STUDY of LUNAR, PLANETARY and SOLAR Topografhy
Total Page:16
File Type:pdf, Size:1020Kb
4 STUDY OF LUNAR, PLANETARY AND SOLAR TOPOGRAfHY By: D.A. Richards, J.D. Gallatin, and R.O. Breault CAL NO. VC-2104-0-2 Prepared for: National Aeronautics and Space Administration Electronics Research Center Space Optics Laboratory Cambridge, Massachusetts 02139 Final Report Contract No. NAS 12-19 July 1967 (CATEGORY) .- OF CORNELL UNIVERSITY, BU’FFALO, N. Y. 14221 , + CORNELL AERONAUT1 CAL LABORATORY , I NC. BUFFALO, NEW YORK L,14221 / i?- [PROJECT TECH TOP STUDY OF LUNAR, PLANETARY AND SOLAR TOPOGRAPHYiP BY: D.A. RICHARDS J.D. GALLATIN R.O. BREAULT’! h PREPARED FOR: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ELECTRONICS RESEARCH CENTER SPACE OPT1 CS LABORATORY CAMBR I DGE, MASSACHUSETTS 021 39 TABLE OF CONTENTS Section 1 INTRODUCTION 1 1.1 Objectives ...................... 1.2 Tasks Accomplished ................ 1. 3 Report Organization ................ 1.4 Acknowledgements ................. 2 REVIEW OF FIRST PHASE 5 2 . 1 Areas of Consideration .............. 5 2.2 First Phase Recommendations .......... 9 2 . 3 Plan for Second Phase ............... 10 3 PLANETARY TOPOGRAPHY 13 3 . 1 Introduction ..................... 13 3.2 System Analysis .................. 14 3.2.1 Concept .................. 14 3.2.2 Considerations .............. 15 3.2.3 Model ................... 19 3 . 3 Image Restoration ................. 22 3 . 3 . 1 Introduction ................ 22 3.3.2 Tone .................... 24 3.3. 3 Position .................. 24 3.3.4 Detail ................... 25 3 . 3 . 5 Other Considerations ........... 26 3.4 Mapping Considerations .............. 26 3.4. 1 Exposure Times for Star Cameras .... 27 3.4.2 Laser Rangefinder Considerations .... 28 3.5 Recommendations ................. 29 ... 111 TABLE OF CONTENTS, Contd. Section Page 4 SOLAR TOPOGRAPHY 35 4. 1 Introduction ..................... 35 4.2 Theoretical Aspects ................ 36 4.2.1 Concepts. ................. 36 4.2.2 Phenomena ................ 37 4.2.3 Problems ................. 40 4.2.4 Modeling ................. 43 4. 3 Engineering Aspects ................ 44 4. 3. 1 Engineering Considerations for a Solar Probe ................... 44 4. 3.2 Cooperating Vehicles ........... 45 4. 3. 3 Solar Instrumentation ........... 47 4.4 Experimental Aspects ............... 49 4.4. 1 An Active Probe of the Sun ........ 49 4.4.2 Fourier Transform Spectroscopy .... 50 4. 5 Recommendations ................. 50 5 APPENDICES 55 Planetary C ons iderations P-1 System Analysis for Planetary Task ........... 57 P -2 Image Restoration in General .............. 71 P-3 Automatic Stereocompilation ............... 109 P -4 Image RestorationExamples ............... 127 P-5 Star Camera Exposure ................... 135 P -6 Laser Rangefinder Considerations ............ 143 iv TABLE OF CONTENTS. Contd . Section Page Solar Considerations s-1 Differential Heliorotation .................. 151 s -2 Solar Granulation ...................... 177 s-3 Solar Flares ......................... 187 s -4 Solar Atmospheric Model .................. 193 s-5 Engineering Considerations for Solar Probe ........ 231 S -6 Cooperating Vehicles .................... 253 s -7 Solar Instrumentation .................... 263 S -8 Active Probe of the Sun ................... 291 s-9 Fourier TransformSpectroscopy ...... ........ 301 B-1 BIBLIOGRAPHY ....................... 319 V LIST OF FIGURES Figure Page 1 Representative Synthesis of System Response Function. 21 2 Lens-Film Response Functions .............. 23 3 Use of Cooperating Vehicles for Communications ..... 47 Aperture Limit. ...................... 66 Capability of Detector ................... 68 Orbital Motion Limit ................... 69 Optical C ross-Correlator ................. 79 Spatial Filtering Apparatus ................ 85 Illustrating C onne c t ion Be tw een Mult ipath T rans miss ion Analysis and Inhomogeneous Image Restoration ... 103 Spectrum of Half Tone Exposure ............. 104 Geometry of Stereo Projection .............. 112 Information Flow in Aerial Contouring (Partial) ..... 115 Information Flow Including Data Link ........... 121 Lunar Orbiter I High Resolution Photograph which contains Uncompensated Motion ................ 129 Same Photograph Deblurred by the use of a Spatial Filter (Approximate Inverse) ................ 130 Similar Enhancement made from Negative instead of Positive used for Figure Z(P4) ............ 131 Enhancement by Photographic Implementation of the Differentiation Technique suggested by Harris (see text) ....................... 133 Illustration of Range Cell Analysis ............ 148 Solar Rotation Rate as derived by a Number of Authors from Sunspot Data ................... 159 The Rotation of the Sun .................. 160 Spectral Line Width .................... 