Genus and Family: Concepts and Natural Groupings

Total Page:16

File Type:pdf, Size:1020Kb

Genus and Family: Concepts and Natural Groupings University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1989 Tribune: Genus and Family: Concepts and Natural Groupings Armand R. Maggenti University of California - Davis Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Maggenti, Armand R., "Tribune: Genus and Family: Concepts and Natural Groupings" (1989). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 105. https://digitalcommons.unl.edu/parasitologyfacpubs/105 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Tribune GENUS AND FAMILY : CONCEPTS AND NATURAL GROUPINGS Armand R. MAGGENTI University of California Davis, Department of Nenzatology, Davis, CA 95616, USA. A little over two hundred and fiftyyears ago Linnaeus to take the step beyond seeing whatothers had seen to (= Linne) began to maneuver his concepts of animal the realm of thinking what others had not thought. As arrangement into Aristotle’s logic of classes. Twenty- a result Darwin’s thesis on the origin of species has three years elapsed between the publication of his first influenced biology for over onehundred years and and tenth editions of (( Systema naturae D. The tenth Wallace is remembered for presenting a similar hypoth- edition (1758) is theacknowledged starting point of esis that his theology would not allow him to expand. zoological nomenclature.Often forgotten but highly Linnaeus provided the grist upon which Darwin and significant is the fact that he spent those intervening others worked. However, Darwin and others were lead- twenty years orchestrating the then known animals into ers in initiating the shiftfrom theconcept of a uti- the world of philosophy. litarian classification based on the procedures of logic Linnaeus’genius was conceivingthat science and that primarily functioned as an instrument for identifi- philosophy can blend and that theology, though highly cation,to themuch broader interpretation that the influential to his concepts, was not the al1 controlling diversity of organisms resulted from evolutionarydiver- unit. He was influenced by Aristotle’s logic of classes, gence (Mayr, 1969). Thus, there was a major shift from Plato’s “ essence ” and Thomistictheology. This may be identification to classification and the process of reason- best explained bysimplistic definiti0ns:science at- ing became inductive rather than deductive. Recently, temptsto delimitwhat is true;philosophy seeks to in nematology, there has been an inclination to revert to define truth; theology, which Linnaeus was unable to deductive reasoning in the formulationof classifications completely escape, intervenes in as much as the de- (Andrassy, 1976; Fotedar & Handoo,1978; Siddiqi, mands of faith supersede delimitation and definition. 1986). In these classifications the categories above the Understand, Linnaeus was polarized by the sixteenth species are basedon ana prioriarrangement of morpho- century observation : philosophia ancilla theologiae(phi- logic characters ratherthan on natural groupings as losophy is the maid-servant of theology). interpreted through known biology. To a large extent, and unfortunately so, science has Linnaen classification has not been without oppo- come to limit the genius of Linnaeus to G creating )) the sition and criticism. Attacks on the system generally arise binomial system of nomenclature. Binomial nomencla- from an inability to comprehend a rigid hierarchy with ture was extant hundreds of years before Linnaeus; his an inherent need forarbitrary ranking. The assignment proposa1 established the binomialas unambiguous. The of intractable values to ranks withinthe hierarchy would names and groups he offered are not important. The paralyze the system into a desinence that would preclude introduction of an unambiguous binomial nomencla- improvement. Perception of the intrinsic subjectivity of ture and thelogic ofclasses and its application tobiology the system allows for the incompleteness ofOur know- are important because for the first time thediversity of ledge of relationships and presents us with the oppor- living organisms was organized in a manner that rev- tunityto testalternate models of relationship, thus olutionized human thought. However, Linnaeus’ philo- maximizinginformation. Systematists should accept sophy remained Aristotelian and washe dedicated to the and welcome the fact that the systemwill forever remain application of Aristotle’s system of logic to classification provisional. (Tuxen, 1973). Later generations up to and including There are seven basic categories that prevail in the Darwinsucceeded in excising Linnaean philosophy modern interpretationsof Linnaeus’ hierarchies. Al1 are from Linnaeus’ proposa1 while retaining the essence of not those proposed by Linnaeus (classis, ordo, genus, a rigid hierarchy of categories andan unambiguous species, and varietas) butthose that newknowledge binomial nomenclature. demanded. After more than two hundredyears only fïve Darwin’s contributionsencouraged us to use Our (genus, family, order, class and phylum) permit US tO abilities to see what everyone else has seen andyet think place a species with any degreeof accuracy. Even these beyond this neurologic limitation.It is this that spotligh- didnot satisfy Our needto more accurately portray ted Darwin. Wallace, hindered by theology, was unable relationships;therefore, over the years moreprecise A. R. Maggenti ~~ ~ designations were