Macrophage Activation on Mouse Β Autocrine-Produced

Total Page:16

File Type:pdf, Size:1020Kb

Macrophage Activation on Mouse Β Autocrine-Produced Decorin Reverses the Repressive Effect of Autocrine-Produced TGF- β on Mouse Macrophage Activation This information is current as Mònica Comalada, Marina Cardó, Jordi Xaus, Annabel F. of September 28, 2021. Valledor, Jorge Lloberas, Francesc Ventura and Antonio Celada J Immunol 2003; 170:4450-4456; ; doi: 10.4049/jimmunol.170.9.4450 http://www.jimmunol.org/content/170/9/4450 Downloaded from References This article cites 45 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/170/9/4450.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Decorin Reverses the Repressive Effect of Autocrine-Produced TGF-␤ on Mouse Macrophage Activation1 Mo`nica Comalada,2* Marina Cardo´,2,3* Jordi Xaus,2* Annabel F. Valledor,* Jorge Lloberas,* Francesc Ventura,† and Antonio Celada4* Several cytokines or growth factors induce macrophages to proliferate, become activated, differentiate, or die through apoptosis. Like the major macrophage activator IFN-␥, the extracellular matrix protein decorin inhibits proliferation and protects macro- phages from the induction of apoptosis. Decorin enhances the IFN-␥-induced expression of the IA␣ and IA␤ MHC class II genes. Moreover, it increases the IFN-␥- or LPS-induced expression of inducible NO synthase, TNF-␣, IL-1␤, and IL-6 genes and the secretion of these cytokines. Using a number of extracellular matrix proteins, we found a negative correlation between adhesion and proliferation. However, the effects of decorin on macrophage activation do not seem to be mediated through its effect on adhesion or proliferation. Instead, this proteoglycan abolishes the binding of TGF-␤ to macrophages, as shown by Scatchard Downloaded from ϳ ؎ ␤ 125 analysis of I-labeled TGF- , which, in the absence of decorin, showed a Kd of 0.11 0.03 nM and 5000 receptors/cell. This was confirmed when we treated macrophages with Abs to block the endogenously produced TGF-␤, which enhanced macrophage activation in a way similar to decorin. The increase in activation mediated by decorin demonstrates that macrophages are under negative regulation that can be reversed by proteins of the extracellular matrix. The Journal of Immunology, 2003, 170: 4450–4456. http://www.jimmunol.org/ acrophages play a key role in the immune response. leucine-rich proteoglycans, which are found in the extracellular These phagocytic cells are produced in the bone mar- matrix (ECM)5 of a variety of tissues (8). Although the biological M row and transported in blood to distinct tissues. Most role of these molecules is unclear, several observations indicate macrophages die through apoptosis; however, in the presence of that decorin and perhaps other proteoglycans regulate the remod- certain cytokines or growth factors, they proliferate, differentiate eling of connective tissue. In particular, binding studies in vitro into several cell types (Kupffer cells, Langerhans, microglia, etc.), have shown that decorin interacts with several types of collagen, or become activated to develop their functions. At the inflamma- and it is believed to be a key regulator of collagen fibrillogenesis tory loci, macrophage phagocyte bacteria, remove cell debris, re- (9). This proteoglycan may also affect the production of other lease several mediators, present Ags to T lymphocytes, and con- ECM components (10, 11). Additionally, decorin modulates the in- by guest on September 28, 2021 tribute to the resolution of inflammation (1). teractions of matrix molecules such as fibronectin with cells (12, 13). IFN-␥, which is released by activated T lymphocytes or NK Decorin, like IFN-␥, inhibits the proliferation of macrophages and cells, is the most potent activator of macrophages and induces the enhances cell survival through the expression of p27Kip1 and p21waf-1, expression of Ͼ300 genes (2). We found that this cytokine also respectively (14). Since we previously found that activation by IFN-␥ blocks macrophage proliferation and protects against apoptosis (3). or LPS inhibits the proliferation of these phagocytic cells (15), here This protection allows macrophages to survive at the inflammatory we studied the effect of decorin on macrophage activation. We used loci when IFN-␥ is present and explains the key role that T lym- primary cultures of bone marrow-derived macrophages, a homoge- phocytes play in delayed hypersensitivity (4, 5). neous cell population that responds to physiological proliferative or At the inflammatory loci, proteoglycans are secreted by mono- activating stimuli (16). Decorin