6 Infections Due to the Dimorphic Fungi

Total Page:16

File Type:pdf, Size:1020Kb

6 Infections Due to the Dimorphic Fungi 6 Infections Due to the Dimorphic Fungi T.S. HARRISON l and S.M. LEVITZ l CONTENTS VII. Infections Caused by Penicillium marneffei .. 142 A. Mycology ............................. 142 I. Introduction ........................... 125 B. Epidemiology and Ecology .............. 142 II. Coccidioidomycosis ..................... 125 C. Clinical Manifestations .................. 142 A. Mycology ............................. 126 D. Diagnosis ............................. 143 B. Epidemiology and Ecology .............. 126 E. Treatment ............................. 143 C. Clinical Manifestations .................. 127 VIII. Conclusions ........................... 143 1. Primary Coccidioidomycosis ........... 127 References ............................ 144 2. Disseminated Disease ................ 128 3. Coccidioidomycosis in HIV Infection ... 128 D. Diagnosis ............................. 128 E. Therapy and Prevention ................. 129 III. Histoplasmosis ......................... 130 I. Introduction A. Mycology ............................. 130 B. Epidemiology and Ecology .............. 131 C. Clinical Manifestations .................. 131 1. Primary and Thoracic Disease ......... 131 The thermally dimorphic fungi grow as molds in 2. Disseminated Disease ................ 132 the natural environment or in the laboratory at 3. Histoplasmosis in HIV Infection ....... 133 25-30 DC, and as yeasts or spherules in tissue or D. Diagnosis ............................. 133 when incubated on enriched media at 37 DC. E. Treatment ............................. 133 IV. Blastomycosis .......................... 134 They include the agents of the endemic systemic A. Mycology ............................. 134 mycoses prevalent in the Western Hemisphere, B. Epidemiology and Ecology .............. 135 i.e., Coccidioides immitis, Histoplasma cap­ C. Clinical Manifestations .................. 135 sulatum, Blastomyces dermatitidis, and Par­ 1. Primary and Pulmonary Disease ....... 135 2. Extrapulmonary Disease .............. 136 acoccidioides brasiliensis. Also discussed here are 3. Blastomycosis in HIV Infection ........ 136 Sporothrix schenckii, which occurs worldwide and D. Diagnosis ............................. 136 usually causes cutaneous rather than systemic E. Treatment ............................. 137 disease, and Penicillium marneffei, a recently V. Paracoccidioidomycosis ................. 137 A. Mycology ............................. 137 recognized cause of systemic mycosis in Southeast B. Epidemiology and Ecology .............. 138 Asia. In recent years, these fungi have become an C. Clinical Manifestations .................. 138 increasing problem due to rising populations in 1. Childhood Disease ................... 138 2. Adult Disease ....................... 139 the endemic areas, more travel, and an increasing 3. Paracoccidioidomycosis in HIV Infection 139 number of immunocompromised patients D. Diagnosis ............................. 139 (especially those with AIDS). Because of space E. Treatment ............................. 139 limitations we have tried to emphasize more VI. Sporotrichosis .......................... 140 A. Mycology ............................. 140 recent developments in the ecology, epidemiology, B. Epidemiology and Ecology .............. 140 and clinical aspects of these mycoses. Pathogenesis C. Clinical Manifestations .................. 141 and host defense are reviewed in other chapters 1. Cutaneous Sporotrichosis ............. 141 (Chaps. 1,3,4, this Vol.). 2. Systemic Sporotrichosis ............... 141 D. Diagnosis ............................. 141 E. Treatment ............................. 