Q. No. 3 Which of the Following Has the Highest Normal Boiling Point

Total Page:16

File Type:pdf, Size:1020Kb

Q. No. 3 Which of the Following Has the Highest Normal Boiling Point Q. No. 3 Which of the following has the highest normal boiling point? Option 1 Iodobenzene Option 2 Bromobenzene Option 3 Chlorobenzene Option 4 Fluorobenzene Correct Answer 1 Explanation As the size of the halogen atom increase van der waal forces increases, boiling point increases. Size of the halogen mass density. Q. No. 4 Which of the following are arranged in the decreasing order of dipole moment? Option 1 CH3 Cl,CH 3 Br,CH 3 F Option 2 CH3 Cl,CH 3 F,CH 3 Br Option 3 CH3 Br,CH 3 Cl,CH 3 F Option 4 CH3 Br,CH 3 F,CH 3 Cl Correct Answer 2 Explanation acc to EN of R­F> R­Cl . But due to the small size. F ­ ion cannot accommodate the ­ ve charge. So less polar they R ­ Cl . Q. No. 5 Assertion : The carbon halogen bond in an aryl halid e is shorter than the carbon halogen bond in all alkyl halide. Reason : A bond formed of an sp 3 orbital should be shorter than the corresponding bond involving an sp 2 orbital. Option 1 If both assertion and reason are correct and reason is the correct explanation of assertion. Option 2 If both assertion and reason are true but reason is not the correct explanation of assertion. Option 3 If assertion is true but assertion is false. Option 4 If reason is true but assertion is false. Correct Answer 3 Explanation bond of aryl halide is shorter than the C ­ X bond of an alkyl halide, due to the +M effect of ­X which forms a partial double bond. Q. No. 7 Assertion : Alkyl iodide can be prepared by treating alkyl chloride/bromide with NaI in acetone. Reason : NaCI/NaBr are soluble in acetone while NaI is not. Option 1 If both assertion and reason are correct and reason is the correct explanation of assertion. Option 2 If both assertion and reason are true but reason is not the correct explanation of assertion. Option 3 If assertion is true but assertion is false. Option 4 If reason is true but assertion is false. Correct Answer 3 Explanation NaCl/NaBr (ionic) are insoluble in (non corlless polar). Q. No. 8 The number of possible enantiomeric pairs that can be produced during monochlorination of 2­methyl butane is : Option 1 3 Option 2 4 Option 3 2 Option 4 1 Correct Answer 3 Explanation i and iii having a chiral carbon (*), each chiral molecular can produce a pair of enantiomers (R and S). Q. No. 9 Option 1 Option 2 Option 3 Option 4 Correct Answer 2 Explanation Anti addition. Passage Text Addition of X 2 on alkene is electrophilic addition reaction. Reaction proceed through the formation of 3­membered cyclic halonium ion. Nucleophile X ­ attacks from backside of cyclic halonium ion hence total reaction is anti addition reaction. If this reaction proceed in polar solvent then solvent itself acts as nucleophile. Mechanism : Q. No. 1 0 Which of the following statements is incorrect? Option 1 Symmetrical trans alkene gives 2 products on reaction with Br 2/CCl 4 Option 2 Symmetrical cis alkene gives 2 product on reaction with Br 2/CCl 4 Option 3 Trans alkenes give erythro product Option 4 Cis alkenes gives thero product Correct Answer 3 Explanation cis­ Antiaddition racemic trans­ Antiaddition meso TAM Q. No. 1 1 Option 1 Option 2 Option 3 Option 4 Correct Answer 2 Explanation More substituted alkene is mo re reactive. Q. No. 1 2 Option 1 Option 2 Option 3 Option 4 Correct Answer 4 Explanation Addition of X 2 to an alkene in electrophilic add ition (Anti), if polar solvent is taken, solvent itself acts as a nucleophile. Q. No. 1 3 How many of the following reaction, leads to the formation of diastereomers. Correct Answer b, d, e, f. Is Integer Type ☒ Explanation Products of those runs will have two chiral centres. An org. compounds should have at least two chiral centres to produce diasteromers. Q. No. 1 4 When but ­3­en ­ol reacts with aq. HBr, the product formed is Option 1 3 ­ bromobut ­ 1 ­ ene Option 2 1 ­ bromobut ­ 2 ­ ene Option 3 A mixture of both a and b Option 4 2 ­ bromobut ­ 2 ­ ene Correct Answer 3 Explanation Q. No. 1 5 Match the Following No. Column A Column B Column C Id of Additional Answer 1 HBr.RCOOR Anti ­ CH3 CH= CH 2 Markovnikov’s addition 2 HBr Markovnikov’s CH3 CH= CH 2 addition 3 NBS,hv Side chain C6 H 5 CH 3 substitution 4 Br/FeBr 3 Aromatic C6 H 5 CH 3 substitution Explanation Go through the hydrocarbon’s properties. Q. No. 1 6 Which of the following reactions involve free radical as intermediate? Option 1 ☐ Option 2 ☒ Option 3 ☒ Option 4 ☒ Explanation a ­ Aromic electrophilic substitution. Q. No. 1 7 Assertion : Chlorination of Allylic hydrogen is difficult than vinylic hydrogen. Reason : Allyl radical is stabilized by resonance. Option 1 If both assertion and reason are correct and reason is the correct explanation of assertion. Option 2 If both assertion and reason are true but reason is not the correct explanation of assertion. Option 3 If assertion is true but assertion is false. Option 4 If reason is true but assertion is false. Correct Answer 4 Explanation Chlorination of Allylic hydrogen is easy as it form allyl radica l (more ­ stable) Q. No. 1 8 Acetone Assertion : CH32 ­ CH ­ Cl+ NaI CH 32 ­ CH ­ I+ NaCl Reason : Acetone is polar protic solvent and solubility order of sodium halides decreases dramatically in order NaI > NaBr > NaCl . The last being virtually insoluble in this solvent and a 1 0 and 2 0 chloro alkane in acetone is completely driven to the side of Iodoalkane by the precipitation. Option 1 If both assertion and reason are correct and reason is the correct explanation of assertion. Option 2 If both assertion an d reason are true but reason is not the correct explanation of assertion. Option 3 If assertion is true but assertion is false. Option 4 If reason is true but assertion is false. Correct Answer 3 Explanation Q. No. 1 9 Option 1 Option 2 Option 3 Option 4 Correct Answer 1 Explanation Form through benyl C""" . Q. No. 20 Stereochemistry of the product are : Option 1 Diastereomers Option 2 Meso Option 3 Racemic mixture Option 4 Pure enantiomers Correct Answer 3 Explanation cis+ transaddition Racemicmixture . Q. No. 21 An organic compound C 3H7Br(A) with alcoholic KOH forms C 3H6 which decolorizes Br 2 in CCl 4 but does not gives a white precipitate with ammonical AgNO 3. (A) on reaction with KCN forms a product which on reduction with Na/C 2H5OH produces n­butyl amine. Hence, the compound (A) is Option 1 n­propyl bromide Option 2 isopropyl bromide Option 3 1, 1 ­dibromopropane Option 4 none of these Correct Answer 1 Explan ation Follow retro synthesis Start with the final product It is an alkene, has no acidic ‘H’. Q. No. 22 A compound ‘A’ has molecular formula C 5H9Cl. It does not react with bromine in CCl 4. On treatment with strong base, it produces single ‘B’ (C 5H8) and reacts with Br 2(aq). Ozonolysis of ‘B’ produces a compound C 5H8O2. Which of the following is structure of A? Option 1 Option 2 Option 3 Option 4 Correct Answer 2 Explanation An unsaturated Alkyl halide, but do not react with Cl 2 means, it is saturated compound isomers an Q. No. 23 Mark out the possible product. Option 1 ☒ Option 2 ☒ Option 3 ☐ Option 4 ☐ Explanation Ring expansion and direct substitution. Q. No. 24 Which of the following pair is correctly matched? Option 1 Reaction Product ☒ RX + AgCN RNC Option 2 RX + KCN RCN ☒ Option 3 RX + KNO 2 ☐ Option 4 RX + AgNO 2 R ­O­N=O ☐ Explanation Q. No. 25 Assertion : Treatment of chloromethane with a saturat ed solution of AgCN gives ethyl isocyanides as the major product. Reason : Cyanide (CN ­) is an ambident nucleophile. Option 1 If both assertion and reason are correct and reason is the correct explanation of assertion. Option 2 If both asse rtion and reason are true but reason is not the correct explanation of assertion. Option 3 If assertion is true but assertion is false. Option 4 If reason is true but assertion is false. Correct Answer 2 Explanation Correct reason for assertion: AgCN is a covalent compound in switch connecting atom is ‘N’ C N ­ . Q. No. 26 Choose the correct statement(s) about the following reaction. I. The major product of the reaction is butyl­methyl ether. II. The major product of the reaction is 1­butene. III. The major product is formed by S reaction mechanism. N2 IV. The major product is followed by E2 reaction mechanism. Option 1 I + III Option 2 II + IV Option 3 I + IV Option 4 IV Correct Answer 1 Explanation Q. No. 27 The major substitution product of the following reaction is Option 1 Option 2 Option 3 Option 4 Correct Answer 4 Explanation S ­ inversion of configuration. N2 Q. No. 28 Consider the following reaction X and Y are respectively Option 1 Both nitroethane Option 2 Both ethyl nitrite ( EtONO Option 3 X = EtONO and Y = EtNO 2 Option 4 X = EtNO 2 and Y = EtONON Correct Answer 3 Explanation Q. No. 29 Alkyl halides react with dialkyl copper reagents to give Option 1 Alkenes Option 2 Alkyl copper halides Option 3 Alkanes Option 4 Alkenyl Halides Correct Answer 3 Explanation Corey ­ House synthesis.
