Occurrence of Plant-Parasitic Nematodes on Enset (Ensete Ventricosum) in Ethiopia with Focus on Pratylenchus Goodeyi As a Key Species of the Crop

Total Page:16

File Type:pdf, Size:1020Kb

Occurrence of Plant-Parasitic Nematodes on Enset (Ensete Ventricosum) in Ethiopia with Focus on Pratylenchus Goodeyi As a Key Species of the Crop Nematology 0 (2020) 1-13 brill.com/nemy Occurrence of plant-parasitic nematodes on enset (Ensete ventricosum) in Ethiopia with focus on Pratylenchus goodeyi as a key species of the crop Selamawit A. KIDANE 1,2,BeiraH.MERESSA 3,SolveigHAUKELAND 4,5, ∗ Trine HVOSLEF-EIDE 1, , Christer MAGNUSSON 4, Marjolein COUVREUR 6,WimBERT 6 and Danny L. COYNE 2,6 1 Norwegian University of Environmental and Life Sciences, NMBU, P.O. Box 5003, 1432 Ås, Norway 2 International Institute of Tropical Agriculture, IITA, PMB 5320, Ibadan, Nigeria 3 Jimma University College of Agriculture and Veterinary Medicine, P.O. Box, Jimma, Ethiopia 4 The Norwegian Institute of Bioeconomy Research, NIBIO, P.O. Box 115, 1431 Ås, Norway 5 International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya 6 Nematology Research Unit, Department of Biology, Ghent University, Campus Ledeganck, Ledeganckstraat 35, B-9000 Ghent, Belgium Received: 24 July 2020; revised: 6 September 2020 Accepted for publication: 7 September 2020 Summary – Enset (Ensete ventricosum) is an important starch staple crop, cultivated primarily in south and southwestern Ethiopia. Enset is the main crop of a sustainable indigenous African system that ensures food security in a country that is food deficient. Related to the banana family, enset is similarly affected by plant-parasitic nematodes. Plant-parasitic nematodes impose a huge constraint on agriculture. The distribution, population density and incidence of plant-parasitic nematodes of enset was determined during August 2018. A total of 308 fields were sampled from major enset-growing zones of Ethiopia. Eleven plant-parasitic nematode taxa were identified, with Pratylenchus (lesion nematode) being the most prominent genus present with a prominence value of 1460. It was present in each sample, with a highest mean population density per growing zone of 16 050 (10 g root)−1, although densities as high as 25 000 were observed in fields at higher altitudes in Guraghe (2200-3000 m a.s.l.). This lesion nematode is found in abundance in the cooler mountainous regions. Visible damage on the roots and corms was manifested as dark purple lesions. Using a combination of morphometric and molecular data, all populations were identified as P. goodeyi and similar to populations from Kenya, Uganda and Spain (Tenerife). Differences in population densities amongst cultivars indicate possible resistance of enset to P. goodeyi. Keywords – altitude, food security, lesion nematode, molecular data, morphology, prominence value. Ensete ventricosum, commonly known as enset, is on approximately 400 000 ha (CSA-Ethiopia, 2016). As a large perennial herbaceous plant belonging to the a key starch staple food source, enset provides food se- Musacea family, together with banana and plantain. Un- curity for over 20 million people, or at least 20% of the like banana and plantain, however, enset does not produce Ethiopian population. Furthermore, it is also used for ani- bunches but instead produces a large underground corm mal feed, fibre, construction and medicine (Brandt et al., that is harvested. The pseudostem is formed from a bun- 1997). The crop grows best at cooler, higher altitudes and dle of leaf sheaths and large leaves, which may reach up is found mostly between 1200-3100 m a.s.l., in the south to 10 m high and 2 m diam. (Westphal & Stevels, 1975). and southwestern areas of the country. Enset-based farm- Wild enset species are found distributed over sub-Saharan ing systems represent a traditional and sustainable form Africa and Asia, but in Ethiopia, where it has been domes- of agriculture, which includes a diverse range of crops ticated, it is cultivated as an important food crop grown that are cultivated alongside enset (Cheesman, 