141 II. Coccidioidomycosis 1 Section of Infectious Diseases, Evans Memorial Department of Clinical Research and Department of The first case of disseminated coccidioidomycosis Medicine, Boston University School of Medicine, Boston was reported in 1892 in Argentina. By 1900 MA 02118, USA Ophiils described the causative organism as a The Mycota VI Human and Animal Relationships Howard/Miller (Eds.) © Springer-Verlag Berlin Heidelberg 1996 126 T.S. Harrison and S.M. Levitz dimorphic fungus. In the 1930s Dickson and the presence of particular plants (e.g., creosote Gifford recognized the milder self-limiting forms bush, cacti, and yuccas) and animals (Drutz and of primary pulmonary infection. Charles Smith Catanzaro 1978). The highest prevalences are in and his coworkers (1946) defined much of the southern Arizona around Phoenix and Tucson, in epidemiology of the infection in studies during the San Joaquin Valley in southern California, World War II at military installations in the San and in Texas along the Rio Grande around EI Joaquin Valley. The first effective treatment, Paso. Parts of southern Nevada, Utah, and New amphotericin B, was introduced in 1957; and Mexico are also endemic. In Mexico the main from the 1970s azoles also became available. areas are in the north and west along the border with the USA, the Pacific coast, and a more central region. There are smaller endemic areas A. Mycology in Honduras and Guatemala. In South America the highest incidence occurs in northwest Coccidioides immitis is classified with imperfect Venezuela. Endemic disease has also been re­ fungi or deuteromycetes, as no sexual state has ported in the adjacent areas of Columbia, and in yet been described (Kwon-Chung and Bennett Paraguay, Bolivia, and Argentina. Interestingly, 1992). However, analysis of rONA sequence data endemic foci have also been found outside the suggests a close relationship with other dimorphic Lower Sonoran Life Zone, e.g., in the Pacific fungi of medical importance, such as Blastomyces beach area of San Diego, in a woodland area of dermatitidis and Histoplasma capsulatum, whose northern California, and in two tropical areas of sexual forms place them in the Ascomycotina. As Mexico. Within endemic areas, the occurrence of a saprophyte in soil or on agar, C. immitis pro­ C. immitis in the soil is very patchy. The reasons duces septate hyphae. Arthroconidia are formed for this are not fully understood. Soil around by alternate cells which swell and lay down an rodent burrows more often yields fungus. The inner wall, while the intervening cells degenerate. high salinity and alkalinity of most positive When disturbed, the hardy arthroconidia are soils may inhibit the growth of competing released into the air. They may germinate to microorganisms. produce hyphae, but if inhaled by man or a range Within endemic areas, the risk of infection is of animals they enlarge to become multinucleate clearly increased by work outdoors under dusty spherules up to 80.um in diameter within the host conditions. Outbreaks can occur during construc­ tissues. By successive cycles of cleavage, endo­ tion and archeological digs. Larger epidemics spores 2-5.um in diameter with single nuclei are may result from climatic factors. In December formed and released when the spherule wall rup­ 1977, high winds scoured the topsoil from the tures. In the susceptible host, each endospore can southern San Joaquin Valley and deposited dust then form a new spherule. In the laboratory, up to 700 km to the north, well outside the usual conversion to the parasitic form is favored by endemic area. In the first 16 weeks of 1978, 550 increased CO2 tension and a temperature between cases of coccidioidomycosis were reported in 34 and 40°C. Up to one quarter of isolates show California compared to a maximum of 175 in the variations in the color, texture, or form of the same period over the previous 10 years (Flynn et mycelial colonies, or in the pattern of conidiation, al. 1979). From September to December 1991, which can lead to delays in identification. Atypical and again in the latter half of 1992, there was isolates may have differing degrees of virulence in a dramatic increase in the number of cases of mice, but there is no evidence for any clinical coccidioidomycosis in the southern San Joaquin correlation in man. In addition, there is no Valley (Einstein and Johnson 1993). After a pro­ evidence for any significant antigenic variation longed drought, significant rainfall in March 1991 between strains. and in February and March 1992 may