imperative and the prefxes super- false faith or faith in a rigid system based on numbers and sub- were attached to the basic categories. cannot escape thereality thar taxaare based on zoologi- With no sense of the purpose of Linnaean hierarchy cal realities. Categories,no matter how depictedare some other terms have been introduced and have, not concepts; however, they are concepts based on natural unexpectedly, become the subjectof confusion because occumng units. they do not conveyrelationship nor do they add to The most objective of al1 categories remainsthe perception of nematode biology. The terms referred to species, for a further discussion of the objectivity and are : biotype, race and pathotype. On the other hand definition of the speciessee Maggenti (1983). The someterms that have received anotable degree of species category differs from al1 other divisions in the acceptance are : tribe, between family and genus, and hierarchy in that itsignifies singularity, distinctnessand group between genus and subgenus.However, asuseful difference (Mayr, 1969). Categories above the species as they are, they have not warranted recognitionby the are collective conceptsinasmuch as they have the International Commission of Zoological Nomenclature function of grouping and ordering by de-emphasizing forinclusion in the rules for “ binomial(trinomial) differences between species and emphasizing affinities nomenclature ”. It is not surprising that these perceptive among groups of species. Mayr (1969) States : “ Even additionsamplify the ability to expressrelationships though an operational definition for the higher catego- within the two most informative categories in the hier- ries does not exist, nor for therank which they signify, archy of classification; i.e., the genus and family. Both they do have anobjective basis because a taxon placed additions are designed to expandOur ability to cope with in a higher category (if correctly delimited) is natural, newknowledge of relationships without the need to consisting of descendants from a common ancestor. ” overinflate the basic categories. This simply means that Since there is no operational definition of the genus 1 genera do not have to be raised to families or families will adopt Mayr’s pragmatic definition: “ A genus is a to orders. Thus funher illustrating the genius of the taxonomiccategory containing a single species, ora Linnaean-Darwin-Mayr philosphy of classification and monophyletic groupof species, which is separated from perhaps,with an affordabledegree of magnanimity, other taxaof the same rank (other genera) by a decided Aristotle’slegacy to biology: the gft of the logic of gap. ” In general, the size of thegap is inversely classes. proportional to thesize of the taxon. Thisis a schooled This disquisition set-out to address the logical conse- observation and not a rule. quence of purporting to understand and accept that a In view of the fact that there is no operational defi- classification and ranking in a hierarchy reflect rela- nition of the genus and inasmuch as there is no dis- tionships. From the foregoing statements it should now tinctive single or group of characters thata priori make be evident that the backboneof a Sound classificationis a genus, then its circumscription must be sought else- entrenchedin Our perception of thegenus and its where. Since strict morphology cannot delineate thege- projected concept - the family. nus then the alternative to understanding the affiities Linnaeus in 1737 gave lasting advice in his dictum : among species must lie in their biology and ancestry. “ Its the genus that gives the characters and not the
Recommended publications
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • § 112 Implications for Genus Claims Lisa Larrimore Ouellette Genus and Species Claims
    Advanced Patent Law Institute: Silicon Valley § 112 Implications for Genus Claims Lisa Larrimore Ouellette Genus and Species Claims genus fastener species screw R1 mammalian insulin cDNA R2 CH CH sequence 2 3 for rat CH3 insulin cDNA Genus and Species Claims: Anticipation . Single species always anticipates genus. Genus anticipates species only if species can be “at once envisaged” from genus. Generic chemical formula that represents limited number of compounds that PHOSITA can easily draw or name anticipates each compound. Generic chemical formula for vast number of compounds doesn’t anticipate each—and such a claim likely has § 112 problems… Genus and Species Claims: Section 112 . How can a patentee adequately describe and enable a genus? . When does a generic disclosure describe and enable a species? genus Disclosures required by § 112 serve not species just teaching function but also evidentiary function—showing what inventor actually possessed. Key policy lever for limiting claim scope to inventive contribution. Genus and Species Claims: Section 112 . How can a patentee adequately describe and enable a genus? . Ariad v. Eli Lilly . What is a representative number of species? . When is functional claiming ok? . When do you have to enable and describe unrecited elements? . Are § 112 genus claims only problematic in biotech? Ariad v. Eli Lilly (en banc 2010) . Genus claims for all methods of reducing binding of a certain transcription factor. inadequate description . Need “disclosure of either a representative number of species … or structural features common to the members of the genus so that one of skill in the art can ‘visualize or recognize’ the members of the genus.” .