Recommended publications
  • Docteur» at the University François Rabela
    UNIVERSITÉ FRANÇOIS – RABELAIS DE TOURS École Doctorale « Santé - Sciences Biologiques - Chimie du Vivant » and UNIVERSITY OF LJUBLJANA, FACULTY OF PHARMACY «Department of Pharmaceutical Chemistry» A cotutelle thesis submitted in fulfillment of the requirements for the degree of «Docteur» at the University François Rabelais of Tours (France) and Doctor of Pharmacy at the University of Ljubljana (Slovenia) In Pharmaceutical Chemistry Publicly defended on the 1st of March 2013 by Mitja KOVAČ in Ljubljana FLUORATION DE DERIVES DU BENZOVESAMICOL POUR L'OBTENTION DE RADIOLIGANDS POTENTIELS DU TRANSPORTEUR VESICULAIRE DE L'ACETYLCHOLINE Under the co-direction of: Associate Professor Sylvie Mavel (MCU, Tours) and Associate Professor Marko Anderluh (Ljubljana) ----------------- JURY for Oral Defense: Ms MAVEL Sylvie – Associate Professor, University François-Rabelais, Tours, France Mr ANDERLUH Marko – Associate Professor, University of Ljubljana, Slovenia Mr DOLLÉ Frédéric – Service Hospitalier Frédéric Joliot, Institut d'Imagerie BioMédicale - CEA, Orsay, France (Reviewer) Mr EMOND Patrick – Professor, University François-Rabelais, Tours, France Ms GMEINER STOPAR Tanja – Assistant Professor, University of Ljubljana, Slovenia (Reviewer) Mr GOBEC Stanislav – Professor, University of Ljubljana, Slovenia (Chairman) This cotutelle PhD was carried out with the collaboration between the University of Tours (Laboratoire de Biophysique Médicale et Pharmaceutique, Unité INSERM U930 - FRANCE) and the University of Ljubljana (Faculty of Pharmacy, Department of Pharmacutical Chemistry - SLOVENIA). The work was supported by a grant from the Slovene Human Resources Development and Scholarship Fund, by a grant from the University of Ljubljana (Inovativna shema za sofinanciranje doktorskega študija za spodbujanje sodelovanja z gospodarstvom in reševanja aktualnih družbenih izzivov - generacija 2010 Univerza v Ljubljani), and by a Slovenia- French bilateral collaboration project (project n° BI-FR/12-13-PROTEUS-007).
    [Show full text]
  • Bromobenzene D5
    Safety data sheet according to Regulation (EC) No. 1907/2006 (REACH), amended by 2015/830/EU Bromobenzene D5 99,5 Atom%D article number: HN93 date of compilation: 2020-09-02 Version: 1.0 en SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance Bromobenzene D5 99,5 Atom%D Article number HN93 Registration number (REACH) It is not required to list the identified uses be- cause the substance is not subject to registration according to REACH (< 1 t/a) EC number 224-013-8 CAS number 4165-57-5 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: laboratory chemical laboratory and analytical use 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone: +49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data : Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number Name Street Postal code/ Telephone Website city National Poisons Inform- Dudley Rd B187QH Birm- 844 892 0111 ation Service ingham City Hospital Emergency information service +49/(0)89 19240 SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 (CLP) Classification acc. to GHS Section Hazard class Hazard class and cat- Hazard egory state- ment 2.6 flammable liquid (Flam.