have led to mycelial growth and the germination of arth­ roconidia which were dispersed in the subsequent B. Epidemiology and Ecology dry months. In southern California in a normal year, there is not usually such a marked seasonal In the USA the endemic areas largely correspond variation in incidence, but studies from Arizona with the Lower Sonoran Life Zone, characterized have also found an increased incidence in the by an arid climate with short rainy seasons and second half of the year (Kerrick et al. 1985). Dimorphic Fungal Infections 127 Outside the endemic region, cases most often C. Clinical Manifestations result from travel, which may only have been brief within an endemic area. Very rarely fomites 1. Primary Coccidioidomycosis (e.g., cotton and clothes) have led to infections outside the endemic area. Infrequent cases Symptomatic disease occurs in about 40% of those acquired by direct cutaneous inoculation have infected, within 1 to 4 weeks after exposure. The also been described. Under normal circumstances, common manifestations are cough (which is person to person spread does not occur, although usually dry), fever, headache, chest pain (which in one case report, medical staff were infected may be pleuritic), malaise, and myalgia. A fine from arthroconidia produced by a mycelium which erythematous macular rash in
Recommended publications
  • Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi
    Journal of Fungi Article Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi Simona Dzurendova 1,*, Boris Zimmermann 1 , Achim Kohler 1, Kasper Reitzel 2 , Ulla Gro Nielsen 3 , Benjamin Xavier Dupuy--Galet 1 , Shaun Leivers 4 , Svein Jarle Horn 4 and Volha Shapaval 1 1 Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; [email protected] (B.Z.); [email protected] (A.K.); [email protected] (B.X.D.–G.); [email protected] (V.S.) 2 Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; [email protected] 3 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; [email protected] 4 Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; [email protected] (S.L.); [email protected] (S.J.H.) * Correspondence: [email protected] or [email protected] Abstract: Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS).
    [Show full text]
  • Ecology of Histoplasma Casulatum Var. Capsulatum
    Vaccines & Vaccination Open Access Ecology of Histoplasma Casulatum var. Capsulatum Pal M* Editorial Founder of Narayan Consultancy on Veterinary Public Health and Microbiology, India Volume 2 Issue 1 Received Date: July 22, 2017 *Corresponding author: Mahendra Pal, Founder of Narayan Consultancy on Published Date: July 29, 2017 Veterinary Public Health and Microbiology, 4 Aangan, Jagnath Ganesh Dairy Road, Anand-388001, India, Tel: 091-9426085328; Email: [email protected] Editorial Ecology is defined as the study of an organism in Since the first recognition of Histoplasma capsulatum relation to its environment. Most of the fungi such as in 1905 by Darling, three varieties of this dimorphic Aspergillus fumigatus, Blastomyces dermatitidis, fungus are described. These are H. capsulatum var. Cryptococcus neoformans, Fusrium solani, Geotrichum capsulatum (American histoplasmosis), H. capsulatum var. candidum, Histoplasma capsulatum, Sprothrix schenckii duboisii (African histolasmosis, affects man and baboon) etc., have ecological association with environmental and H. capsulatum var. farciminosum. The later variety substrates. These mycotic agents are frequently causes epizootic lymphangitis in animals mainly in recovered from the soil, avian droppings, bat guano, equines. It is a major fungal disease of equines in Ethiopia. woods, litter, sewage, straw, vegetables, fruits and other Among these varieties, H.casulatum var. capsulatum, plant materials. Among these saprophytic fungi, commonly known as H. capsulatum, is global in Histoplasma capsulatum is an important dimorphic distribution, and causes infections in humans as well as in fungus, which can cause life threatening disease in many species of animals such as bat, bear, cat, cattle, dog, humans and in a wide variety of animals. The recorded ferret, fox, horse, monkey, sheep etc.