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor,Michigan
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR,MICHIGAN THE NEOTROPICAL GENUS PAZZUS (MECOPTERA: BITTACIDAE) I)ISC.OTIIRY 01 speclmeils of the unusual bittacid genus Pazzus in the Mecoptera collection of the Univeisity of Michigan Museum of Zoology led to an euainination of what little has been written about this genus. Appaiently, only tllice spccirnens have hitherto been known to science. A single male, collected in Peiu, was described by Nav,is in 1908 as Bzllacu~graczl!~. Five years later Navis concluded that this rem'ukable insect repiesented a new genus, which he named Ynzzzlr iln honor 01 Diego Alvarez tlc Paz, S.J. In the preparation of his 1921 monograph ot the Mecoptera of the wolld, Esben-Petersen ex,~inincd one male and onc lemale of P~rzrusfrom Panama, in the tollection 01 the British Museum. These he identified as Pnzzus gtnczlzs Nakis, at the same time presenting a sketch of the inale genitalia slid a pllotograph of the wings. For the past thirty-five years no furtl-~erspecimens 01 Pnz2us have been nlcntioned in entomological litelature. Illustlations ot wings oT Pnzr~,~in Navis' 1913 papel and Esben- Petersen's nronograph indicate cleai ly that the Pel u and Panama specilllens 'lie of one genus, for the ~enationancl shape of wing are tonspicuously different from those of all other bittacid genera. How- ever, on comparing Nakbs' original description 01 Bzttaczlr graczlzs with my notes on the British Mlrseum specimens so named, it is evident to me that there are two species involved. A female in the Unive~sity of ~idhi~aicollection, taken in a light trap at l'eiia Illanca, Los Santos, Panama, about 175 miles from the locality lrom which tlhe specimens in the British Museum came, appears to be tonspecihc with them.
    [Show full text]
  • Developmental Regulation of the Expression of Amaryllidaceae Alkaloid Biosynthetic Genes in Narcissus Papyraceus
    G C A T T A C G G C A T genes Article Developmental Regulation of the Expression of Amaryllidaceae Alkaloid Biosynthetic Genes in Narcissus papyraceus Tarun Hotchandani 1, Justine de Villers 1 and Isabel Desgagné-Penix 1,2,* 1 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada 2 Plant Biology Research Group, Trois-Rivières, QC G9A 5H7, Canada * Correspondence: [email protected]; Tel.: +1-819-376-5011 Received: 6 July 2019; Accepted: 5 August 2019; Published: 7 August 2019 Abstract: Amaryllidaceae alkaloids (AAs) have multiple biological effects, which are of interest to the pharmaceutical industry. To unleash the potential of Amaryllidaceae plants as pharmaceutical crops and as sources of AAs, a thorough understanding of the AA biosynthetic pathway is needed. However, only few enzymes in the pathway are known. Here, we report the transcriptome of AA-producing paperwhites (Narcissus papyraceus Ker Gawl). We present a list of 21 genes putatively encoding enzymes involved in AA biosynthesis. Next, a cDNA library was created from 24 different samples of different parts at various developmental stages of N. papyraceus. The expression of AA biosynthetic genes was analyzed in each sample using RT-qPCR. In addition, the alkaloid content of each sample was analyzed by HPLC. Leaves and flowers were found to have the highest abundance of heterocyclic compounds, whereas the bulb, the lowest. Lycorine was also the predominant AA. The gene expression results were compared with the heterocyclic compound profiles for each sample. In some samples, a positive correlation was observed between the gene expression levels and the amount of compounds accumulated.