enhances both LPS- and IFN-␥-in- cytes and macrophages (6, 7) and modulate the immune response. duced activation, as shown by the capacity to increase MHC class II, Decorin and other related molecules form a family called small inducible NO synthase (iNOS), and cytokine expression. The effect of this proteoglycan is explained by its ability to block the binding of autocrine-produced TGF-␤ on the surface of macrophages. *Group of Macrophage Biology, Biomedical Research Institute of Barcelona-Sci- ences Park, and †Departament de Ciencias Fisiologicas II, Facultat d’Odontologia, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain Materials and Methods Received for publication October 10, 2002. Accepted for publication February Reagents 24, 2003. Recombinant purified decorin was a gift from Dr. E. Ruoslahti (The Burn- The costs of publication of this article were defrayed in part by the payment of page ham Institute, La Jolla, CA). LPS, BSA, collagen I, vitronectin, laminin, charges. This article must therefore be hereby marked advertisement in accordance and fibronectin were obtained from Sigma-Aldrich (St. Louis, MO). with 18 U.S.C. Section 1734 solely to indicate this fact. [3H]thymidine, TGF-␤, and 125I-labeled TGF-␤ were purchased from Am- 1 This work was supported by grants from the Ministerio de Ciencia y Tecnologı´a ersham Pharmacia Biotech (Uppsala, Sweden). IFN-␥ was a gift from Ge- (BMC2001-3040 to A.C. and BMC2002-00737 to F.V.). M.C. was the recipient of a nentech (South San Francisco, CA). All other products were of the highest fellowship from the Fundacio´August Pi i Sunyer. analytical grade available and were purchased from Sigma-Aldrich. Deion- 2 M.C., M.C., and J.X. contributed equally to this work. ized water that had been further purified with a Millipore Milli-Q system 3 Current address: Division of Genito-Urinary Oncology, M. D. Anderson Medical (Bedford, MA) was used. Center, Houston, TX 78957. 4 Address correspondence and reprint requests to Dr. Antonio Celada, Research In- stitute of Biomedicine of Barcelona-Sciences Park, Josep Samitier 1-5, 08028 Bar- 5 Abbreviations used in this paper: ECM, extracellular matrix; iNOS, inducible NO celona, Spain. E-mail address: [email protected] synthase. Copyright © 2003 by The American Association of Immunologists, Inc. 0022-1767/03/$02.00 The Journal of Immunology 4451 Cell culture with increasing amounts of cold TGF-␤. Cells were incubated on a rotating platform for3hat4°C. They were then washed and cross-linked for 15 min Bone marrow-derived macrophages were isolated from 6-wk-old BALB/c at 4°C with 0.5 ml of dioctyl sodium sulfosuccinate solution (6 ␮g/ml in mice (Charles River Laboratories, Wilmington, MA) as previously de- Krebs-Ringer-HEPES). After two washes with 0.25 M sucrose, 10 mM scribed (16). Cells were cultured in plastic tissue culture dishes (150 mm) Tris-HCl, and 1 mM EDTA, proteins were solubilized with 200 ␮l of 0.5% in 40 ml of DMEM containing 20% FBS and 30% L cell-conditioned Triton-Tris-HCl-EDTA and protease inhibitors for 40 min at 4°C. The medium as a source of M-CSF. They were then incubated at 37°Cina supernatants were then transferred to test tubes, boiled for 1 min, and humidified 5% CO2 atmosphere. After 7 days of culture, a homogeneous counted using a Packard gamma counter (Downers Grove, IL). Each point Ͼ ϩ population of adherent macrophages was obtained ( 99% Mac-1 ). was determined in triplicate, and the results are expressed as the In some circumstances cells were cultured on a precoated plate using mean Ϯ SD. distinct components of the ECM or BSA as a control. For precoating, the plates were incubated overnight at 4°C with a PBS solution of the indicated Northern blot analysis concentration of each ECM component. After coating, the plates were blocked with PBS/10 ␮g/ml BSA for1hat37°C, the blocking solution Northern blot analysis was performed as previously described (14) using was then removed, and the cells were cultured with normal complete 20 ␮g of total cellular RNA/lane. To check for differences in RNA loading, medium. we analyzed the expression of the 18S rRNA transcripts. All probes were labeled with [␣-32P]dCTP (ICN Pharmaceuticals, Costa Mesa, CA) with Abs and constructs the oligolabeling kit method (Amersham Pharmacia Biotech). The bands of interest were quantified with a Molecular Analyst system (Bio-Rad, For analysis of IA surface expression by flow cytometry, we used purified Richmond, CA). anti-mouse IAd,b mAbs (BD PharMingen, San Diego, CA). FITC-conju- gated anti-mouse IgG (Cappel, Turnhout, Belgium) was used as secondary Protein extraction and Western blot analysis Ab.