    [Show full text]
  • Chem 353: Grignard
    GRIG.1 ORGANIC SYNTHESIS: BENZOIC ACID VIA A GRIGNARD REACTION TECHNIQUES REQUIRED : Reflux with addition apparatus, rotary evaporation OTHER DOCUMENTS Experimental procedure, product spectra INTRODUCTION In this experiment you will synthesise benzoic acid using bromobenzene to prepare a Grignard reagent, which is then reacted with carbon dioxide, worked-up and purified to give the acid. This sequence serves to illustrate some important concepts of practical synthetic organic chemistry : preparing and working with air and moisture sensitive reagents, the "work-up", extractions, apparatus set-up, etc. The synthesis utilises one of the most important type of reagents discussed in introductory organic chemistry, organometallic reagents. In this reaction, the Grignard reagent (an organomagnesium compound), phenylmagnesium bromide is prepared by reaction of bromobenzene with magnesium metal in diethyl ether (the solvent). The Grignard reagent will then be converted to benzoic acid via the reaction of the Grignard reagent with excess dry ice (solid CO2) followed by a "work-up" using dilute aqueous acid : The aryl (or alkyl) group of the Grignard reagent behaves as if it has the characteristics of a carbanion so it is a source of nucleophilic carbon. It is reasonable to represent the structure of the - + Grignard reagent as a partly ionic compound, R ....MgX. This partially-bonded carbanion is a very strong base and will react with acids (HA) to give an alkane: RH + MgAX RMgX + HA Any compound with suitably acidic hydrogens will readily donate a proton to destroy the reagent. Water, alcohols, terminal acetylenes, phenols and carboxylic acids are just some of the functional groups that are sufficiently acidic to bring about this reaction which is usually an unwanted side reaction that destroys the Grignard reagent.
    [Show full text]
  • TOXICOLOGICAL REVIEW of BROMOBENZENE (CAS No
    EPA/635/R-07/002F www.epa.gov/iris TOXICOLOGICAL REVIEW OF BROMOBENZENE (CAS No. 108-86-1) In Support of Summary Information on the Integrated Risk Information System (IRIS) September 2009 U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii CONTENTS−TOXICOLOGICAL REVIEW OF BROMOBENZENE (CAS No. 108-86-1) LIST OF TABLES......................................................................................................................... vi LIST OF FIGURES ....................................................................................................................... ix LIST OF ABBREVIATIONS AND ACRONYMS ....................................................................... x FOREWORD ................................................................................................................................. xi AUTHORS, CONTRIBUTORS, AND REVIEWERS ................................................................ xii 1. INTRODUCTION ..................................................................................................................... 1 2. CHEMICAL AND PHYSICAL INFORMATION RELEVANT TO ASSESSMENTS .......... 3 3. TOXICOKINETICS .................................................................................................................. 6 3.1. ABSORPTION ................................................................................................................
    [Show full text]
  • The Ozonolysis of Phenyl Grignard Reagent
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 The ozonolysis of phenyl Grignard reagent Gale Manning Sherrodd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sherrodd, Gale Manning, "The ozonolysis of phenyl Grignard reagent" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 8297. https://scholarworks.umt.edu/etd/8297 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE OZONOLYSIS OF PHENYL GRIGNARD REAGENT By Gale M. Sherrodd B.S., Rocky Mountain College, I969 Presented in partial fulfillment of the requirements for the degree of Master of Arts for Teachers UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners De^ , Graduate *School / n ? / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39098 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT DiMMtstion PuWiahing UMI EP39098 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
    [Show full text]
  • TOXICOLOGICAL REVIEW of BROMOBENZENE (CAS No
    DRAFT - DO NOT CITE OR QUOTE EPA/635/R-07/002 www.epa.gov/iris TOXICOLOGICAL REVIEW OF BROMOBENZENE (CAS No. 108-86-1) In Support of Summary Information on the Integrated Risk Information System (IRIS) June 2007 NOTICE This document is an interagency review draft. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency position on this chemical. It is being circulated for review of its technical accuracy and science policy implications. U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document is a preliminary draft for review purposes only and does not constitute U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. 6/7/07 ii DRAFT – DO NOT CITE OR QUOTE CONTENTSCTOXICOLOGICAL REVIEW OF BROMOBENZENE (CAS No. 108-86-1) LIST OF FIGURES ....................................................................................................................... vi LIST OF TABLES........................................................................................................................ vii LIST OF ABBREVIATIONS AND ACRONYMS ........................................................................x FOREWORD ................................................................................................................................. xi AUTHORS, CONTRIBUTORS, AND REVIEWERS ................................................................ xii
    [Show full text]
  • Reactivity of Nucleophiles Toward Phenyl Radical James Louis Anderson Jr
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Reactivity of nucleophiles toward phenyl radical James Louis Anderson Jr. Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Anderson, James Louis Jr., "Reactivity of nucleophiles toward phenyl radical " (1986). Retrospective Theses and Dissertations. 8135. https://lib.dr.iastate.edu/rtd/8135 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent apon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing fiijm left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print.