    [Show full text]
  • Anatomy and Go Fish! Background
    Anatomy and Go Fish! Background Introduction It is important to properly identify fi sh for many reasons: to follow the rules and regulations, for protection against sharp teeth or protruding spines, for the safety of the fi sh, and for consumption or eating purposes. When identifying fi sh, scientists and anglers use specifi c vocabulary to describe external or outside body parts. These body parts are common to most fi sh. The difference in the body parts is what helps distinguish one fi sh from another, while their similarities are used to classify them into groups. There are approximately 29,000 fi sh species in the world. In order to identify each type of fi sh, scientists have grouped them according to their outside body parts, specifi cally the number and location of fi ns, and body shape. Classifi cation Using a system of classifi cation, scientists arrange all organisms into groups based on their similarities. The fi rst system of classifi cation was proposed in 1753 by Carolus Linnaeus. Linnaeus believed that each organism should have a binomial name, genus and species, with species being the smallest organization unit of life. Using Linnaeus’ system as a guide, scientists created a hierarchical system known as taxonomic classifi cation, in which organisms are classifi ed into groups based on their similarities. This hierarchical system moves from largest and most general to smallest and most specifi c: kingdom, phylum, class, order, family, genus, and species. {See Figure 1. Taxonomic Classifi cation Pyramid}. For example, fi sh belong to the kingdom Animalia, the phylum Chordata, and from there are grouped more specifi cally into several classes, orders, families, and thousands of genus and species.
    [Show full text]
  • Liliaceae Lily Family
    Liliaceae lily family While there is much compelling evidence available to divide this polyphyletic family into as many as 25 families, the older classification sensu Cronquist is retained here. Page | 1222 Many are familiar as garden ornamentals and food plants such as onion, garlic, tulip and lily. The flowers are showy and mostly regular, three-merous and with a superior ovary. Key to genera A. Leaves mostly basal. B B. Flowers orange; 8–11cm long. Hemerocallis bb. Flowers not orange, much smaller. C C. Flowers solitary. Erythronium cc. Flowers several to many. D D. Leaves linear, or, absent at flowering time. E E. Flowers in an umbel, terminal, numerous; leaves Allium absent. ee. Flowers in an open cluster, or dense raceme. F F. Leaves with white stripe on midrib; flowers Ornithogalum white, 2–8 on long peduncles. ff. Leaves green; flowers greenish, in dense Triantha racemes on very short peduncles. dd. Leaves oval to elliptic, present at flowering. G G. Flowers in an umbel, 3–6, yellow. Clintonia gg. Flowers in a one-sided raceme, white. Convallaria aa. Leaves mostly cauline. H H. Leaves in one or more whorls. I I. Leaves in numerous whorls; flowers >4cm in diameter. Lilium ii. Leaves in 1–2 whorls; flowers much smaller. J J. Leaves 3 in a single whorl; flowers white or purple. Trillium jj. Leaves in 2 whorls, or 5–9 leaves; flowers yellow, small. Medeola hh. Leaves alternate. K K. Flowers numerous in a terminal inflorescence. L L. Plants delicate, glabrous; leaves 1–2 petiolate. Maianthemum ll. Plant coarse, robust; stems pubescent; leaves many, clasping Veratrum stem.