165 Illustration of Equations .................. 169 Cell Sizes of Granulation Patterns ............ 180 vii LIST OF FIGURES. Contd. Page Assumptions and Their Parameters ............ 195 The Electromagnetic Spectrum ............... 197 The Optical Window in the Earth's Atmosphere ...... 198 Attenuation of Radiation with Depth ............. 204 Geometric Depth ....................... 206 Optical Depth. Temperature and Height .......... 213 Billowy Granulation ..................... 215 The Continuous Absorption of H- ............... 217 Equivalent Width of a Line ................. 220 A Curve of Growth ..................... 221 One- and Two-Impulse Methods .............. 232 Velocity Requirements ................... 233 Performance of Solar Probe ................ 235 Six-Month Orbit Relative to Sun-Earth-Axis ........ 236 Velocity Requirements for Orbits about Sun and Out of Ecliptic Plane ..................... 237 Ideal Burnout Velocity ................... 238 Power of Deflectable Solar Cell Panel ........... 240 Solar Cell Output ...................... 242 Temperatures for Capsule and Independent Heat Shield . 248 Illumination Distribution as a Function of Distance .... 265 Half Light Intensity ..................... 267 Prime Focus with Corrective Telephoto Lens ....... 269 A Cassegrainian Focus Telescope ............. 270 Newtonian Focus ...................... 270 CoudEFocus ......................... 271 Obscuration Effects on a Cassegrainian Type Telescope . 276 Rowland's Circle for Concave Grating ........... 278 viii LIST OF FIGURES. Contd . Figure 9(57) The All-Reflecting Wadsworth Mounting of the Concave Grating., ....................... 279 1O(S7) Construction of a Spectroheliograph ............ 282 11(S7) Babcock Magnetograph at Mount Wilson .......... 286 Michelson Interferometer ................. 303 ix LIST OF TABLES Table Page I Possible Methods of Obtaining Topographical Information . 6 I1 Requirements to Obtain Topographical Information by Stereoscopy ....................... 7 111 Divisions and Subsystems of a System ........... 17 IV The Subsystems of the Acquisition Division of a Stereo Imagery System .................... 18 V Key Parameters of the Planets and the Moon ....... 20 Planetary Motion Data ................... 59 Planetary Atmospheres ................... 61 Planetary Data ......................... 62 Characteristics of Halftone Stripping Processes ...... 94 Solar Rotation as a Function of Solar Latitude ....... 161 Predicted Einstein Shifts .................. 168 Solar Flare Characteristics ................ 188 I(S4) Energy Attenuation ..................... 205 Ib(S4) Optical and Geometric Depth at the Solar Limb ...... 207 I11 (S4) Empirical Model ....................... 212 IV (54) Height and Temperature Correlation ............ 214 v (S4 1 Temperature as a Function of Optical Depth ........ 214 VI (S4) Relative Elemental Abundances Adopted for the Sun .... 224 VI1(S4) Relation between Gas and Electron Pressure for a Solar-like Abundance ....................... 225 VIII(S4) Theoretical Model by Munch (1947) ............. 227 IX(S4) Models of Solar Photosphere ................ 228 X(S4) Adopted Photospheric Model ................ 228 X(S5) Booster Data ........................ 235 E651 Experimental Data Reduction of Solar Cell Efficiency due to Particle Bombardment ................. 243 III(S5) Attitude Control Systems .................. 245 xi LIST OF TABLES. Contd . Table Page IV(S5) SDlar Probe Data ...................... 249 1~37) Large Telescopes Presently in Use ............ 264 II(S7) Diffraction-Limited Resolving Power for Some Major Telescopes ....................... 267 xii SUMMARY This is the final report of a program (Project TECH TOP) to assess the state of the art and to make recommendations for future research in topographic information collection systems for planetary and solar inves - tigation. The present report includes a brief review of the first phase effort and a more extensive presentation of the results of the second phase. The second phase continued analysis of planetary topography to include the initiation of a detailed system analysis, a review and analysis of image restoration processes and their application to space imagery, and some mapping considerations for a stereo imagery system. Three major aspects of solar topography, theoretical, engineering and experimental, were investigated. The theoretical aspects concerned the concepts, phenomena and problems of major importance to the study of the sun. The engineering aspects concerned solar probe feasibility and survivability, the use of cooperating vehicles, and earth-based solar instrumentation. Two experimental possibilities were examined involving the use of an active backscatter probe of the sun and the use of Fourier transform spectroscopy