    [Show full text]
  • Introduction to Mycology
    INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Basidiomycete Mycelia in Forest Soils: Dimensions, Dynamics and Roles in Nutrient Distribution
    Mycol. Res. 109 (1): 7–20 (January 2005). f The British Mycological Society 7 DOI: 10.1017/S0953756204001753 Printed in the United Kingdom. Review Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution John W. G. CAIRNEY Centre for Horticulture and Plant Sciences, University of Western Sydney, Parramatta Campus, Locked Bag 1797, Penrith South DC, NSW 1797, Australia. E-mail: [email protected] Received 15 July 2004; accepted 3 October 2004. Basidiomycete mycelia are ubiquitous in forest soils where they fulfil a range of key ecological functions. Population studies, based largely on basidiome collections, indicate that mycelia of many ectomycorrhizal and saprotrophic basidiomycetes can spread vegetatively for considerable distances through soil, but the extent to which these become physically or physiologically fragmented is unclear. This review considers aspects of the distribution, dynamics and translocatory activities of individual basidiomycete mycelia in forest soil, highlighting current gaps in our understanding and possible ways to address these. INTRODUCTION in soil have been constrained by a lack of suitable techniques for discrimination between them, but some On the basis of basidiome collections, it is evident that progress is now being made. A useful method for esti- forest soils in a broad range of habitats house diverse mating ECM mycelial biomass in forest soils has, for communities of basidiomycetes (e.g. Schmit, Murphy example, recently been developed (Wallander et al. & Mueller 1999, de la Luz Fierros, Navarrete-Heredia 2001). This involves burying mesh bags containing & Guzma´n-Davalos 2000, Ferris, Peace & Newton sand in forest plots and comparing mycelial biomass in 2000, Packham et al.
    [Show full text]
  • Hypha and Its Characteristics
    Clinical Microbiology: Open Access Commentary Hypha and its Characteristics Giusina Caggiano* Department of Biomedical Sciences, University of Bari, Bari, Italy DESCRIPTION growing tip, dividing the hypha into individual cells. Hyphae can branch by the bifurcation of a growing tip or by the emergence A fungus or actinobacterium's hypha is a long, branching of a new tip from an existing hypha. The behaviour of hypha can filamentous structure. Hyphae are the primary mode of be described as follows: environmental stimuli, such as the vegetative growth and are referred to collectively as a mycelium. application of an electric field, can control the direction of A hypha is made up of one or more cells that are surrounded by hyphal growth. Hyphae can detect reproductive units from afar a tubular cell wall. Most fungi divide their hyphae into cells via and grow towards them. To penetrate a permeable surface, internal cross-walls known as "septa". Septa are typically hyphae can weave through it. Hyphae can be modified in a perforated by pores large enough to allow ribosomes, variety of ways to perform specific functions. Some parasitic mitochondria, and occasionally nuclei to pass between cells. In fungi develop haustoria that aid in absorption within host cells. contrast to plants and oomycetes, which have cellulosic cell walls, Arbuscules of mutualistic mycorrhizal fungi perform a similar the major structural polymer in fungal cell walls is typically function in nutrient exchange and are therefore important in chitin. Some fungi have aseptate hyphae, which mean that their assisting plant nutrient and water absorption. In lichens, hyphae hyphae are not divided by septa.
    [Show full text]
  • FUNGI Why Care?
    FUNGI Fungal Classification, Structure, and Replication -Commonly present in nature as saprophytes, -transiently colonising or etiological agenses. -Frequently present in biological samples. -They role in pathogenesis can be difficult to determine. Why Care? • Fungi are a cause of nosocomial infections. • Fungal infections are a major problem in immune suppressed people. • Fungal infections are often mistaken for bacterial infections, with fatal consequences. Most fungi live harmlessly in the environment, but some species can cause disease in the human host. Patients with weakened immune function admitted to hospital are at high risk of developing serious, invasive fungal infections. Systemic fungal infections are a major problem among critically ill patients in acute care settings and are responsible for an increasing proportion of healthcare- associated infections THE IMPORTANCE OF FUNGI • saprobes • symbionts • commensals • parasites The fungi represent a ubiquitous and diverse group of organisms, the main purpose of which is to degrade organic matter. All fungi lead a heterotrophic existence as saprobes (organisms that live on dead or decaying matter), symbionts (organisms that live together and in which the association is of mutual advantage), commensals (organisms living in a close relationship in which one benefits from the relationship and the other neither benefits nor is harmed), or as parasites (organisms that live on or within a host from which they derive benefits without making any useful contribution in return; in the case of pathogens, the relationship is harmful to the host). Fungi have emerged in the past two decades as major causes of human disease, especially among those individuals who are immunocompromised or hospitalized with serious underlying diseases.