    [Show full text]
  • Botany for the Herbalist Common Plant Families 7Song, Director Northeast School of Botanical Medicine 7Song.Com
    Botany for the Herbalist Common Plant Families 7Song, Director Northeast School of Botanical Medicine 7Song.com This handout describes common plant families in the US and Canada. Each family segment contains general characteristics of the family as well as some of the more commonly known species within. In some families such as the Liliaceae, the genera of the plants are still in transition and being placed in newly created families. In other families such as the Scrophulariaceae, some of the former genera have been placed into different already existing families. Within this handout they are generally kept in the older family grouping with the new family identified next to the genus. Field botany is the study of identifying plants and grouping them into categories based on shared anatomical characteristics. Much of this is based on their reproductive parts, especially their flowers. One of the most useful starting points to identify specific plants in the field is by knowing their plant families. Families are a useful category to understand, as plants within them may share obvious traits both botanical (anatomical similarities) and other qualities such as aromatics. As far as medicinal characteristics within a family, there are generally more exceptions to shared traits than similarities in uses. An example showing both sides this is the Apiaceae. This family includes many aromatic, flavorful plants such as Dill, Fennel, and Angelica but also Poison hemlock (Conium), a notoriously poisonous plant. Another example is the Liliaceae with edible foods such as garlic, onion and asparagus but also the toxic Veratrum and Lily-of-the-valley (Convallaria).
    [Show full text]
  • Taxonomic Classification Pipeline
    E01-068-01 Explanation standard 16S-ITS microbial profiling analysis V3 Taxonomic classification pipeline OVERVIEW OF ANALYSIS STEPS INVOLVED IN THE TAXONOMIC CLASSIFICATION PIPELINE Short paired sequence reads were generated using the Illumina RDP 16S rRNA gene databases. Based on the alignment scores of the MiSeq system and converted into FASTQ files using the BCL2FASTQ pseudoreads, the taxonomic classes were assigned by associating pipeline version 2.18. The Illumina paired reads were merged into each pseudoread to the best matching taxon. The taxonomic depth single reads (so-called pseudoreads) through sequence overlap, after of the lineage is based on the identity threshold of the rank; Species removal of the forward and reverse primers. Chimeric pseudoreads 99%, Genus 97%, Family 95%, Order 90%, Class 85%, Phylum 80%. were removed and the remaining reads were aligned to the A brief overview of the pipeline is given in the figure below. Q-check Target amplification Illumina MiSeq Pseudoreads through (e.g. 16S rRNA, ITS) sequencing sequence overlap Interactive visualization Taxonomic classification Chimera removal in online portal based on DNA databases MORE INFORMATION 1 Ribosomal Database Project: data and tools for high throughput rRNA analysis. Cole JR, Wang JA et al. (Nucl Acids Res. 2014). PO Box 1336 T +31 (0)71 523 39 17 2302 BH Leiden E [email protected] The Netherlands W baseclear.com Metagenomics online analysis portal OVERVIEW PER PROJECT: TREE AND BAR-CHART In the project overview, a tree is been constructed on-the-fly: samples that share a similar taxonomic composition displayed in close proxi- FIGURE INTERPRETATION mity.
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae
    [Show full text]
  • THE GENUS HALOBATES (Hemiptera: Gerridae)
    Pacific Insects 3 (2-3): 223-305 July 31, 1961 THE GENUS HALOBATES (Hemiptera: Gerridae) By Jon L. Herring1 INTRODUCTION Relatively few insects inhabit the sea. Certain Diptera, Coleoptera and a half dozen genera of Hemiptera may be considered marine because they occupy saline situations, such as rocky beaches, intertidal flats, mangrove swamps and the like, but only the water strid- ers have invaded the open ocean. Little is known of the distribution of the veliid, Halovelia, or the gerrid, Hermatobates, although both of these water striders have been taken in lagoons, coral reefs and harbors. It appears that these two genera, although exclusively halophilous, are confined to coastal situations. Water striders of the genus Halobates, however, are truly oceanic in habit. Several species maintain their entire existence hundreds of miles from the nearest land and have been taken on or near shore only after storms. The early workers considered all species of this genus to have an open-ocean distri­ bution since the attention of the early voyagers was attracted to these silvery gray insects only on the open sea. We now know, however, that only a few of the species maintain this existence. Most of them are endemic to particular islands or island groups. In this study all previous work has been reviewed. Much new material has been stud­ ied, and biological observations were made at the Marine Biological Station of the Uni­ versity of Hawaii. The resulting revision is the first since that of Buchanan-White 75 years ago. ACKNOWLEDGMENTS I wish first to express my appreciation to Dr.
    [Show full text]