1947; Sim- ∗ Corresponding author, e-mail: [email protected] © The authors, 2020 DOI 10.1163/15685411-bja10058 This is an open access article distributed under the terms of the CC BY 4.0 license. Downloaded from Brill.com03/08/2021 07:47:20AM via free access S.A. Kidane et al. monds, 1962; Brandt et al., 1997). Enset is a perennial emphasis on the most prevalent nematode genus, Praty- crop that takes, on average, 7 years to mature; however, lenchus. This study also served to identify ‘hot spots’ as with most crops, the period to maturity is likely to where material could be collected for use in trials. be lengthened under challenge from biotic and abiotic threats. Identifying the biotic threats that challenge enset, and consequently addressing them, has received limited Materials and methods attention. A number of constraints challenge enset production, SURVEY AREA with bacterial wilt disease caused by Xanthomonas va- Enset root and soil samples were collected from the sicola pv. musacearum (Xvm) (previously named X. southern part of Ethiopia, from administrative zones campestris pv. musacearum (Xcm)) (Studholme et al., where enset is most commonly grown (Sidama, Hadiya, 2020) receiving most attention (Addis et al., 2004, 2008; Kembata and Keffa) in August 2018. Based on the Nakato et al., 2018). The enset root mealy bug (Cataeno- Ethiopian administrative structure a total of 308 fields coccus ensete) can cause severe damage to the roots and were sampled; 72 fields were selected randomly from corm, reducing crop vigour and production (Addis et al., each of the four zones and an additional ten fields each 2010). Also, fungal diseases such as a Sclerotium sp. root from Guraghe and Jimma zones (Fig. 1). In some fields and corm rot, and Acremonium inflorescence spot, causing where multiple cultivars were present, samples were necrosis on flower bracts and leaves, can affect produc- collected separately from different cultivars. For each tion, although they appear not to be widespread (Tesera & sample, the location, geographical coordinates, altitude Quimio, 1994; Quimio & Tesera, 1996). A newly reported and enset cultivar were recorded. Enset thrives best in leaf streak disease, caused by a new Badnavirus species, slightly acidic, well-drained and fertile soils (Brandt et al., has also recently been identified (Abraham et al., 2018; 1997). Specific soil characteristics were not assessed for Abraham, 2019). Plant-parasitic nematodes, well known each site; however, we have observed that in each farm as major production constraints to banana and plantain enset was grown in soils rich in organic matter. Root and production (Sikora et al., 2018), have received only lim- soil samples were removed using a spade by excavating a ited attention on enset (Coyne & Kidane, 2018; Coyne hole ca 0.5 m distance from the stem, from 3-4 plants of et al., 2018). A few studies have associated various ne- each cultivar per field and placed in plastic bags, labelled matode species with the crop, with the lesion nematode and stored in a cooler box for transport to the laboratory. Pratylenchus goodeyi appearing to be the most prevalent Additional P. goodeyi populations were collected from (Peregrine & Bridge, 1992; Tesera & Quimio, 1994; Spei- Kenya and Uganda, and others supplied from Canary jer & Fogain, 1998; Mandefro & Dagne, 2000; Swart et Islands (courtesy of Javier López-Cepero), which were al., 2000; Bogale et al., 2004). The root-knot nematodes included in the molecular assessment for comparison with Meloidogyne incognita, M. javanica and M. ethiopica, Ethiopian populations. and Aphelenchoides ensete have also been reported as po- tential production constraints (Mandefro & Dagne, 2000; PROCESSING OF SAMPLES Swart et al., 2000). Compared to other pathogens, nematodes are, in gen- Soil and root samples were processed separately. En- eral, poorly recognised in sub-Saharan Africa (Coyne et set roots were carefully washed, cut longitudinally and al., 2018) and Ethiopia in particular (Abebe et al., 2015). chopped into ca 0.5 mm-sized pieces and a 10 g sub- Despite