    [Show full text]
  • Friction of Iron Lubricated with Aliphatic and Aromatic Hydrocarbons and Halogenated Analogs
    NASA TECHNICAL NOTE 00 0 N w n a c 4 &A 4 a w~.~,z..p~COPY: RETURN TO --;F?.f-..wL TECHNICAL LIBRARY 1(LWTWND ATS, M* M* FRICTION OF IRON LUBRICATED WITH ALIPHATIC AND AROMATIC HYDROCARBONS AND HALOGENATED ANALOGS Donald H. Buckley Lewis Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. APRIL 1976 TECH LIBRARY KAFB,"I .-- - -.- ~~ OL337b7 I 1. Report No. I 2. Government Accession No. ]Recipient's Catalog NO. TN D -8208 I- .- .. I I 4. Title and Subtitle 5. Report Date FRICTION OF IRON LUBRICATED WITH ALIPHATIC AND I April 1976 Performing OrganizationCode AROMATIC HYDROCARBONS AND HALOGENATED ANALOGS I 7. Author(s1 8. Performing Organization Report No. E-8558 Donald H. Buckley ~__ .. 10. Wcrk Unit No. 9. Performing Organization Name and Address 506-16 Lewis Research Center 11. Contract or Grant No. National Aeronautics and Space Administration I Cleveland, Ohio 44135 13. Type of Report and Period Covered ~~ 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 I 1 15. Supplementary Notes - -- ­ L16. Abstract An investigation was conducted to determine the influence of oxygen and various organic mole­ cules on the reduction of the friction of an iron (011) single crystal surface. A comparison was made between aliphatic and aromatic structures, all of which contained six carbon atoms, and among various halogen atoms. Results of the investigation indicate that hexane and benzene give similar friction coefficients over a range of loads except at very light loads. At light loads, the friction decreased with an increase in the load where the halogens fluorine and chlorine are in­ corporated into the benzene molecular structure; however, over the same load range when bro­ mine and iodine were present, the friction was relatively unchanged.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,677,686 PYRAZINEDERVATIVES and METHO) of PREPARING the SAME Victor K
    Patented May 4, 1954 2,677,686 UNITED STATES PATENT OFFICE 2,677,686 PYRAZINEDERVATIVES AND METHO) OF PREPARING THE SAME Victor K. Smith, Jr., Feari River, and Samuel Kushner, Nanuet, N. Y., assignors to American Cyanamid Company, New York, N. Y., a corpo ration of Maine No Drawing. Application 5uly 22, 1952, Serial No. 300,336 8 Claims. (C. 260-250) 2 This invention relates to mono-substituted ous layer is extracted with a solvent, such as di pyrazine. More particularly, it relates to substi ethyl ether. The ether can be concentrated and tuted-2-carbonyl pyrazine. the desired compound crystallized out Or the The role of vitamins in nutrition is well known ether can be removed and the product distilled. i and assumes greater importance as new informa 5, The reaction of the present invention may be tion is made available concerning the particular carried out at a temperature of -10° to 15° C. function of each. Recently it has been found The reaction is complete in from about a few that folic acid was effective in curing macrocytic ininutes up to about tWO hours. anemias and other blood conditions. Also, Com The process of the present invention is de pounds which are folic acid antagonistS, Such as scribed in greater particularity by the following aninopterin, have been found useful in treating specific examples which are given by way of ill abnormal blood conditions such as leukemia. lustration and not limitation. it is well established that nicotinamide is an im Eacample 1 portant, vitamin of the B complex group and its deficiency is the specific cause of pelagira.