    [Show full text]
  • Blastomycoses Dermatitis Is a Dimorphic Fungus That Is Capable Of
    BLASTOMYCOSES DERMATITIDIS IN KANSAS. Linh T. Nguyen, MD, and Maha Assi, MD, MPH. KU School of Medicine-Wichita. Blastomycoses dermatitidis is a dimorphic fungus that is capable of causing disseminated infection even in immunocompetent hosts. It exists in nature as a mold and converts to a yeast at a temperature of 37°C. Blastomycoses dermatitidis is typically contracted by inhalation of the conida in the environment. Infection primarily involves the lung, but may also disseminate to other organs, most commonly skin and bone. Although not endemic in Kansas, Blastomycoses dermatitidis is known to be endemic in the central United States, specifically around the Ohio and Mississippi river valleys. Several cases have also occurred in parts of Canada. A 10-year retrospective chart review performed at Infectious Disease Consultants office in Wichita revealed six cases of Blastomycoses dermatitidis identified in Kansas. The patients demonstrated a variation in clinical presentation and a delay in diagnosis. Pulmonary involvement was seen in five of the six cases and was mistaken for either pneumonia or malignancy on presentation. Two patients were asymptomatic and found incidentally to have nodules on chest radiograph. Of the three patients with cutaneous involvement, only one had primary cutaneous blastomycosis. Two patients had dissemination to bone. Exposure to soil was unknown in five of the cases. Only one patient was immunocompromised, demonstrating that this is not an opportunistic infection. Blastomycoses dermatitidis was identified by direct visualization from a culture in three cases and was diagnosed via polymerase chain reaction in the remaining three cases. Five patients responded to treatment with anti-fungals.
    [Show full text]
  • Hyphal Tip Growth: Outstanding Questions
    Bartnicki-Garcia HYPHAL TIP GROWTH: OUTSTANDING QUESTIONS Salomón Bartnicki-García Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, México and Department of Plant Pathology, University of California, Riverside, California. I. GENERAL 2 II. KEY STRUCTURES AND PROCESSES IN TIP GROWTH 2 A. THE CENTRAL QUESTION - POLARIZED SECRETION.....................................................................................2 B. THE SPITZENKÖRPER .................................................................................................................................3 1. Organizer of vesicle traffic ..................................................................................................................3 2. The Spitzenkörper as a Vesicle supply Center (VSC) .............................................................................4 3. Spitzenkörper Trajectory ......................................................................................................................6 4. Growth Pulses and Satellite Spitzenkörper............................................................................................6 5. Spitzenkörper origin.............................................................................................................................7 6. Questions.............................................................................................................................................7 C. THE CYTOSKELETON .................................................................................................................................8
    [Show full text]
  • The Lifecycle of a Mushroom
    WEB TUTORIAL 21.1 The Lifecycle of a Mushroom Text Sections Section 21.3 Reproduction in Fungi, p. 354 Introduction Mushrooms have an unusual life cycle. After spores are released from mature fruit- ing bodies, they germinate to form hyphae. Collectively, the hyphae make up a branching web, called a mycelium. Hyphae derived from the spores of two differ- ent mating types then fuse to become one cell with two distinct nuclei. Thus begins a phase of life that is unique to fungi: the dikaryotic phase, in which cells in a fun- gal mycelium have two nuclei. This tutorial illustrates the relationships among these phases in the life cycle of a mushroom. Learning Objectives • Know the structures involved in each stage of a mushroom’s life cycle. • Understand why the life cycle of fungi is unique in the tree of life. Narration The Life Cycle of a Mushroom A mushroom is a member of a group of fungi called the Basidiomycota. Let's con- sider its life cycle, beginning with the spores that are produced by the mature fruit- ing body. A spore germinates, dividing by mitosis to produce a filament called a hypha. The hypha grows and branches to produce a filamentous network called a mycelium. The mycelium has a high surface-area-to-volume ratio, which allows the fungus to absorb nutrients efficiently. If the hyphae of different mating types meet, they are attracted to each other and fuse, forming a cell with two nuclei. This is an unusual condition for a cell; in the normal case, one cell has one nucleus.