a handful of studies associating nematode species sample was used for nematode extraction. For soil sam- with enset, there has been no concerted effort to estab- ples, a 100 ml sub-sample was extracted after fully mixing lish the pest potential of nematodes on enset. The current the soil for each sample. Nematodes were extracted from study serves to provide a basis for more focused studies both soil and roots using a modified Baermann method towards understanding the pest potential of nematodes on over a period of 48 h (Hooper et al., 2005). Nematode the crop. A comprehensive sampling of nematodes was suspensions were decanted and nematodes collected on a undertaken in southern Ethiopia to establish the current 38 μm sieve, rinsed into beakers, reduced to 10 ml and situation regarding nematode incidence across the region, densities counted from 1 ml aliquots under a compound in relation to commonly cultivated cultivars and the influ- microscope. Nematode densities were calculated for each ence of altitude (temperature) on their occurrence, with root and soil sample and expressed as the number of ne- 2 Nematology Downloaded from Brill.com03/08/2021 07:47:20AM via free access Plant-parasitic nematodes on enset Fig. 1. Map showing nematode survey fields in southern Ethiopia. matodes in 10 g root or 100 ml soil. The extracted nema- MOLECULAR CHARACTERISATION todes were subsequently heat-killed, with half the quan- tity preserved in triethanolamine formalin (TAF) to pre- The ethanol-preserved nematodes were washed three pare permanent slides for morphological analyses and the times in 400 μl of sterile water for 10 min. DNA ex- remainder preserved in ethanol (97%) for molecular anal- traction was done by cutting an individual specimen and ysis. transferring the two pieces to an Eppendorf tube contain- ing 20 μlofWLB(50mMKCl;10mMTrispH8.3; 2.5 mM MgCl2; 0.45% NP-40 (Merck Life Sciences); MORPHOLOGICAL CHARACTERISATION 0.45% Tween-20). The samples were frozen for at least 10 min; 1 μl proteinase K (1.2 mg ml−1) was added and Nematodes fixed in TAF were processed to anhy- the samples were incubated for 1 h at 65°C and 10 min at drous glycerin for permanent slides, following a modified 95°C.
Recommended publications
  • Reproduction of the Banana Root-Lesion Nematode, Pratylenchus Goodeyi, in Monoxenic Cultures
    Nematol. medit. (1999), 27: 187-192 1 Instituto de Agricultura Sostenible CS.I.C, Apdo. 4084) 14080 Cordoba, Spain 2 Istituto di Nematologia Agraria) CN.R.) 70126Bari, Italy REPRODUCTION OF THE BANANA ROOT-LESION NEMATODE, PRATYLENCHUS GOODEYI, IN MONOXENIC CULTURES by A. 1. NICO 1, N. VOVLAS 2, A. TRoccoLI 2 and P. CASTILLO 1 Summary. Pratylenchus goodeyi obtained from a field population, infecting banana roots at Madeira island, Portugal, was cultured on carrot discs at 25 QC in a growth chamber to determine its rate of reproduction and to compare the morphometry of the axenically produced population with that of specimens from a field popula­ tion and from previous published descriptions. An initial inoculum level of 12 specimens (ten females and two males) produced, after four months, up to 39,000 specimens/single disc, in all stages of development (eggs, juveniles and adults with a sex ratio between females and males of 12:1). The main morphometric features with stable value (such as stylet length, V%, spicules and gubernaculum length, etc.) of specimens from the carrot disc culture closely agreed with the original description, and the banana populations from Cameroon and Ma­ deira. The root-lesion nematode, Pratylenchus goo­ with data of previous descriptions. These obser­ deyi, was first isolated from banana roots in Gre­ vations may be useful to others for additional nada (Cobb, 1919) and later was found in bana­ studies on such migratory species. na plantations in the Canary Islands (Spain) (de Guiran and Vilardebo, 1982), Kenya (Gichure and Ondieki, 1977; Waudo et al., 1990; Prasad et Materials and methods al., 1995), Tanzania (Walker et al., 1984), Came­ roon (Sakwe and Geraert, 1994), Greece (Vovlas A population of P.