Recommended publications
  • Development and Maintenance of Epidermal Stem Cells in Skin Adnexa
    International Journal of Molecular Sciences Review Development and Maintenance of Epidermal Stem Cells in Skin Adnexa Jaroslav Mokry * and Rishikaysh Pisal Medical Faculty, Charles University, 500 03 Hradec Kralove, Czech Republic; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs. Keywords: stem cell; epidermal placode; skin adnexa; signalling; hair pigmentation; markers; keratins 1. Epidermal Stem Cells as Units of Development 1.1. Development of the Epidermis and Placode Formation The embryonic skin at very early stages of development is covered by a surface ectoderm that is a precursor to the epidermis and its multiple derivatives.
    [Show full text]
  • Decorin, a Growth Hormone-Regulated Protein in Humans
    178:2 N Bahl and others Growth hormone increases 178:2 145–152 Clinical Study decorin Decorin, a growth hormone-regulated protein in humans Neha Bahl1,2, Glenn Stone3, Mark McLean2, Ken K Y Ho1,4 and Vita Birzniece1,2,5 1Garvan Institute of Medical Research, Sydney, New South Wales, Australia, 2School of Medicine, Western Sydney Correspondence University, Blacktown Clinical School and Research Centre, Blacktown Hospital, Blacktown, New South Wales, should be addressed Australia, 3School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South to V Birzniece Wales, Australia, 4Centres of Health Research, Princess Alexandra Hospital, Brisbane, Queensland, Australia, and Email 5School of Medicine, University of New South Wales, New South Wales, Australia v.birzniece@westernsydney. edu.au Abstract Context: Growth hormone (GH) stimulates connective tissue and muscle growth, an effect that is potentiated by testosterone. Decorin, a myokine and a connective tissue protein, stimulates connective tissue accretion and muscle hypertrophy. Whether GH and testosterone regulate decorin in humans is not known. Objective: To determine whether decorin is stimulated by GH and testosterone. Design: Randomized, placebo-controlled, double-blind study. Participants and Intervention: 96 recreationally trained athletes (63 men, 33 women) received 8 weeks of treatment followed by a 6-week washout period. Men received placebo, GH (2 mg/day), testosterone (250 mg/week) or combination. Women received either placebo or GH (2 mg/day). Main outcome measure: Serum decorin concentration. Results: GH treatment significantly increased mean serum decorin concentration by 12.7 ± 4.2%; P < 0.01. There was a gender difference in the decorin response to GH, with greater increase in men than in women (∆ 16.5 ± 5.3%; P < 0.05 compared to ∆ 9.4 ± 6.5%; P = 0.16).
    [Show full text]
  • New Insight of Some Extracellular Matrix Molecules in Beef Muscles
    New insight of some extracellular matrix molecules in beef muscles. Relationships with sensory qualities Annabelle Dubost, Didier Micol, Claire Lethias, Anne Listrat To cite this version: Annabelle Dubost, Didier Micol, Claire Lethias, Anne Listrat. New insight of some extracel- lular matrix molecules in beef muscles. Relationships with sensory qualities. animal, Pub- lished by Elsevier (since 2021) / Cambridge University Press (until 2020), 2016, 10 (5), pp.1-8. 10.1017/S1751731115002396. hal-02629905 HAL Id: hal-02629905 https://hal.inrae.fr/hal-02629905 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Animal, page 1 of 8 © The Animal Consortium 2015 animal doi:10.1017/S1751731115002396 New insight of some extracellular matrix molecules in beef muscles. Relationships with sensory qualities A. Dubost1, D. Micol1, C. Lethias2 and A. Listrat1† 1Institut National de la Recherche Agronomique (INRA), UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; ²Institut de Biologie et Chimie des Protéines (IBCP), FRE 3310 DyHTIT, Passage du Vercors, 69367 Lyon, Cedex 07, France (Received 4 December 2014; Accepted 28 September 2015) The aim of this study was to highlight the relationships between decorin, tenascin-X and type XIV collagen, three minor molecules of extracellular matrix (ECM), with some structural parameters of connective tissue and its content in total collagen, its cross-links (CLs) and its proteoglycans (PGs).