    [Show full text]
  • Fungal Biology Lecture 4A (F09)
    Lecture: Fungal Structure, Part C BIOL 4848/6948 - Fall 2009 Biology of Fungi Spore Germination Some general features Some spores have a fixed point of Fungal Growth and germination termed the germ pore Other spores swell (non-polar growth) prior Development to a germ-tube emergence from a localized point; subsequent wall growth is focused at this point BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. Spore Germination (cont.) Spore Germination (cont.) BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. Spore Germination (cont.) Spore Germination (cont.) BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. 1 Lecture: Fungal Structure, Part C BIOL 4848/6948 - Fall 2009 Spore Germination (cont.) Spore Germination (cont.) Some germinating spores exhibit Hyphal tips show tropism to a variety of different types of tropism, i.e., a substances directional growth response to an Nutrients external stimulus, e.g., Cysteine and other amino acids Negative autotropism - germ tubes emerge Volatile metabolites from a point on the spore furthest away Sex pheromones from a touching spore Positive tropism - germination towards an external stimulus BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. BIOL 4848/6948 (v. F09) Copyright © 2009 Chester R. Cooper, Jr. Mold-Yeast Dimorphism Mold-Yeast Dimorphism (cont.) Some fungi have the ability to alternate Dimorphism occurs in response to between a mold form and a that of a environmental factors, of which no one yeast form - dimorphic fungi common factor regulates the morphological switch in all dimorphic Several pathogens of humans exhibit fungi [Table 5.1, Deacon] dimorphism e.g., Histoplasma capsulatum - mold at Candida albicans 25°C, yeast at 37°C Histoplasma capsulatum e.g., Mucor rouxii - mold with oxygen, yeast in the absence of oxygen BIOL 4848/6948 (v.
    [Show full text]
  • Introductory Mycology BI 432/532 Lecture 2: Overview of Fungi
    Introductory Mycology BI 432/532 Lecture 2: Overview of Fungi " Fungi are:! •# Microbes (mostly)! •# Eukaryotic, heterotrophic organisms that obtain nutrients by absorption and reproduce by spores. " "Extracellular enzymes act on complex substrates, low molecular weight breakdown products are absorbed through the fungal cell wall." " "Fungi live in their food." Nutrition" •# Heterotrophs (chemoheterotrophs)! •# Aerobes, facultative anaerobes (except Neocallimastix)" •# Absorptive nutrition" •# Secrete extracellular enzymes that act on complex substrates " •# Saprobes: decay dead organic matter" •# Parasites: biotroph, necrotroph " " Reproduce by spores! Reproduction, dissemination or survival structures" " A differentiated structure that may be specialized for dissemination, a resistant structure produced in response to adverse conditions, and/or produced during or as a result of a sexual or asexual reproductive process." " Spores may be one-celled or multicelled, colorless or pigmented (brown)" Fungal spores" Spores of some true fungi (chytrids), and fungus- like taxa (Oomycetes) are motile zoospores" Chytrid zoospores" have a single" posteriorly directed" flagellum" " Oomycetes" fungus-like organisms more closely related to plants than to true fungi" Oomycete zoospores have two flagella," one anteriorly directed and one posteriorly" directed" Spores of “higher fungi”—zygomycetes, ascomycetes, basidiomycetes— are non-motile" Spores of fungi may result from sexual (meiotic division) or asexual (mitotic division) processes" Major groups of
    [Show full text]