    [Show full text]
  • Nematodes and Agriculture in Continental Argentina
    Fundam. appl. NemalOl., 1997.20 (6), 521-539 Forum article NEMATODES AND AGRICULTURE IN CONTINENTAL ARGENTINA. AN OVERVIEW Marcelo E. DOUCET and Marîa M.A. DE DOUCET Laboratorio de Nematologia, Centra de Zoologia Aplicada, Fant/tad de Cien.cias Exactas, Fisicas y Naturales, Universidad Nacional de Cordoba, Casilla df Correo 122, 5000 C6rdoba, Argentina. Acceplecl for publication 5 November 1996. Summary - In Argentina, soil nematodes constitute a diverse group of invertebrates. This widely distributed group incJudes more than twO hundred currently valid species, among which the plant-parasitic and entomopathogenic nematodes are the most remarkable. The former includes species that cause damages to certain crops (mainly MeloicU:igyne spp, Nacobbus aberrans, Ditylenchus dipsaci, Tylenchulus semipenetrans, and Xiphinema index), the latter inc1udes various species of the Mermithidae family, and also the genera Steinernema and Helerorhabditis. There are few full-time nematologists in the country, and they work on taxonomy, distribution, host-parasite relationships, control, and different aspects of the biology of the major species. Due tO the importance of these organisms and the scarcity of information existing in Argentina about them, nematology can be considered a promising field for basic and applied research. Résumé - Les nématodes et l'agriculture en Argentine. Un aperçu général - Les nématodes du sol représentent en Argentine un groupe très diversifiè. Ayant une vaste répartition géographique, il comprend actuellement plus de deux cents espèces, celles parasitant les plantes et les insectes étant considèrées comme les plus importantes. Les espèces du genre Me/oi­ dogyne, ainsi que Nacobbus aberrans, Dùylenchus dipsaci, Tylenchulus semipenetrans et Xiphinema index représentent un réel danger pour certaines cultures.
    [Show full text]
  • Introduction 1.1. Banana Bananas
    Chapter 1: Introduction 1.1. Banana Bananas (Musa spp.) are an important fruit in agriculture and to the world economy. This fruit provides carbohydrates, proteins, vitamin and minerals to more than 400 million people worldwide (Musabyimana et al., 1999). A banana plant is considered as a herbaceous perennial plant; herbaceous because this plant do not have any woody parts and after the ripening of the fruits, the aerial parts would wither and die while at the same time being perennial due to the fact that new shoots would sprout from the base mature banana and forming a new tree. A mature banana plant can be divided into three integral parts, namely a corm, pseudostems with leaves and a bunch with fruits (Speiger et al., 1997). A corm is the underground part of a banana plant that consists of the roots and suckers. The corm is actually the true stem of the plant because it is the apical meristem or the growing point of the leaves which are developed from the tip of the corm. The corm is composed of a middle cylinder bounded by a cortex. Primary roots separate from the central cylinder and the cortex. Primary roots are formed in three to four waves and the majority of them are created within four months after planting. Primer roots grow horizontally all over the cortex and stay above 50 cm of soil. They are one centimeter thick and are three to four meters in length. A subsequent system of secondary and tertiary roots and root hairs would emerge from the primary roots.