    [Show full text]
  • Ablation of the Decorin Gene Enhances Experimental Hepatic
    Laboratory Investigation (2011) 91, 439–451 & 2011 USCAP, Inc All rights reserved 0023-6837/11 $32.00 Ablation of the decorin gene enhances experimental hepatic fibrosis and impairs hepatic healing in mice Korne´lia Baghy1, Katalin Dezso+ 1, Vikto´ria La´szlo´ 1, Alexandra Fulla´r1,Ba´lint Pe´terfia1,Sa´ndor Paku1, Pe´ter Nagy1, Zsuzsa Schaff 2, Renato V Iozzo3 and Ilona Kovalszky1 Accumulation of connective tissue is a typical feature of chronic liver diseases. Decorin, a small leucine-rich proteoglycan, regulates collagen fibrillogenesis during development, and by directly blocking the bioactivity of transforming growth factor-b1 (TGFb1), it exerts a protective effect against fibrosis. However, no in vivo investigations on the role of decorin in liver have been performed before. In this study we used decorin-null (DcnÀ/À) mice to establish the role of decorin in experimental liver fibrosis and repair. Not only the extent of experimentally induced liver fibrosis was more severe in DcnÀ/À animals, but also the healing process was significantly delayed vis-a`-vis wild-type mice. Collagen I, III, and IV mRNA levels in DcnÀ/À livers were higher than those of wild-type livers only in the first 2 months, but no difference was observed after 4 months of fibrosis induction, suggesting that the elevation of these proteins reflects a specific impairment of their degradation. Gelatinase assays confirmed this hypothesis as we found decreased MMP-2 and MMP-9 activity and higher expression of TIMP-1 and PAI-1 mRNA in DcnÀ/À livers. In contrast, at the end of the recovery phase increased production rather than impaired degradation was found to be responsible for the excessive connective tissue deposition in livers of DcnÀ/À mice.
    [Show full text]
  • Bifunctional Ectodermal Stem Cells Around the Nail Display Dual Fate Homeostasis and Adaptive Wounding Response Toward Nail Regeneration
    Bifunctional ectodermal stem cells around the nail display dual fate homeostasis and adaptive wounding response toward nail regeneration Yvonne Leunga,b,1, Eve Kandybaa,b,1, Yi-Bu Chenc, Seth Ruffinsa, Cheng-Ming Chuongb,d, and Krzysztof Kobielaka,b,2 aEli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, bDepartment of Pathology, and cNorris Medical Library, University of Southern California, Los Angeles, CA 90033; and dInternational Research Center of Wound Repair and Regeneration, Institute of Clinical Medicine, Cheng Kung University, Tainan City 70101, Taiwan Edited by Mina J. Bissell, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, and approved August 28, 2014 (received for review October 7, 2013) Regulation of adult stem cells (SCs) is fundamental for organ fingertip (Fig. 1A). Found at the “root” of the NP is the actively maintenance and tissue regeneration. On the body surface, different proliferating nail matrix (Mx) with a keratogenous zone (KZ) ectodermal organs exhibit distinctive modes of regeneration and the directly above where Mx cells differentiate into the overlying NP dynamics of their SC homeostasis remain to be unraveled. A slow (Fig. 1A). Pulse–chase studies have confirmed that Mx cells move cycling characteristic has been used to identify SCs in hair follicles and superficially into the NP and also distally toward the nail bed (4). sweat glands; however, whether a quiescent population exists in The proximal end of the NP is covered by the proximal fold (PF), continuously growing nails remains unknown. Using an in vivo label which is a continuation of the epidermis that folds inward (Fig.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • TGF-Β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease
    OPEN Citation: Bone Research (2016) 4, 16009; doi:10.1038/boneres.2016.9 www.nature.com/boneres REVIEW ARTICLE TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease Mengrui Wu1, Guiqian Chen1,2 and Yi-Ping Li1 Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis.