    [Show full text]
  • Synthesis of Organobromines As a Tool for Their Characterisation and Environmental Occurrence Assessment
    Synthesis of organobromines as a tool for their characterisation and environmental occurrence assessment Andreas Rydén Department of Materials and Environmental Chemistry Stockholm University Stockholm 2013 i Doctoral Thesis 2013 Department of Materials and Environmental Chemistry Stockholm University SE-106 91 Stockholm Sweden Abstract Polybrominated diphenyl ethers (PBDEs) have been intensively used as flame retardants (FRs) and have become ubiquitous environmental pollutants. PBDEs form hydroxylated PBDEs (OH-PBDEs) as metabolites. Further, some OH-PBDEs and methoxy-PBDEs (MeO-PBDEs) are natural products. These are all compounds of environmental and health concern and it is therefore important to confirm their identity and to assess their environmental levels and toxicities. Hence, it is vital to obtain authentic reference standards of individual PBDEs and OH/MeO-PBDEs. The thesis main aim was to develop synthesis methods of congener specific PBDEs, OH- and MeO-PBDEs. The second aim was to identify and quantify PBDEs, OH- and MeO-PBDEs in environmental samples. The third was to propose an abbreviation system for FRs. O-Arylation of brominated phenols, using either symmetrical or unsymmetrical brominated diphenyliodonium salts, was selected for synthesis of PBDEs and OH- /MeO-PBDEs. A total of 16 MeO-PBDEs, 11 OH-PBDEs, 1 diMeO-PBDE and 1 EtO-MeO-PBDE were synthesised. Three novel unsymmetrical diaryliodonium triflates were synthesised and used in synthesis. Optimisations were made to construct a reliable general method for congener specific PBDE synthesis, which was used in the synthesis of 8 representative PBDE congeners. The products were generally characterised by electron ionisation mass spectrometry (EIMS) and nuclear magnetic resonance (NMR) spectroscopy.
    [Show full text]
  • LABORATORY 9 the Grignard Reaction: a Microscale Preparation
    Organic Chemistry: Techniques and Transformations LABORATORY 9 The Grignard Reaction: A Microscale Preparation of Benzoic Acid Introduction Your laboratory skills have grown considerably since the first of the semester, and you are ready for the challenge of a famous reaction--one marked by unusual materials and striking chemical and physical changes. Try, especially, to understand exactly which chemical structure and equation corresponds to each stage of this dramatic synthesis. Your work in this laboratory is a departure from your previous experience. You will work on a micro scale. Microscale apparatus is used throughout the second semester organic laboratories (CHEM 2130). Working on a microscale greatly reduces both the quantities of material and the reaction time. The regular scale reaction requires nearly two full periods. The microscale work can be done in one period. Further, the reduced scale minimizes the hazard of working with ether, a very flammable solvent with a low flash point. You must eliminate flames and sparks when working with ether. To run a successful Grignard reaction, it is essential that moisture (including water vapor from the air) be excluded from the reaction apparatus. Septa (rubber caps) on the reagent bottles and on the reaction tubes effectively exclude moisture, so that a calcium sulfate drying tube is unnecessary. A syringe, with a needle, is used to remove reagents from septum protected storage bottles and to add the reagent to a reaction tube. Thus, use of a syringe and septum eliminates the need for an addition funnel and a costly three-necked round-bottomed flask. There is less set-up time, less clean-up time and less breakage of expensive glassware.
    [Show full text]
  • United Sttes Atent 0 ICC Patented Feb
    p , ‘ 2,924,620 United Sttes atent 0 ICC Patented Feb. 9, 1960 1 2 gish or fails entirely. It is highly desirable that the acti 2,924,620 vating group be easily and economically removed after it has served its purpose. Even with the activating PROCESS FOR THE PREPARATION OF N-acetyl group, the reaction is rather slow, about 20 to DIPHENYLAMINES 24 hours at elevated temperatures being required to Robert K. Miller, New Castle, Del., assignor to E. I. du achieve practical yields of the product of the condensation. Pont de Nemonrs and Company, Wilmington, Del., a It is an object of the present invention to utilize corporation of Delaware formanilides in the Ullmann condensation with aryl halides wherein the diarylamine is directly recoverable N0 Drawing. Application March 30, 1959 10 from the reaction mass. Serial No. 802,664 it is a further object of this invention to eliminate the 5 Claims. (Cl. 260-576) need for prolonged hydrolysis of the reaction product obtained from N-acetyl primary aromatic amine and aryl The present invention is directed to a novel method halide. ' for producing diphenylamines; this invention is particu 15 It is a further object of this invention to produce un larly useful in the preparation of unsymmetrical diphenyl expectedly high yields of diarylamine. amines. It is a speci?c object of the present invention to pro This application is a continuation-in-part of copending vide a simpli?ed and economically practical Ullmann applications Serial No. 592,732, ?led June 21, 1956 and condensation method for preparing 3-chlorodiphenyl application Serial No.
    [Show full text]