    [Show full text]
  • Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
    Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract
    [Show full text]
  • Research/Investigación Plant Parasitic Nematodes
    RESEARCH/INVESTIGACIÓN PLANT PARASITIC NEMATODES ASSOCIATED WITH BANANA AND PLANTAIN IN EASTERN AND WESTERN DEMOCRATIC REPUBLIC OF CONGO M. Kamira1, 3, S. Hauser2, P. van Asten1,2, D. Coyne2, and H. L. Talwana3 1Consortium for Improving Agricultural-based Livelihoods in Central Africa (CIALCA) Project, Bukavu, Democratic Republic of Congo; 2International Institute of Tropical Agriculture (IITA); 3School of Agricultural Sciences Makerere University, Kampala, Uganda; Corresponding author [email protected] ABSTRACT Kamira M., S. Hauser, P. Van Asten, D. Coyne, and H. L. Talwana. 2013. Plant parasitic nematodes associated with banana and plantain in eastern and western Democratic Republic of Congo. Nematropica 43:216-225. Plant-parasitic nematode incidence, population densities and associated damage were determined from 153 smallholder banana and plantain gardens in Bas Congo (9 – 646 meters above sea level, m.a.s.l) and South Kivu (1043 – 2005 m.a.s.l), Democratic Republic of Congo, during 2010. Based on the frequency of total nematode soil and root extraction, Helicotylenchus multicinctus (89%), Meloidogyne spp. (54%) and Radopholus similis (30%) were the most widespread, while Pratylenchus goodeyi (18%) Helicotylenchus dihystera (18%), Rotylenchulus reniformis (14%), and Pratylenchus spp. (6%) were localized in occurrence. The occurrence and abundance of the nematode species was influenced by altitude:R. similis declined at elevations above 1300 m; P. goodeyi declined at elevations below 1200 m; H. multicinctus and Meloidogyne spp. were found everywhere with higher but non-dominant densities at lower altitudes; Pratylenchus spp. was restricted to lower altitudes; while H. dihystera and R. reniformis were scattered at both low and high altitudes.
    [Show full text]
  • Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
    diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts.
    [Show full text]
  • Genus Pratylenchus Filipjev: Multientry and Monoentry Keys and Diagnostic Relationships (Nematoda: Tylenchida: Pratylenchidae)
    © Zoological Institute, St.Petersburg, 2002 Genus Pratylenchus Filipjev: multientry and monoentry keys and diagnostic relationships (Nematoda: Tylenchida: Pratylenchidae) A.Y. Ryss Ryss, A.Y. 2002. Genus Pratylenchus Filipjev: multientry and monoentry keys and diag- nostic relationships (Nematoda: Tylenchida: Pratylenchidae). Zoosystematica Rossica, 10(2), 2001: 241-255. Tabular (multientry) key to Pratylenchus is presented, and functioning of the computer- ized multientry image-operating key developed on the basis of the stepwise computer diagnostic system BIKEY-PICKEY is described. Monoentry key to Pratylenchus is given, and diagnostic relationships are analysed with the routine taxonomic methods as well as with the use of BIKEY diagnostic system and by the cluster tree analysis using STATISTICA program package. The synonymy Pratylenchus scribneri Steiner in Sherbakoff & Stanley, 1943 = P. jordanensis Hashim, 1983, syn. n. is established. Con- clusion on the transition from amphimixis to parthenogenesis as one of the leading evolu- tionary factors for Pratylenchus is drawn. A.Y. Ryss, Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St.Petersburg 199034, Russia. Identification of nematode species is difficult diagnostic system, and by the cluster tree analy- because of relative poverty and significant sis using STATISTICA program package intraspecific variability of diagnostic characters. (STATISTICA, 1995). The genus Pratylenchus Filipjev is an example of a group with large number of species (49 valid Material and the basic information sources species, more than 100 original descriptions) and complicated diagnostics. The genus has a world- The collections of the following institutions wide distribution and economic importance as were used in research: Zoological Institute, Rus- its species are the dangerous parasites of agri- sian Academy of Sciences; Institute for Nema- cultural crops.