    [Show full text]
  • Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian Spermatogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.17.994509; this version posted March 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis Adrienne Niederriter Shami1,7, Xianing Zheng1,7, Sarah K. Munyoki2,7, Qianyi Ma1, Gabriel L. Manske3, Christopher D. Green1, Meena Sukhwani2, , Kyle E. Orwig2*, Jun Z. Li1,4*, Saher Sue Hammoud1,3,5,6,8* 1Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA. 3 Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA 4 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA 5 Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA 6Department of Urology, University of Michigan, Ann Arbor, MI, USA 7 These authors contributed equally 8 Lead Contact * Correspondence: [email protected] (K.E.O.), [email protected] (J.Z.L.), [email protected] (S.S.H.) bioRxiv preprint doi: https://doi.org/10.1101/2020.03.17.994509; this version posted March 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Spermatogenesis is a highly regulated process that produces sperm to transmit genetic information to the next generation.
    [Show full text]
  • Tenascin-X Increases the Stiffness of Collagen Gels Without Affecting
    Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis Yoran Margaron, Luciana Bostan, Jean-Yves Exposito, Maryline Malbouyres, Ana-Maria Trunfio-Sfarghiu, Yves Berthier, Claire Lethias To cite this version: Yoran Margaron, Luciana Bostan, Jean-Yves Exposito, Maryline Malbouyres, Ana-Maria Trunfio- Sfarghiu, et al.. Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis. Biophysical Chemistry, Elsevier, 2010, 147 (1-2), pp.87. 10.1016/j.bpc.2009.12.011. hal-00612709 HAL Id: hal-00612709 https://hal.archives-ouvertes.fr/hal-00612709 Submitted on 30 Jul 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Tenascin-X increases the stiffness of collagen gels without affecting fibrillo- genesis Yoran Margaron, Luciana Bostan, Jean-Yves Exposito, Maryline Mal- bouyres, Ana-Maria Trunfio-Sfarghiu, Yves Berthier, Claire Lethias PII: S0301-4622(09)00256-7 DOI: doi: 10.1016/j.bpc.2009.12.011 Reference: BIOCHE 5329 To appear in: Biophysical Chemistry Received date: 10 November 2009 Revised date: 23 December 2009 Accepted date: 27 December 2009 Please cite this article as: Yoran Margaron, Luciana Bostan, Jean-Yves Exposito, Mary- line Malbouyres, Ana-Maria Trunfio-Sfarghiu, Yves Berthier, Claire Lethias, Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis, Biophysical Chem- istry (2010), doi: 10.1016/j.bpc.2009.12.011 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Laminin Targeting of a Peripheral Nerve-Highlighting Peptide Enables Degenerated Nerve Visualization
    Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization Heather L. Glasgowa,1, Michael A. Whitneya, Larry A. Grossb, Beth Friedmana, Stephen R. Adamsa, Jessica L. Crispb, Timon Hussainc, Andreas P. Freid, Karel Novyd, Bernd Wollscheidd, Quyen T. Nguyenc, and Roger Y. Tsiena,b,e,2 aDepartment of Pharmacology, University of California, San Diego, La Jolla, CA 92093; bHoward Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093; cDivision of Otolaryngology–Head and Neck Surgery, University of California, San Diego, La Jolla, CA 92093; dInstitute of Molecular Systems Biology at the Department of Health Sciences and Technology, CH-8093 Zurich, Switzerland; and eDepartment of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 Contributed by Roger Y. Tsien, August 3, 2016 (sent for review November 16, 2015; reviewed by Joshua E. Elias and Jeff W. Lichtman) Target-blind activity-based screening of molecular libraries is often used developed for the discovery of new interacting or nearby proteins (10– to develop first-generation compounds, but subsequent target identi- 12); however, bulky fusion proteins are likely to affect ligand binding. fication is rate-limiting to developing improved agents with higher To more efficiently capture low-affinity and easily disrupted in- specific affinity and lower off-target binding. A fluorescently labeled teractions, a small molecule proximity tagging method was developed nerve-binding peptide, NP41, selected by phage display, highlights using photooxidation coupled to affinity tagging (Fig. 1). A light- peripheral nerves in vivo. Nerve highlighting has the potential to driven, singlet oxygen-generating molecule [SOG; e.g., methylene improve surgical outcomes by facilitating intraoperative nerve identi- blue (MB), fluorescein derivative] is conjugated to a ligand.
