage an d Local Cambridge CB3 ODL Government Un,ted K,ngdom National Parks and W1ldl1te Service Tel: +44 IOl 1223 277314 7 Ely Place Fax +44 IOl 1223 277136 Dublin 2 Email: [email protected] Ire land Website: www.unep-wcmc.org http://www.env1ron.1e/OOEI/DDElhome.nsf Director: Mark Collins Norwegian Ministry of the En vironment Oepartmenl for Nature Management THE UNEP WoRLD CONSERVATION MONITORING CENTRE 15 the PO Box 8013 b1od1vers1ty assessment and pol,cy 1mplementat1on arm of the Dep. N-0030 Oslo Un,ted Nations Environment Programme IUNEPI. the world"s Norway foremost intergovernmental env,ronmental organizat,on. UNEP http://www.m1lJo.no WCMC a,ms to help dec1s1on makers recogntze the value of b1od1vers1ty to people everywhere, and to apply th1s knowledge to Defra all that they do. The Ce ntre's challenge 1s to transtorm complex Oepartment tor Environment, Food and Rural Affairs data ,nto pol1cy-relevant intormat1on, to bu1ld tools and systems Nobel House tor analys1s and 1ntegrat1on, and to support the needs ot na11ons 17 Sm1th Square and the 1nternat1onal community as they engage 1n JOtnt London SWl P 3JR programmes ot act,on. Untted K,ngdom http://www.detra.9ov.uk UNEP-WCMC prov1des obJect1ve, sc1ent1t1cally rigorous products and serv1ces that 1nclude ecosystem assessments, support for Joint Nature Conservation Committee 1mplementat1on of env1ronmental agreements, regional and Monkstone House global b1od1vers1ty 1nformat1on, research on env,ronmental City Road threats and 1mpacts, and development of future scenanos for the Peterborough PEl UY l1ving world. -
Marine Invertebrates in Tubes of Ceriantharia (Cnidaria: Anthozoa)
Biodiversity Data Journal 8: e47019 doi: 10.3897/BDJ.8.e47019 Research Article Knock knock, who’s there?: marine invertebrates in tubes of Ceriantharia (Cnidaria: Anthozoa) Hellen Ceriello‡,§, Celine S.S. Lopes‡,§, James Davis Reimer|, Torkild Bakken ¶, Marcelo V. Fukuda#, Carlo Magenta Cunha¤, Sérgio N. Stampar‡,§ ‡ Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), FCL, Assis, Brazil § Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Botucatu, Brazil | University of the Ryukyus, Nishihara, Okinawa, Japan ¶ Norwegian University of Science and Technology, NTNU University Museum, Trondheim, Norway # Museu de Zoologia da Universidade de São Paulo (MZSP), São Paulo, Brazil ¤ Universidade Federal de São Paulo (Unifesp), Instituto do Mar, Santos, Brazil Corresponding author: Hellen Ceriello ([email protected]) Academic editor: Pavel Stoev Received: 02 Oct 2019 | Accepted: 04 Dec 2019 | Published: 08 Jan 2020 Citation: Ceriello H, Lopes CS.S, Reimer JD, Bakken T, Fukuda MV, Cunha CM, Stampar SN (2020) Knock knock, who’s there?: marine invertebrates in tubes of Ceriantharia (Cnidaria: Anthozoa). Biodiversity Data Journal 8: e47019. https://doi.org/10.3897/BDJ.8.e47019 Abstract This study reports on the fauna found in/on tubes of 10 species of Ceriantharia and discusses the characteristics of these occurrences, as well as the use of mollusc shells in ceriantharian tube construction. A total of 22 tubes of Ceriantharia from Argentina, Brazil, Japan, Norway, Portugal and the United States were analysed, revealing 58 species of marine invertebrates using them as alternative substrates. Based on a literature review and analyses of the sampled material, we report new occurrences for Photis sarae (Crustacea), Microgaza rotella (Mollusca), Brada sp., Dipolydora spp., Notocirrus spp., and Syllis garciai (Annelida). -
Experimental Comparison of Skeletal Growth Rates in the Cold-Water Coral Madrepora Oculata Linnaeus, 1758 and Three Tropical Scleractinian Corals
Journal of Experimental Marine Biology and Ecology 405 (2011) 1–5 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical scleractinian corals Covadonga Orejas a,b,⁎, Christine Ferrier-Pagès c, Stéphanie Reynaud c, Georgios Tsounis a, Denis Allemand c, Josep Maria Gili a a Instituto de Ciencias del Mar (CSIC), Pg Maritim de la Barceloneta 37–49, 08003 Barcelona, Spain b Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Santander, Promontorio de San Martin s/n, 39004 Santander, Spain c Centre Scientifique de Monaco, Avenue St Martin, 98000 Monaco, Monaco article info abstract Article history: The skeletal growth rate of the cold-water coral (CWC) Madrepora oculata Linnaeus, 1758 was measured Received 29 September 2010 during 3 months under controlled conditions (at 12 °C in the dark, fed five times a week), using the buoyant Received in revised form 5 May 2011 weight technique. In order to interpret CWC growth in a wider context, we also measured the skeletal growth Accepted 11 May 2011 rates of three tropical scleractinian species: Stylophora pistillata (Esper, 1797), Turbinaria reniformis (Bernard, Available online 12 June 2011 1896) and Galaxea fascicularis (Linnaeus, 1767), likewise maintained under controlled conditions (at 25 °C, −2 −1 fi Keywords: 250 μmol photons m s , either fed ve times a week or unfed). The skeletal growth rate of M. oculata was −1 Aquaria experiments equal to 0.20±0.09% d (mean±SD), similar to the growth of unfed and fed nubbins of G. -
First Mesozoic Record of the Scleractinian Madrepora from the Maastrichtian Siliceous Limestones of Poland
Facies (2007) 53: 67–78 DOI 10.1007/s10347-006-0089-6 ORIGINAL ARTICLE Jarosław Stolarski · Agostina Vertino First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland Received: 11 July 2006 / Accepted: 11 September 2006 / Published online: 10 November 2006 C Springer-Verlag 2006 Abstract The objective of the present article is to doc- Keywords Scleractinia . Madrepora . Cretaceous . ument the first stratigraphic occurrence of the colonial Maastrichtian . Siliceous limestone oculinid Madrepora, known from the modern seas as an azooxanthellate taxon that contributes to the formation of deep-water coral reefs. The Upper Cretaceous specimens of Introduction Madrepora sp. reported herein from Poland were recovered from Upper Maastrichtian (Nasiłow´ and Bochotnica local- The last few decades of exploration of Recent deep-water ities) and Lower Maastrichtian (Bliz˙ow´ locality) siliceous environments cast an entirely new light on the impor- limestones. The corals are preserved as imprints of the tance of scleractinian corals for the deep-water ecosys- branch fragments and molds of the calices. Despite their tems. Deep-water coral reefs (reef sensu Freiwald 1998; moldic preservation, the coral remains exhibit key generic Freiwald et al. 2004), whose framework is formed by scle- features of the genus Madrepora; including (1) sympodial ractinian taxa with arborescent growth forms, proved to be colony growth form with calices arranged in opposite and the regions of essential habitat, feeding grounds, recruit- alternating rows in one plane of the branch, and (2) imprints ment and nursery for a great deal of marine organisms. of the granular coenosteum texture, occasionally showing Deep-water coral reef ecosystems are currently a subject of peculiar reticulate patterns. -
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.