    [Show full text]
  • Taxonomïc Studies on the Genus Pratylenchus (Nematoda)
    TAXONOMÏC STUDIES ON THE GENUS PRATYLENCHUS (NEMATODA) (Taxonomische onderzoekingen aan het nemaiodengeslacht pratylenchusj DOOR P. A. A. LOOF (Plantenziektenkundige Dienst) Nr 39 (I960) Published also in: T. PI. ziekten 66 (I960) : 29-90. CONTENTS Preface 6 A. General and experimental section 7 I. Introduction 7 H. Taxonomiecharacter s 9 lu The identity of Tylenchus pratensis DE MAN 13 IV. The identity of Tylenchusgulosus KÜHN 21 V. The identity of Aphelenchus neglectus RENSCH 23 VI. Taxonomy ofPratylenchus minyus SWSM. &ALLE N 28 VII. The taxonomiestatu s ofPratylenchus coffeae (ZIMMERMANN) 34 VIII. Some remarksconcernin g thedeterminatio n of males 38 B. Systematic section 40 IX. Validspecie s 40 Key -40 Descriptions 41 X. Species inquirendae 59 XI. Synonymized and transferred species 60 Samenvatting 62 Literature cited 63 PREFACE The following studies on the nematode genus Pratylenchus form a review supplementary to the pioneer work by SHER & ALLEN (1953), who put the taxonomy of the genus on a sound basis. For information not contained in the following pages, the reader is referred to their paper. Many nematologists have assisted the author with helpful criticism and sugges­ tions, information on various points or with nematode material. Sincere thanks are offered to Prof. Dr. M. W. ALLEN (Berkeley, California, U.S.A.), Dr. P. BOVIEN (Lyngby, Denmark), Dr. J. R. CHRISTIE (Gainesville, Florida, U.S.A.), Dr. H. GOFFART (Münster, Germany), Dr. W. R. JENKINS (College Park, Maryland, U.S.A.), Mr. J. KRADEL (Kleinmachnow, Germany), Prof. Dr. H. A. KREIS (Bern, Switzerland), Dr. D. PAETZOLD (Halle, Germany), Prof. Dr. B. RENSCH (Münster, Germany), Drs.
    [Show full text]
  • Biology and Molecular Characterisation of the Root Lesion Nematode, Pratylenchus Curvicauda
    Biology and Molecular Characterisation of the Root Lesion Nematode, Pratylenchus curvicauda This thesis is presented by FARHANA BEGUM For the degree of Doctor of Philosophy School of Veterinary and Life Sciences, WA State Agricultural Biotechnology Centre (SABC), Murdoch University, Perth, Western Australia July 2017 Declaration I declare that this is my own account of my research and contains as its main content, work which has not previously been submitted for a degree at any tertiary educational institution. FARHANA BEGUM ii Abstract Australia is the driest inhabited continent with about 70% of the land arid or semi- arid, and soils which are geologically old, weathered, and many are infertile. This is a challenging environment for agricultural production, which is further impacted by biotic constraints such as root lesion nematodes (RLNs), Pratylenchus spp. These soil-borne nematodes cause significant economic losses in yields of winter cereals, and in other crops, particularly under conditions of moisture and nutrient stress. RLNs are widely distributed in Australian broadacre cropping soils, and losses in cereal production are greater when more than one RLN species is present, a situation which often occurs in Western Australia (WA). Hence, to develop appropriate management regimes, accurate identification of RLN species is needed, combined with understanding the biology of host-nematode interactions. The initial aim of this research was to extend the molecular and biological characterisation of P. quasitereoides, a recently described species of root lesion nematode from WA. Morphological measurements of two important characters, tail shape and the per cent distance of the vulva from the anterior end of the nematode body, were made from nematodes collected from the four locations of WA.