    [Show full text]
  • Activin Receptors in Gonadotrope Cells: New Tricks for Old Dogs
    Activin receptors in gonadotrope cells: new tricks for old dogs By Carlis Rejón G. Department of Pharmacology and Therapeutics McGill University Montréal, Canada June, 2012 A thesis submitted to McGill in partial fulfilment of the requirements of the degree of Doctor of philosophy Copyright ©Carlis Rejón G., 2012 Dedication I have had many role models during my life: Mother Teresa, a little woman with a huge spirit, who created a worldwide institution destined to assist the poorest people, regardless of their beliefs. Marie Curie an example of perseverance and dedication towards science, she was the first person to win two Nobel prizes (in Physics and Chemistry). However, my closest source of inspiration comes from a strong woman whom, with a lot of effort was able to raise four children alone. She taught me to be perseverant, honest and humble in the pursuit of my dreams. I dedicate this manuscript to her, Carmen Gonzalez, my mom. 2 Abstract Activins are members of the transforming growth factor β (TGFβ) superfamily. Though originally identified as stimulators of pituitary follicle-stimulating hormone (FSH) synthesis and secretion, they also play diverse biological roles, ranging from control of cellular differentiation to regulation of immune responses. To exert their biological effects, activins and other TGFβ family members signal through a heterotetrameric complex composed of two type I (also called activin receptor-like kinases or ALKs) and two type II transmembrane serine/threonine kinase receptors. Within the superfamily, ligands greatly outnumber receptors, hence multiple ligands share receptors and individual ligands can bind various receptors. For instance, activins bind to type II receptors ACVR2 and ACVR2B, leading to recruitment, phosphorylation, and activation of type I receptors (predominantly ALK4 for activins), which in turn phosphorylate downstream effectors.
    [Show full text]
  • Reproductionresearch
    REPRODUCTIONRESEARCH Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine Anne-Laure Nivet, Christian Vigneault1, Patrick Blondin1 and Marc-Andre´ Sirard De´partement des sciences animales, Pavillon INAF, Faculte´ des sciences de l’agriculture et de l’alimentation, Centre de recherche en biologie de la reproduction, Universite´ Laval, Quebec, Quebec, Canada G1V 0A6 and 1L’Alliance Boviteq, Saint-Hyacinthe, Quebec, Canada Correspondence should be addressed to M-A Sirard; Email: [email protected] Abstract One of the challenges in mammalian reproduction is to understand the basic physiology of oocyte quality. It is believed that the follicle status is linked to developmental competence of the enclosed oocyte. To explore the link between follicles and competence in cows, previous research at our laboratory has developed an ovarian stimulation protocol that increases and then decreases oocyte quality according to the timing of oocyte recovery post-FSH withdrawal (coasting). Using this protocol, we have obtained the granulosa cells associated with oocytes of different qualities at selected times of coasting. Transcriptome analysis was done with Embryogene microarray slides and validation was performed by real-time PCR. Results show that the major changes in gene expression occurred from 20 to 44 h of coasting, when oocyte quality increases. Secondly, among upregulated genes (20–44 h), 25% were extracellular molecules, highlighting potential granulosa signaling cascades. Principal component analysis identified two patterns: one resembling the competence profile and another associated with follicle growth and atresia. Additionally, three major functional changes were identified: i) the end of follicle growth (BMPR1B, IGF2, and RELN), involving interactions with the extracellular matrix (TFPI2); angiogenesis (NRP1), including early hypoxia, and potentially oxidative stress (GFPT2, TF, and VNN1) and ii) apoptosis (KCNJ8) followed by iii) inflammation (ANKRD1).
    [Show full text]