    [Show full text]
  • Occurrence of Plant-Parasitic Nematodes on Enset (Ensete Ventricosum) in Ethiopia with Focus on Pratylenchus Goodeyi As a Key Species of the Crop
    Nematology 0 (2020) 1-13 brill.com/nemy Occurrence of plant-parasitic nematodes on enset (Ensete ventricosum) in Ethiopia with focus on Pratylenchus goodeyi as a key species of the crop Selamawit A. KIDANE 1,2,BeiraH.MERESSA 3,SolveigHAUKELAND 4,5, ∗ Trine HVOSLEF-EIDE 1, , Christer MAGNUSSON 4, Marjolein COUVREUR 6,WimBERT 6 and Danny L. COYNE 2,6 1 Norwegian University of Environmental and Life Sciences, NMBU, P.O. Box 5003, 1432 Ås, Norway 2 International Institute of Tropical Agriculture, IITA, PMB 5320, Ibadan, Nigeria 3 Jimma University College of Agriculture and Veterinary Medicine, P.O. Box, Jimma, Ethiopia 4 The Norwegian Institute of Bioeconomy Research, NIBIO, P.O. Box 115, 1431 Ås, Norway 5 International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya 6 Nematology Research Unit, Department of Biology, Ghent University, Campus Ledeganck, Ledeganckstraat 35, B-9000 Ghent, Belgium Received: 24 July 2020; revised: 6 September 2020 Accepted for publication: 7 September 2020 Summary – Enset (Ensete ventricosum) is an important starch staple crop, cultivated primarily in south and southwestern Ethiopia. Enset is the main crop of a sustainable indigenous African system that ensures food security in a country that is food deficient. Related to the banana family, enset is similarly affected by plant-parasitic nematodes. Plant-parasitic nematodes impose a huge constraint on agriculture. The distribution, population density and incidence of plant-parasitic nematodes of enset was determined during August 2018. A total of 308 fields were sampled from major enset-growing zones of Ethiopia. Eleven plant-parasitic nematode taxa were identified, with Pratylenchus (lesion nematode) being the most prominent genus present with a prominence value of 1460.
    [Show full text]
  • Endophytic Fungal Communities of Bromus Tectorum: Mutualisms, Community Assemblages and Implications for Invasion
    ENDOPHYTIC FUNGAL COMMUNITIES OF BROMUS TECTORUM: MUTUALISMS, COMMUNITY ASSEMBLAGES AND IMPLICATIONS FOR INVASION A Thesis Presented in Partial Fulfillment of the Requirement for the Degree of Master of Science with a Major in Environmental Science in the College of Graduate Studies University of Idaho by Melissa A. Baynes August 2011 Major Professor: George Newcombe, Ph.D. ii AUTHORIZATION TO SUBMIT THESIS This thesis of Melissa A. Baynes, submitted for the degree of Master of Science with a major in Environmental Science and titled “ENDOPHYTIC FUNGAL COMMUNITIES OF BROMUS TECTORUM: MUTUALISMS, COMMUNITY ASSEMBLAGES AND IMPLICATIONS FOR INVASION,” has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval. iii ABSTRACT Exotic plant invasions are of serious economic, social and ecological concern worldwide. Although many promising hypotheses have been posited in attempt to explain the mechanism(s) by which plant invaders are successful, there is no single explanation for all invasions and often no single explanation for the success of an individual species. Cheatgrass (Bromus tectorum), an annual grass native to Eurasia, is an aggressive invader throughout the United States and Canada. Because it can alter fire regimes, cheatgrass is especially problematic in the sagebrush steppe of western North America. Its pre- adaptation to invaded climates, ability to alter community dynamics and ability to compete as a mycorrhizal or non-mycorrhizal plant may contribute to its success as an invader. However, its success is likely influenced by a variety of other mechanisms including symbiotic associations with endophytic fungi.
    [Show full text]
  • Reproduction and Identification of Root-Knot Nematodes on Perennial Ornamental Plants in Florida
    REPRODUCTION AND IDENTIFICATION OF ROOT-KNOT NEMATODES ON PERENNIAL ORNAMENTAL PLANTS IN FLORIDA By ROI LEVIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Roi Levin ACKNOWLEDGMENTS I would like to thank my chair, Dr. W. T. Crow, and my committee members, Dr. J. A. Brito, Dr. R. K. Schoellhorn, and Dr. A. F. Wysocki, for their guidance and support of this work. I am honored to have worked under their supervision and commend them for their efforts and contributions to their respective fields. I would also like to thank my parents. Through my childhood and adult years, they have continuously encouraged me to pursue my interests and dreams, and, under their guidance, gave me the freedom to steer opportunities, curiosities, and decisions as I saw fit. Most of all, I would like to thank my fiancée, Melissa A. Weichert. Over the past few years, she has supported, encouraged, and loved me, through good times and bad. I will always remember her dedication, patience, and sacrifice while I was working on this study. I would not be the person I am today without our relationship and love. iii TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES............................................................................................................. vi LIST OF FIGURES ..........................................................................................................
    [Show full text]